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Abstract: For over three decades the “Pendulor” wave energy device has had a significant influence
in this field, triggering several research endeavours. It includes a top-hinged flap propelled by
the standing waves produced in a caisson with a back wall on the leeward side. However, one
of the main disadvantages which impedes its progress is the enormous expense involved in the
construction of the custom made typical caisson structure, about a little more than one-quarter of
the wave length. In this study, the influence of such design parameters on the performance of the
device is investigated, via numerical modelling for a device arranged in an array configuration,
for irregular waves. The potential wave theory is applied to derive the frequency-dependent
hydrodynamic parameters by making a distinction in the fluid domain into a separate sea side
and lee side. The Cummins equation was utilised for the development of the time domain equation of
motion while the transfer function estimation methods were used to solve the convolution integrals.
Finally, the device was tested numerically for irregular wave conditions for a 50 kW class unit. It was
observed that in irregular wave operating conditions, the caisson chamber length could be reduced
by 40% of the value estimated for the regular waves. Besides, the device demonstrated around 80%
capture efficiency for irregular waves thus allowing provision for avoiding the employment of any
active control.

Keywords: wave energy; Pendulor; time domain model; frequency domain model; flap device;
caisson length; chamber length

1. Introduction

To date, no particular distinct method exists for harnessing wave energy, although several types
of devices have been developed using a gamut of approaches. The Pendulor device, among the class
of terminators is one of the pioneers in this field. This device works in a manner quite opposite to that
of the top-hinged flap type wave maker (Figure 1). Although the Muroran Institute of Technology
(Japan) produced the Pendulor device as a result of the work done in the early 1980s [1], several
efforts continue to be made to improve it [2]. A good percentage of these studies were focused
mainly only on experimental verification, and most reports recorded that a conversion efficiency
of 40%–60% was possible by the systems for sea conditions prevailing in the Muroran bay at peak
wave considitons [3–5]. The experimental laboratory results of these Pendulor devices indicated that
the primary energy conversion efficiency can reach up to 82% for regular waves [6]. Following this,
several trials have been conducted at sea using these Pendulor type devices in Japan, at two places in
Hokkaido [7]. All the studies reported good device performance for conversion efficiency. More recent
studies have paid greater attention to improve the secondary power transmission unit, like the rotary
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vane pump [5]. In Japan and Korea recent research work studied a floating version of the device as an
offshore version, in which the caisson is integrated into a stabilised floater [8]. Another device closely
resembling the Pendulor is the early version of Oscillating Surge Wave Converter (OSWC). That is
different from Pendulor in concept, as it uses an oscillating water column rather than a straight chamber
on the lee side [9]. With respect to the original concept of the Pendulor, the flap fucntions at the node
point of the standing waves produced in a straight caisson where the maximum wave surging effect is
felt. Thus, the caisson significantly affects the the device performance. Several studies are currently
being conducted to identify superior caisson configurations to enhance the device performance and
optimise the caisson size at the same time [10].

Figure 1. Concept of the “Pendulor” device [7].

The Pendulor wave energy devices (mostly employed as pilot plants) were initially based on the
approximations of the regular wave model. These devices had caissons costing about one-third or more
of the total construction expense, rendering it one of the major obstacles for further development [11].
Pendulor devices used as an integral part of a double purpose breakwater system could become
a possibility to overcome this disadvantague. This type of breakwater system will have a larger
breadth than the regular one because of the effect of the caisson length which extends to the sea side.
According to regular wave approximations this length should equal one-quarter of the significant
wave length to achieve maximum efficiency [7]. Thus, for seas with long waves, the chamber length
becomes more than 25 m, resulting in exorbitant construction expenditure and other related issues.
However, all the sea trials were performed by maintaining the chamber length to around the generally
accepted parameters, of one-quarter of the wave length predicted. Furthermore, from the practical
viewpoint, flap repositioning is not that easy during real sea trials to explore its effect on device
performance. To surmount these problems it appears to be cost effective to develop a numerical model
for irregular wave conditions so that the system characteristics can be studied under realistic operating
conditions. Models of this type will also prove central for optimising several other geometrical
and inertial parameters of the device, structural loading control [12], and improving device control
strategies related to irregular wave conditions. Therefore, a numerical model has been developed for
the Pendulor wave energy device arranged in an array configuration for regular and irregular waves.
The model also is used to discuss the probable optimisation of the device parameters.

The potential theory for the Pendulor device is precented by employing a new and succinct
approach quite distinct from the original version [7]. This was done by integrating the recognised
wave maker theories (refer to the annex in the Appendix A) with the traditional potential theory.
In this case, the flap motion was replicated by the collective movement of a flap hinged at the bottom
and a piston oscillating horizontally. The possible functions related to the two distinct cases were
combined together to achieve the corresponding total potential function of the top-hinged flap motion
and thus making it possible to identify the frequency-dependent hydrodynamic parameters. Next, to
identify the features of the device under regular wave conditions, a frequency domain analysis was
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performed. To facilitate the analysis of the system during irregular wave conditions, a time domain
model was also developed on the basis of the Cummins [13] equation which uses the convolution
integral. The impulse response functions based on the frequency domain models were found by
applying the approximation methods to reduce computational time [14–17]. The time domain model
is shown to agree with the corresponding frequency domain theoretical data. The analysis of the
motion response and corresponding power conversion capability of the device conducted based on
these models are discussed subsequently for the regular and irregular wave conditions related to the
southern coastal wave climate in Sri Lanka, based on the feasibility studies of Watabe et al. [11] and
Amarasekara et al. [18].

2. Formulation of the Problem

2.1. Governing Equation

Figure 2 is the schematic representation of the “Pendulor” device in a straight caisson.
Supposing the flap is completely extended to the bottom and tightly fitted to the chamber width, the
flow across the flap is assumed to be negligible for the smaller angles of oscillations. Hence, the fluid
domain is assumed to be distinguishable into individual regions by the flap as the sea side (side s) and
lee side (side c, which hereafter is referred to as chamber side). The fluid flow is considered inviscid,
incompressible and irrotational. A Cartesian coordinated system x, y, z is employed here in which
the xz plane is occupied by the undisturbed water surface and the x-axis is directed orthogonal to
the flap. The y-axis (+ve) is directed vertically upwards and the z-axis can be ignored for a purely
two-dimensional problem (as the flaps are arranged in an array of a breakwater). The angle of the flap
oscillation is θ(t)(+ve counter-clockwise) and t indicates the time. The flap is hinged at (x, y) = (0, l).
The bottom of the caisson and side walls are occupied y = −h plane and z = ±b/2 planes, respectively.
The caisson back wall is at x = −d plane.
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Figure 2. Schematic representation of the Pendulor device in a breakwater ((a) side elevation;
(b) plan elevation).
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When Newton’s law of motion is applied to the flap, the single degree of freedom equation of
motion can be simply expressed as:

I0θ̈ = fk(t) + fh(t) + fp(t) + fd(t) (1)

in which I0 is the moment of inertia of the flap about the hinged point, fk(t) is the restoring moments
applied by the flap mass, fh(t) is the hydrodynamic and hydrostatic moments acting on the flap,
fp(t) is the external mechanical torque on the flap related to the power take off system and fd(t) is
the drag moment exerted on the flