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Abstract: The growing number of vehicles on the road has led to a rapid increase in fuel consumption
and toxic gas emissions, so the challenges in fuel efficiency improvement and reduction of CO2 and
NOx emissions have always been on the top agenda of the automotive industry. The paper presents a
feasibility study of recovering the low-pressure exhaust gas energy via by-pass connection of a scroll
expander to the engine system exhaust. The paper starts with the description of the proposed new
exhaust energy recycling scheme and the mathematical modelling of the system. A feasibility study
is carried out to investigate whether this new scheme can work with the engine operation conditions
specified by the engine test data. The initial study indicated that the scroll expander structure needs
to be modified; otherwise, it cannot be used for exhaust energy recovery. The experimental test
and simulation results presented in this paper indicate that it is feasible to recover the low-pressure
exhaust gas energy using a scroll expander with a modified structure. The proposed energy recovery
system has the potential to produce over 400 W power output with over 90% of engine exhaust
flow recycling.
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1. Introduction

With economic and technical developments, the number of road vehicles is rapidly increasing
worldwide. In Great Britain, there were 35.6 million licensed vehicles on the road at the end of
December 2014; and the UK was the second largest new car market in Europe in 2014, accounting
for 20% of all new cars registered in the EU that year [1]. In China, according to a statement by the
Chinese Ministry of Public Security, the vehicle population reached 264 million at the end of 2014, with
an average annual increase of 15 million vehicles from 2010 to 2014 [2]. Also in the United States, the
number of registered cars and light trucks reached 252.6 million in 2014, with an increase of about
3.9 million from the number of registered vehicles in 2012 [3]. Currently, most vehicles are driven by
internal combustion engines, which implies a huge consumption of the limited fossil fuels. Meanwhile,
harmful exhaust gases (especially CO2 and NOx emissions) are heavily produced during the operation
of these vehicles. Therefore, energy savings from the engine system is one of the core strategies to both
economize on fossil fuels and achieve CO2 and NOx emission reductions.
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In regard to the energy conversion of the engine working process, there is extensive room for
improvement. According to a statement about fuel economy from the Department of Energy of the
U.S. Government, only about 14%–30% of the energy from the fuel is used in an internal combustion
engine-powered vehicle to provide the driving force [4,5]. The rest of the energy is lost due to low
engine and driveline efficiencies and heat losses. To save the limited fuels and meet emission standard
targets ([6]), improving the energy conversion ability of vehicle systems whilst reducing toxic gas
emissions represents a significant challenge.

Both industrial and academic sectors are making great efforts to develop effective methods
to reduce vehicle energy consumption, such as developing an efficient Homogeneous Charge
Compression Ignition (HCCI) engine, investigating predictive control algorithms for engine
cooling systems and assessing supercharging boosting components for heavily downsized gasoline
engines [7–9]. Reusing the exhaust gas energy from an engine discharge path can also be considered
as a good option. There are several approaches to utilize the exhaust energy to improve the vehicle
energy efficiency and to make it run with reduced emissions. For instance, the heat from the exhaust
can be used to warm the engine components, and the interior of the vehicle can be warmed using
the exhaust heat as well [10]. Design and optimization of heat exchangers, and the use of organic
fluids and ammonia as working media for vehicle waste heat recovery applications have been
studied [11–13]. Furthermore, implementing an Exhaust Gas Recirculation (EGR) into a vehicle
engine system is nowadays a popular technology, which can achieve reduced NOx emissions and
potentially improve the trade-off relationship between the emissions and fuel consumption [14,15].
For example, studies on EGR and its effect on the trade-off relationship in natural gas spark-ignition
(SI) engines can be found in [16,17]. It should be noted that the vehicle exhaust can also be used to
generate electricity. For implementing such an application, a device with high energy conversion
ability and good stability while working at low pressures will be required, because the engine exhaust
is normally at a low pressure.

The scroll expander (also named the scroll air motor) offers the possibility of reusing the vehicle
exhaust flow to generate electricity, which leads to the research described herein—a feasibility
study of the recycling the engine exhaust gas energy via the scroll expander technology. The scroll
expander’s unique structure inherited from the scroll compressor brings its key advantage—relatively
high energy efficiency (up to around 70% and potentially even higher) under the proper working
conditions compared to some other pneumatic actuators, such as pneumatic cylinders and vane-type
air motors [18–22]. This technology has recently been successfully adopted in some smart energy
conversion systems. For instance, the company Flowbattery Ltd. (Chester, UK) produces a unique
product—Compressed Air Batteries (CAB). The CAB is a type of hybrid Uninterrupted Power Supply
(UPS) which uses a set of compressed air devices integrated with an ultra-capacitor bank to provide
back-up power; the CAB has been implemented in UK grid and data centers to replace conventional
battery powered UPS systems [21]. The company is also developing Micro Combined Heat & Power
systems (Micro CHP) which can generate heat and electricity simultaneously on a kW-scale to provide
energy for a residence or a small commercial building. In both the CAB and Micro CHP designs,
a scroll expander is used to drive the electrical generator for achieving efficient energy conversion.
Furthermore, academia has widely investigated the feasibility of recovering the exhaust energy
using scroll technology in different applications, such as a combination scroll compressor-expander
mechanism for recycling work in a fuel cell system ([22]), an exhaust compressed air recycling system
for recovering energy from conventional pneumatic actuating systems ([23]), and a waste heat-to-power
research project—using scroll expanders for an Organic Rankine Bottoming Cycle ([24]).
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2. Mathematical Modelling of the Engine Exhaust Recycling System

2.1. Description of the Proposed Engine Exhaust Recycling System

The paper presents a new scheme for vehicle gasoline engine exhaust energy recovery via
connecting a scroll expander at the engine system discharge port. A schematic diagram of the proposed
design is illustrated in Figure 1. It shows the structure of a conventional vehicle internal combustion
engine system and the exhaust recycling system, including their connection. From Figure 1, the
working medium goes through low and high pressure (LP and HP) compressors to obtain an average
value of around 1.7 ˆ 105 Pa before entering the cylinders. After the combustion process happens
in the cylinders, the exhaust goes through HP and LP turbines and discharges from the outlet of the
engine system. Then, via the designed exhaust energy recovery system a part of exhaust flows into
the down-stream scroll expander through a controlled valve and a filter. The scroll expander converts
the exhaust energy into crank kinetic energy which is finally transformed into electrical energy by a
generator equipped with a gear transmission.
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Figure 1. Schematic diagram of connecting a vehicle engine system with an exhaust energy recovery
system (picture courtesy of MAHLE).

The paper starts with the mathematical modelling of the dynamic process of the proposed
recycling scheme as shown in Figure 1. The measured operation data (pressure, flow rate and
temperature) from a gasoline engine discharge port is used to compare and examine the working
conditions of the scroll expander for the exhaust energy recovery application. The investigation of
recovering exhaust gas energy is carried out, in which an original scroll expander is used for initial
experimental and simulation studies to identify its limitations. Then the various designs of the scroll
expander structure are proposed and examined via extensive simulation study.

2.2. Mathematical Modelling of the Engine Exhaust Recycling System

The scroll expander is the most important component of the proposed exhaust recycling system.
Its compact mechanical structure leads to its high efficiency (up to around 70% and potentially even
higher) [18–22]. Figure 2 shows the structure of an unmodified scroll expander, which inherits is
configuration from a from Sanden TRS09 scroll compressor. The scroll expander consists of two
intermeshed identical spirals, namely the fixed scroll and the moving scroll, respectively. The two
scrolls form a center chamber and an even number of sealed side crescent chambers. The inlet and the
outlet are individually located at the center chamber and the exhaust chamber of the scroll expander.
The compressed gas expands through three phases: charging, expansion and discharging. In this
process, the compressed gas pushes the expander center and side chambers getting bigger in each
cycle; the expanding crescent sealed side chambers immediately open at some moment in each cycle
and they do not exist anymore during the rest of each cycle; the moving scroll does not rotate but
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rather wobbles on a cam which connects to the expander shaft; the overall generalized motion from
the moving scroll movement is the rotation of the shaft (for details, refer to [25,26]).
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Figure 2. Illustration of the unmodified scroll expander structure (Sanden scroll TRS09): (a) moving
and fixed scrolls with their base plates; and (b) schematic diagram of the expander chambers.

To simplify the analysis, the following assumptions are made: the gas used for driving the
scroll expander is an ideal gas and the gas is uniformly distributed in each chamber; during the
scroll expander operation, the leakage effect inside the scroll expander is neglected. The first law of
thermodynamics, the steady-flow theory, the energy and mass balances, the ideal gas law with other
relevant thermodynamic fundamentals are used to drive the equations of the gas temperatures and
pressures inside the expander chambers. The detailed modelling process for scroll expanders with
using compressed air as working medium can be found in [20,25,27], which is briefly described below.
For the center chamber of scroll expanders:
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For the side chamber of scroll expanders:
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For the exhaust chamber of scroll expanders:
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.
Pse “

1
Vse
p

.
mse

Mair
RTse ` R

.
Tse

mse

Mair
´ Pse

.
Vseq (9)

For the generated torque of scroll expanders:

τscroll “ ´KS´C1S pωsq ´ Kfsωs `
ÿ

ns“0,1,2,...

zrsP̂ p2ρ0 ` 2γαs ` p4ns ` 1qγπq (10)

where the subscripts sc, ss and se stand for the scroll expander center, side and exhaust chambers,
respectively; the subscripts in, out represent the inlet and the outlet ports respectively; m is the mass of
air;

.
m is the air mass flow rate; V represents volume in general; Vtol is the total control volume inside

the scroll expander shell; P is air pressure; T is the air temperature; the initial point of the moving
scroll is defined at the position (x0,y0); ns is the number of scroll wraps; ρ0 is the initial radius of the
curvature of the moving scroll curve; [Xair] represents the molar volumetric concentration of air; R
is the ideal gas constant; Mair is the molar mass of air; h is the specific enthalpy of the air on a molar
basis; Cp,air(T) refers to the specific heat of air at the temperature T; h stands for the air enthalpy;ωs

is the scroll expander rotor angular speed; τscroll is the shaft torque of the scroll expander; k refers to
the slope of the curvature radius; P̂ is pressure difference between the adjacent chambers of the scroll
expander; rs is the radius of the orbit relevant to the moving scroll motion (for details, refer to [20]); αs

stands for the current orbit angle of the moving scroll; z is the height of the two scrolls; Kfs is defined
as the coefficient of the scroll viscous friction; KS´CS(ωs) stands for the combination effect on torque
from the static and Coulomb frictions, and the detailed explanation of the scroll expander frictions was
described in [20,23,27];

.
min,

.
mout are the inlet and outlet mass flow rates which can be calculated by

the orifice theory ([7,20]):
.
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; for air, γ “ 1.4, cr “ 0.528, Ck “ 3.864, C0 “ 0.0404; γ is the

ratio of specific heats.
The developed scroll expander mathematical model was validated by the authors’ laboratory and

the relevant details can be found in [20].

2.3. Mathematical Modelling for Permanent Magnet Synchronous Generators

A permanent magnet synchronous generator (PMSG) is connected to the scroll expander shaft and
is driven by the expander for electricity generation as the exhaust energy recovery output. The PMSG is
chosen mainly because its high efficiency compared with asynchronous generators. In developing the
dynamic model of the PMSG, Park’s transformation is used for simplifying the analysis of three-phase
circuits ([28,29]). It is a transformation of coordinates from the three-phase stationary coordinate

system (Rg) to the direct–quadrature–zero rotating coordinate system (
á

Xdq0). To the PMSG load circuit,
the same resistances between each of the two phases are used, and thus it is assumed that it is a
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complete balanced three-phase load circuit. In this case, the application of the dq0 system reduces

the three AC quantities (
á

Xdq0) to the two DC quantities (pg). It is often used in order to simplify the
analysis of three-phase synchronous machines. From the q axis and the d axis equivalent circuits of the
PMSG (for details, refer to [28,29]) and also Newton’s Law for rotary motion, a mathematical model
for the PMSG systems can be described by ([28,29]):

.
ωg “

1
Jtotal

rξτscroll ´ τe ´ KS´C2S
`

ωg
˘

´ pKfgear ` Kfgenqωgs (12)

.
θg “ ωg (13)

.
id “

1
Ld

vd ´
Rg

Ld
id `

Lq

Ld
pgωgiq (14)

.
iq “

1
Lq

vq ´
Rg

Lq
iq ´

Ld
Lq

pgωgid ´
λ pgωg

Lq
(15)

τe “
3
2

pgrλ iq ` pLd ´ Lqqidiqs (16)

vq “
1
3
rcosppgθgq ˆ p2vab ` vbcq `

?
3vbcsinppgθgqs (17)

vd “
1
3
rsinppGθGq ˆ p2vab ` vbcq ` p´

?
3vbccosppGθGqqs (18)

where the subscripts a,b,c,d,q represent the a,b,c,d,q axes, respectively; ωg refers to the PMSG rotor
speed; KS´C2S(ωg) stands for the combination of effect on torque from the static and Coulomb frictions
of the PMSG and the gear; K f gen and K f gear are the coefficients of the viscous frictions to the PMSG
and the gear; ξ is the gear transmission ratio; Jtotal represents the inertia of the whole energy recycling
system; τe is the PMSG electromagnetic torque; θg is the PMSG rotor angular position; Lq, Ld stand for
the resulting q and d axis inductances, respectively; Rg is the resistance of the stator windings; pg is the
number of pole pairs of the PMSG; λ is the amplitude of flux; i and v refer to the current and voltage in
the different axes. To the designed system, a pure resistance circuit is connected to the PMSG electrical
output with a balanced star connection. Thus, Park’s transformation can be described as ([28,29]):

Xdq “ TparkXabc (19)

where Xabc “
”

ia ib ic
ıT

, Xdq “
”

id iq
ıT

, and

Tpark “
2
3

»

—

–

cosωgt cospωgt´
2
3
πq cospωgt`

2
3
πq

´sinωgt ´sinpωgt´
2
3
πq ´sinpωgt`

2
3
πq

fi

ffi

fl

The whole exhaust recycling system model can be finally developed by integrating the
mathematical models for scroll expanders and PMSGs with electrical loads. The modelling equations
described in Sections 2.2 and 2.3 are implemented in the Matlab/Simulink software environment to
solve the equations simultaneously. In numerical analysis, the Dormand–Prince method is chosen for
solving the differential equations.

3. Results and Discussion

3.1. Recovering Exhaust Energy Using an Unmodified Scroll Expander

Through the initial experimental test analysis and the simulation study using the developed
exhaust recycling system model, this section focuses on the feasibility study of exhaust energy recycling
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via an unmodified scroll expander which is available in the laboratory. For this analysis, the following
assumptions are made:

(1) After a post-combustion gas filter (or other similar function devices) operation, the exhaust gas
from the engine system can flow into the scroll expander without any possible damage to the
scroll mechanism (Figure 1)

(2) The effect of gas leakage between scroll chambers is not taken into consideration;
(3) In practice, after the exhaust energy recycling system connecting to the discharge port, the original

engine system working conditions may be affected because the down-stream gas pressure of
the scroll expander could possibly propagate back to the up-stream. In our analysis, this is not
considered at the moment. The engine system exhaust is treated as a “stable gas supply with low
pressure (1.30 ˆ 105 Pa) and high temperature (947.50 K)” to the scroll expander.

(4) It is assumed that the sufficient combustion process happens in the gasoline engine cylinders and
all the reactants convert to the products via the combustion. Then the corresponding chemical
reaction can be described as ([30,31]): 2C8H18 + 25O2 Ñ 16CO2 + 18H2O. Therefore, the properties
of the post-combustion mixture will be considered and used in the relevant simulation study.

According to the chemical reaction happened in the combustion process of gasoline engines, the
average molar mass of the post-combustion mixture can be calculated. The ratio of specific heats of the
mixture in the gasoline engine cylinders varies from 1.25 to 1.38 (refer to [32]) and thus the average
ratio of specific heats of the mixture (γ “ 1.315) is used in this paper. Some parameters (such as Ck,
C0, cr) to the scroll expander mathematical model need to be re-calculated (Equation (11)), and the
mathematical descriptions of the temperature and pressure variations in the different scroll expander
chambers need to be re-considered:

.
Tch_mix “

ř .
min,ihin,i ´

ř .
mout,ihe,i

Vch_mix
´

.
Vch_mix

Vch_mix
p
ř

rXishiq ´
ř

r
.

Xishi ` Pch_mix
ř

r
.

Xis{
ř

rXis

ř

rXisCp,ipTch_mixq ´ Pch_mix{Tch_mix
(20)

.
Pchamber “

1
Vchamber

p

.
mchamber

Mmix
RTchamber ` R

.
Tchamber

mchamber
Mmix

´ Pchamber
.

Vchamberq (21)

where the subscript i refers to species i containing in the post-combustion mixture (from the chemical
reaction, the sufficient combustion assumption and also for simplifying the analysis, it is assumed that
there are two species in the post-combustion mixture, i.e., CO2 and H2O); the subscript chamber stands
for the scroll expander center, the side and the exhaust chambers,

.
min “ 0 for the side and exhaust

chambers, and
.

mout “ 0 for the center and side chambers; Mmix is the average molecular mass of the
post-combustion mixture, Mmix = 30.25 g/mol.

The methodology of the proposed feasibility study is described as follows. Firstly, the exhaust
discharge port working conditions of a real vehicle gasoline engine system are analysed from the
actual measurement data. Figure 3 shows the measurement data of post-combustion gas pressures,
temperatures and mass flow rates. From Figure 3, it can be seen that the ranges of the gas pressures
and temperatures at the exhaust discharging port are within the ranges of about 1.2 ˆ 105 Pa to
1.7ˆ 105 Pa and 600 K to 1200 K, respectively. The average values of gas pressures and temperatures
shown in Figure 3, i.e., 1.30ˆ 105 Pa and 947.50 K, are chosen as the pressure and temperature references
of the supply working conditions of energy recycling system for the simulation study. Secondly, the
input mass flow rates of the scroll expander are simulated via the developed exhaust recycling system
model. Then the quantitative analysis of the simulated results against the measurement data of the
mass flow rates at the discharge port of the engine system is studied, which indicates that how much
exhaust flow can be recycled. From Figure 3, the average value of the measured mass flow rate at the
engine system discharging port is obtained, i.e., 5.73 ˆ 10´2 kg/s, which is used as the flow reference
in the following feasibility study. In addition, it should be mentioned that, because the pressure



Energies 2016, 9, 231 8 of 22

reference (1.30 ˆ 105 Pa) is quite close to the atmosphere, the over-expansion of the scroll expander
using the reference as a supply pressure can happen in some situations. This has a negative effect on
the expander’s operation, i.e., the back-flow via the outlet of the expander and then the reduction of
the expander generated torque, and thus this phenomenon will be studied in Section 3.2.
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Four groups of experiments at the authors’ laboratory were conducted as a way of obtaining
the measured data of the mass flow rate of scroll expander and then comparing to the flow reference
(5.73 ˆ 10´2 kg/s). Figure 4 shows a schematic diagram of the test rig setup. A scroll expander
(modified from a Sanden TRS09 scroll compressor) and a PMSG (GL-PMG 1000, Ginlong Technologies,
Ningbo, China) are employed to assemble the test rig. A pressure regulator is used to set the input
supply pressures for the scroll expander operation. A resistance circuit is connected to the PMSG
output. In the test, compressed air at ambient temperature (293 K) rather than post-combustion gas is
used as the input working medium, due to the limitations of the laboratory. The working conditions
for the four group tests and the test results are given in Table 1. The electrical generator load was set at
22 ohm in each phase. From the test, it is found that the supply pressure is one of the main factors
that determines the mass flow rate of the scroll expander and the power output while the generator
load resistor remains constant. From Table 1, the lower supply pressure results in the lower mass flow
rate and in turn the lower expander power output while the supply temperature is kept unchanged.
From Table 1, when the supply air pressure of the scroll expander reduces from 3.75 ˆ 105 Pa to
2.50 ˆ 105 Pa, the measured mass flow rate is reduced from 7.65 ˆ 10´3 kg/s to 3.15ˆ 10´3 kg/s,
which is around from 13.4% to 5.5% of the flow reference value (5.73 ˆ 10´2 kg/s). It is noticed that
the scroll expander cannot start rotating properly when the supply pressure is at the pressure reference
(1.3 ˆ 10´5 Pa). Also, in the four groups of experiments (Table 1), after the air temperature at the scroll
expander outlet reaches the steady state, the air temperature at the outlet can drop up to maximum
31 K compared to the inlet temperature.
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Table 1. The four groups of experimental tests at the Warwick laboratory.

Group No. Working Condition Settings Steady-state Test Results of the Scroll Expander

1st test supply pressure 3.75 ˆ 105 Pa,
supply temperature 293 K

mass flow rate 7.65 ˆ 10´3 kg/s, power output 385.1 W,
outlet temperature 262 K

2nd test supply pressure 3.50 ˆ 105 Pa,
supply temperature 293 K

mass flow rate 6.68 ˆ 10´3 kg/s, power output 327.3 W,
outlet temperature 265 K

3rd test supply pressure 3.00 ˆ 105 Pa,
supply temperature 293 K

mass flow rate 4.74 ˆ 10´3 kg/s, power output 221.3 W,
outlet temperature 271 K

4th test supply pressure 2.50 ˆ 105 Pa,
supply temperature 293 K

mass flow rate 3.15 ˆ 10´3 kg/s, power output 125.9 W,
outlet temperature 280 K

Additional tests are conducted in the laboratory. The test rig and the machine used are the same
as shown in Figure 4. The tests are implemented by setting the input supply pressures at different
values (2.50 ˆ 105 Pa, 2.75 ˆ 105 Pa, 3.00 ˆ 105 Pa and 3.25 ˆ 105 Pa) and then gradually changing the
scroll expander shaft rotation speeds. Figure 5 shows the experimental test results of the shaft torques
and the rotation speeds of the scroll expander at different supply pressure conditions. From Figure 5,
considering compressed air as working medium, the mechanical characteristics of the unmodified
scroll expander can be studied.
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Assuming that compressed air and post-combustion mixture are the working media, respectively,
the simulation study by using the developed exhaust energy recycling model is conducted. In the
simulation, the parameters for the scroll expander model and the PMSG model are taken from
the machines used in the experimental tests. The available parameters are shown in Table 2 and
the unknown parameters can be obtained by using the evolutionary computation method with the
experimental test data (refer to [33]).

The initial simulation study indicates that, if the supply pressure remains and the supply
temperature increases from 293 K to the temperature reference (947.50 K), the simulated mass flow rate
will get smaller. For instance, if the supply pressure remains at 2.5 ˆ 105 Pa using compressed
air as working medium (as in the experimental tests), the mass flow rate will drop more than
5.0 ˆ 10´4 kg/s from 3.15 ˆ 10´3 kg/s. Also, as described in the experimental tests, the scroll
expander cannot start rotating properly at the pressure reference (1.3 ˆ 105 Pa). Thus, it is not
suitable to use the scroll expander with the original structure for exhaust recycling work. Therefore,
modifications of the mechanical structure and dimensions of the scroll expander should be considered
to achieve relatively high exhaust energy recovery rates.



Energies 2016, 9, 231 10 of 22

Table 2. The parameters of the used scroll expander and the permanent magnet synchronous
generator (PMSG).

Parameters Values of Parameters Unit

Molecular mass of air 28.97 g/mol
Slope of radius of scroll curvature 0.003183 -
Orbit of the original moving scroll 5.8 mm

Thicknesses of the moving and fixed scrolls 4.5 mm
Heights of the moving and fixed scrolls 33.3 mm

Effective inlet area 1.493 ˆ 10´4 m2

Effective outlet area 4.531 ˆ 10´4 m2

Total controlled volume of the scroll expander 4.1 ˆ 10´3 m3

Ideal gas constant 8.314 J/(mol¨ K)
Molar mass of air 28.97 g/mol

Resistance of the stator windings 6 ohm
Inductance on the d axis 17.5 mH
Inductance on the q axis 17.5 mH

Magnetic flux induced by magnets 0.44 Wb
Gear transmission ratio 7.5 -

Static friction of the scroll expander 0.318 Nm
Static friction of the gear 0.213 Nm

Inertia of the whole energy recycling system 0.002 kgm2

3.2. Evaluation on Recovering Exhaust Energy with Structure Modified Scrolls

A few considered approaches to improve the scroll expander structure for better exhaust recycling
trials are studied in this section. The study for enhancing the input mass flow rate of the exhaust
recovery system includes increasing the scroll expander inlet port dimensions, modifying the scroll
structure to lead to the scroll center chamber volume enlargement, and varying the scroll expander
geometry parameters. The corresponding simulation study is conducted and the same methodology
of the proposed feasibility study described in Section 3 is implemented. A quantitative analysis of
using the structurally modified scrolls for the recycling work is reported. The aim of the study is to
increase the scroll expander intake mass flow rate to close to the flow reference (i.e., 5.73 ˆ 10´2 kg/s)
as much as possible, which will lead to more exhaust energy being recovered. The post-combustion
mixture is used as working medium for the simulation study in this section and thus the properties of
the mixture described in Section 3 is adopted.

3.2.1. Case I—Increasing the Scroll Expander Intake Port

One straightforward way to increase the input mass flow rate of the exhaust energy recycling
system is to enhance the flow rate of the scroll expander intake mass flow rate. This can be naturally
accomplished by modifying the scroll expander intake port to have a larger diameter. From the
structure of the scroll expander, the inlet port of scroll expander lies in the center of the fixed scroll
plate, and its size can only be extended in a finite range due to the scroll center chamber’s limited
cross-section area (Figure 6). The inlet area cannot exceed the minimum value of the cross-section area
of the center chamber; otherwise, the supply compressed air will directly go into the side chambers
during the expander operation. The original scroll inlet area is 1.493 ˆ 10´4 m2 (Table 2) and the
minimum value of the center chamber cross-section area is about 4.54 ˆ 10´4 m2 (Figure 6). Thus, the
scroll expander intake can be modified to roughly maximum three times the original open area. The
descriptions of parameter settings and working conditions for the six simulation groups (the 1st–6th
groups) are shown in Table 3 and the electrical generator load always sets 120 ohm on each phase,
which are prepared for implementing the analysis of exhaust recycling potentials to this case study.
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Figure 6. The scroll expander inlet and the center chamber (modified from Sanden TRS09). (a) The
expander inlet; (b) the schematic diagram of the moment of the minimum center chamber; and (c) the
simulation study of the center chamber cross-section area variation.

Table 3. Parameter settings and working conditions for the simulation groups (the 1st–6th groups).

Group No. Working Conditions Parameter Settings

1st supply pressure 2.0 ˆ 105 Pa
supply temperature 947.50 K

the original open area of scroll
expander inlet

2nd supply pressure 1.5 ˆ 105 Pa
supply temperature 947.50 K

the original open area of scroll
expander inlet

3rd supply pressure 1.3 ˆ 105 Pa
supply temperature 947.50 K

the original open area of scroll
expander inlet

4th supply pressure 2.0 ˆ 105 Pa
supply temperature 947.50 K

three times of the open area of
original scroll inlet

5th supply pressure 1.5 ˆ 105 Pa
supply temperature 947.50 K

three times of the open area of
original scroll inlet

6th supply pressure 1.3 ˆ 105 Pa
supply temperature 947.50 K

three times of the open area of
original scroll inlet

Figure 7 shows the simulation results for the 1st group. From Figure 7, the average mass flow
rate is about 1.99 ˆ 10´3 kg/s, i.e., only 3.5% of the flow reference. After the post-combustion gas
expansion in the side chambers, at the steady state the initial pressure in each cycle of the exhaust
chamber (1.11 ˆ 105 Pa, Figure 7) is slightly higher than atmospheric; and its temperature drops with
the expansion process in the side chambers. From the simulated results, it is seen that the trend for this
case study is similar to that in Section 3, that is, at the same supply temperatures and the same electrical
loads, the higher supply pressure leads to a higher scroll rotor speed and more scroll intake mass flow
rate. It is reasonable to compare the simulation results between the 1st and the 4th groups, the 2nd
and the 5th groups, respectively, because the expander is operated at the same working conditions;
from the comparisons, it is found that increasing the size of the expander intake and the mass flow
improvement does not have a linear relationship—the mass flow rate only has a slight difference
compared to the previous situations: the mass flow rate increases 3.21% in the 4th group compared
to the result from 1st groups and 3.88% in the 5th group compared to the result from the 2nd group.
From the simulation study, in the 3rd and 6th group the scroll expander cannot start rotation properly



Energies 2016, 9, 231 12 of 22

due to the low air supply pressure (1.3 ˆ 105 Pa). In addition, overexpansion can happen when the
supply pressures are 1.5 ˆ 105 Pa. Thus, the exhaust of the scroll expander could flow backwards
via the outlet of the scroll expander at such condition, and this definitely has a negative effect of the
recycling work [20,32]. From the above, if expanding the intake port of the scroll expander only, the
modified scroll expander is still not suitable for the engine exhaust energy recycling work and the
further modification of the scroll expander needs to be considered.
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Figure 7. Simulation results for the 1st group: (a) the center chamber pressure; (b) the side chamber
pressure; (c) the exhaust chamber pressure; (d) the center chamber temperature; (e) the side chamber
temperature; (f) the exhaust chamber temperature; (g) the intake mass flow rate; and (h) the expander
output power.
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3.2.2. Case II—Enlarging Volume of the Scroll Expander Center Chamber

The further proposed modification of the scroll expander geometrical structure is made by the
following steps:

(1) the first circle wrap of the original fixed and moving scrolls is removed to increase the volume of
the center chamber of the scroll expander (Figure 8);

(2) increasing the inlet port size further to get more exhaust gas flow into the engine exhaust recycling
system (in this case, the open area of the intake port is twelve times the original intake and the
reason for this is that the minimum value of the newly formed center chamber cross-section area
needs to be considered, which is similar to the descriptions in the first paragraph of Section 3.2.1.)

(3) extending one new circle scroll wrap from both the fixed and moving scroll ending points in
order to maintain the original number of scroll wraps for these two scrolls.
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Based on the above modifications, some parameter setting changes of the original scroll expander
thermodynamic model must be reformed, including increasing the total controlled volume and the
outlet area of the scroll expander and resetting the initial volume of scroll center chamber. Figure 8
shows the two scroll structures after the proposed modifications. The four simulation groups (the
7th–10th groups) for simulation study are carried out and the descriptions of parameter settings and
working conditions are listed in Table 4.

Table 4. Parameter settings and working conditions for the simulation group (the 7th–10th groups).

Group No. Working Conditions Parameter Settings

7th supply pressure 2.0 ˆ 105 Pa
supply temperature 947.50 K

The expander modified by the above steps, twelve
times of the open area of original inlet

8th supply pressure 1.7 ˆ 105 Pa
supply temperature 947.50 K

The expander modified by the above steps, twelve
times of the open area of original inlet

9th supply pressure 1.5 ˆ 105 Pa
supply temperature 947.50 K

The expander modified by the above steps, twelve
times of the open area of original inlet

10th supply pressure 1.3 ˆ 105 Pa
supply temperature 947.50 K

The expander modified by the above steps, twelve
times of the open area of original inlet

Figure 9 shows the simulation results for the 7th group. The electrical generator load is set
at 120 ohm on each phase, which is the same as the simulation study for the 1st group. From the
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comparison of the results at steady states shown in Figures 4 and 6 it is seen that, with the same
working conditions (supply and load), in each cycle the initial pressure of the exhaust chamber in
Figure 9 (1.32 ˆ 105 Pa) is higher than that in Figure 7 (1.11ˆ 105 Pa). With the further simulation
studies, it is found that overexpansion does not happen at the supply pressures of 1.7 ˆ 105 Pa and
1.5 ˆ 105 Pa but happens at the supply pressure of 1.3 ˆ 105 Pa. From Figure 9, the average scroll
intake mass flow rate increases up to 4.05ˆ 10´3 kg/s, which is higher than the simulation result of the
1st group (1.99 ˆ 10´3 kg/s). Therefore, after the modifications described in Case II, the geometrical
structure changes of the scroll expander lead to an increase in mass flow rate. Thus, the structure
modified scroll expander is more suitable to operate under low supply pressure conditions, e.g.,
1.5 ˆ 105 Pa.
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Figure 9. Simulation results for the 7th group: (a) the side chamber pressure; (b) the exhaust chamber
pressure; (c) the side chamber temperature; (d) the exhaust chamber temperature; (e) the intake mass
flow rate; and (f) the expander output power.

Figure 10 presents the simulation results for the 7th group when the electrical resistance load
varies. From Figure 10, the maximum mass flow rate of the post-combustion mixture gas reaches
6.68ˆ 10´3 kg/s; the scroll expander shaft power has a peak value of 164.5 W; after the scroll expander
transient process, the scroll expander power output can be maintained around 162 W. Thus, if the
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working conditions are set as in the 7th group (Table 4), a maximum 11.7% of the engine exhaust
flow (the flow reference is 5.73 ˆ 10´2 kg/s) will enter the energy recycling system. From the above
analysis, by enlarging the inlet port and the center chamber, the modifications suggested in Case II
will allow scroll expander intake flow and exhaust recovery rate improvements within a certain range.
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3.2.3. Case III—Modifying Scroll Geometry Parameters

Although the utilization ratio of gasoline engine exhaust flow has been raised from the study
of Cases I and II, the scroll expander operation is still weak when the supply pressure is set at the
measured pressure reference (1.30 ˆ 105 Pa) and the overexpansion issue exists under such conditions.
It is believed that there is a considerable range for further improvement of the exhaust recycle ratio by
overcoming the overexpansion issue via modification of the scroll expander mechanical structure and
geometrical parameters. Thus further modifications have been made by the below steps:

(1) keeping the modifications of the scroll expander from the steps of Case II;
(2) increasing the parameter of the moving scroll orbit radius to three times the original value of

this parameter;
(3) according to the nature of the scroll geometry, the slope of the curvature radius (k) to the moving

and the fixed scrolls need to be recalculated, i.e., k = (αs + δs)/π, where δs is the thickness of the
two scrolls (refer to [25]);

(4) adjusting the lengths of the two scroll wraps via the simulation study, to avoid the
over-expansion problem.

After the first three steps of modifications in Case III, the volumes of the scroll expander chambers
are varied. The total control volume of the scroll expander is also varied accordingly. The purpose of
adjusting the scroll expander geometry parameters is to vary the expander side chamber expansion
volumetric ratio (i.e., the ratio between the minimum and maximum values of the side chamber
volume) to avoid the over-expansion and for accelerating the velocity of engine exhaust flow through
the scroll mechanism. The simulation study for the four groups (the 11th~14th simulation groups) are
implemented and the descriptions of working conditions and parameter settings are listed in Table 5.

The simulation results for the 14th group after the scroll expander was modified by the first three
steps of Case III are given in Figure 11, which consists of the moving scroll orbit angle in each cycle,
the expander side chamber pressure, the expander intake mass flow rate and the expander power out
respectively. The electrical generator load is set at 120 ohm on each phase. The average intake mass
flow rate of the scroll expander is improved to 3.45 ˆ 10´2 kg/s and the scroll expander shaft power
output can reach 423.0 W. However, from Figure 11, with the supply pressure of 1.3 ˆ 105 Pa, it is seen
that a slight overexpansion happens in the scroll side chamber. The scroll expander exhaust could flow
backwards via the expander outlet and thus the generated workable torque from the expander can be
reduced. Therefore, the lengths of the two scroll wraps need to be modified to shorten the scroll wrap
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from the ending point of each scroll. From the side chamber pressure shown in Figure 11, the moment
when the side chamber pressure equals to the atmospheric pressure indicates the over-expansion
start so the corresponding orbit angle marked with the red dotted line in Figure 11 gives the critical
point to determine the scroll wrap length for the “perfect” expansion. In each cycle the crescent side
chambers of the original expander exist from 0 to 1.1 π of the orbit angle (Figure 11) and now this is
reduced by shortening the scroll wrap. The side chamber volume, pressure and temperature need to
be recalculated based on the modelling equations described in Sections 2.2 and 3.

Table 5. Parameter settings and working conditions for the simulation group (the 11th–14th groups).

Group No. Working Conditions Parameter Settings

11th supply pressure 2.0 ˆ 105 Pa
supply temperature 947.50 K

the scroll expander modified by the steps
described in Case III

12th supply pressure 1.7 ˆ 105 Pa
supply temperature 947.50 K

the scroll expander modified by the steps
described in Case III

13th supply pressure 1.5 ˆ 105 Pa
supply temperature 947.50 K

the scroll expander modified by the steps
described in Case III

14th supply pressure 1.3 ˆ 105 Pa
supply temperature 947.50 K

the scroll expander modified by the steps
described in Case III
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Figure 12 presents the simulation results after shortening the two scroll wrap lengths. The lengths
of the moving and fixed scroll wraps are both shortened from 2.10 circles to 1.905 circles. A schematic
diagram of the structure of modified scroll expander is shown in the left of Figure 12. From Figure 12,
the pressure of post-combustion mixture in the expansion process is always higher than atmospheric
and thus the overexpansion is avoided. The average intake mass flow rate of the scroll expander is at
3.53 ˆ 10´2 kg/s and the expander shaft power output is 443.5 W. Therefore, from the comparison of
the simulation results in Figures 9 and 11 it is seen that, under the same working conditions with the
proper adjustment of the length of scroll wraps, both the scroll expander intake mass flow rate and the
useful expander shaft power output can be improved.
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Figure 13 shows the simulation results for the 14th group with varying electrical resistance loads.
When the supply conditions are at the reference values (supply pressure 1.3 ˆ 105 Pa and supply
temperature 947.5 K), the average steady mass flow rate to the expander intake can reach 5.38 ˆ
10´2 kg/s, or about 93.9% of the flow reference (5.73 ˆ 10´2 kg/s), which is a remarkable increase
compared with the corresponding simulation results in Case I and II. Thus from the study of Case III,
the gasoline engine exhaust energy recovery ratio can be dramatically raised. In Figure 13, the peak
value of the scroll expander shaft power output is 461.5 W with a steady state output of around 425 W.
In practice, the results may be affected by the weight, friction and inertia changes associated with the
scroll modifications.

Table 6 presents the summary of all the case studies of using the structurally modified scroll
expander for the engine exhaust gas recycling application. It can be seen that the structurally modified
scroll expander has the potential to be an energy transformer for recycling gasoline engine exhaust
energy. In addition, because the geometric structure of the scroll expander (including the inlet area,
the moving scroll orbit radius, the scroll curvature radius and the scroll wraps) is modified with the
proposed modifications (i.e., Cases I, II and III), the baseplates for the moving and fixed scrolls and the
volume of the scroll machine shell will be increased in dimension accordingly.
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Table 6. The summary of the all case studies in Section 3.2.

Case No. Brief Descriptions of
Proposed Modifications Summary of the Simulation Study

Case I Three times the open area of the original inlet
With supply conditions at 2.0 ˆ 105 Pa and

947.50 K, 3.5% of the flow reference obtained
(Figure 7), not suitable for the application.

Case II

Remove the first circle scroll wrap, expand
the inlet port to twelve times of the open area
of original inlet, and extend one new circle

scroll wrap from the ending point

With supply conditions at 2.0 ˆ 105 Pa and
947.50 K, maximum 11.7% of the flow
reference obtained (Figure 10), still not

suitable for the application.

Steps 1 & 2 of Case III
Keep the modifications in Case II, extend the
parameters of the moving scroll orbit radius

and the slope of scroll curvature radius

With the exact required supply conditions
(i.e., 1.3 ˆ 105 Pa and 947.50 K), >60% of the

flow reference obtained (Figure 11); over-
expansion exists (leading to back-flow) and

thus it need further modification.

All steps of Case III

Aside from Steps 1 & 2 of Case III, take
further action, i.e., adjustment of the lengths

of the two scroll wraps via the simulation
study to avoid overexpansion (Figure 12)

With the exact required supply conditions
(i.e., 1.3 ˆ 105 and 947.50 K), maximum 93.9%
of the flow reference obtained (Figure 13); no
over-expansion issue; suitable for the exhaust

gas recycling application.

4. Conclusions

This paper presents a feasibility study for the recovery of exhaust energy from a vehicle gasoline
engine system. From the study, the following conclusions are reached: (1) it is possible to recover
energy from gasoline engine exhaust using scroll expander technology; (2) the scroll expander structure
needs to be carefully designed for operation under low-pressure exhaust conditions; (3) the strategies
for modification of the scroll expander structure were investigated and tested via simulation studies„
from which suitable scroll expanders can be designed for engine exhaust energy recovery applications;
(4) the critical conditions for overexpansion which can be avoided by altering the scroll wrap lengths
are studied. From the study, under the engine exhaust conditions, i.e., 1.3ˆ 105 Pa and 947.50 K, the
original scroll expander cannot operate properly and the structurally improved scroll expander which
is modified by the proposed Case III has the potential to produce over 400 W power output with over
90% of engine exhaust flow recycling.
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Nomenclature

Aori Effective open area of the orifice (m2)

C0 C0 “

»

—
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pγMair{Rq p2{pγ` 1qq

γ` 1
γ´ 1
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ffi

fl

1{2

Cd Discharge coefficient

Ck Ck “

»

—

–

p2{γ´ 1q ppγ` 1q{2q

γ` 1
γ´ 1

fi

ffi

fl

1{2

Cp,airpTq Specific heat of air at pressure T (kJ ¨K´1 ¨ kg´1)
cr cr “ r2{pγ` 1qsγ{pγ´1q

h Specific enthalpy of air (J/kg)
h Specific enthalpy of the air on a molar basis (J/mol)
hin,i Specific enthalpy of species i from the inlet of scroll expander (J/kg)
hout,i Specific enthalpy of species i to the outlet of scroll expander (J/kg)
i Current in the different axes for the PMSG modelling (Ampere)
Jtotal The whole energy recycling system’s moment of inertia (kg¨m2)
k Slope of the curvature radius
Kfs Coefficient of the scroll expander viscous friction
Kfgen Coefficient of the PMSG viscous friction
Kfgear Coefficient of the gear viscous friction
KS´C1Spωsq Combined effect on torque from the scroll expander static and Coulomb frictions
KS´C2Spωgq Combined effect on torque from the static and Coulomb frictions of the

PMSG and gear
Ld,Lq Inductances of d axis and q axis respectively (H)
Mair Molar mass of air, Mair “ 28.8 g/mol
Mmix Average molar mass of the post-combustion mixture (g/mol)
m Mass of the air (kg)
.

m Mass flow rate of the air (kg/s)
.

min,i Mass flow rate for species i from the inlet of scroll expander (kg/s)
.

mout,i Mass flow rate for species i to the outlet of scroll expander (kg/s)
ns Numbers of scroll wraps
pg Number of the pole pairs in the PMSG
P Air pressure (Pa)
Pch_mix The post-combustion mixture pressure inside the scroll expander chamber (Pa)
Pd Downstream pressure of the orifice (Pa)
Pu Upstream pressure of the orifice (Pa)
P̂ Pressure difference between the adjacent chambers of the scroll expander (Pa)
rs Radius of the orbit relevant to the moving scroll motion (m)
R Ideal gas constant (J¨K´1¨kg´1)
Rg Resistance of the PMSG stator windings (ohm)
Spωsq Combination effect description on torque from the scroll static and Coulomb frictions
T Air temperature (K)
Tch_mix The scroll expander chamber temperature when the mixture filled in (K)
Tpark Park transformation matrix
v Voltage in the different axes for the PMSG modelling (Volt)
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vab, vbc Line voltages of a-to-b phases and b-to-c phases respectively (Volt)
V Volume (m3)
Vch_mix The scroll expander chamber volume when the mixture filled in (m3)
Vtol Total control volume of a scroll expander (m3)
rXairs Molar volumetric concentration of the air (mol/m3)
px0, y0q The initial point of the moving scroll curve (m)
z Height of the two scrolls’ wall (m)
αs Orbit angle of the moving scroll (radian)
δs Thickness of the moving and fixed scrolls (m)
γ Ratio of specific heats
ρ0 Initial radius of the curvature for the moving scroll curve (m)
λ Magnetic flux of the PMSG (Wb)
ζ Gear transmission ratio
ωs Scroll expander rotor angular speed (rad/s)
ωg PMSG rotor angular speed (rad/s)
θg Angular position of the rotor of PMSG (radian)
τscroll Scroll expander effective driving torque (Nm)
τe Electromagnetic torque of the PMSG (Nm)

Subscripts

a, b, c The a, b, c axes for the PMSG modelling
chamber The scroll expander chamber
d, q The d, q axes for the PMSG modelling

i
Species i containing in the post-combustion mixture from the engine
combustion process

in,out The inlet and outlet of scroll expander
sc, ss, se The scroll expander’s center, side and exhaust chambers respectively

Abbreviations

AC Alternating current
CAB Compressed air battery
C8H18 Octane
CO2 Carbon dioxide
DC Direct current
EGR Exhaust gas recirculation
HCCI Homogeneous charge compression ignition
HP High pressure
H2O Water
LP Low pressure
Micro CHP Micro combined hear & power system
NOX Nitrogen oxides
O2 Oxygen
PMSG Permanent magnet synchronous generator
SI Spark-ignition
UPS Uninterrupted power supply
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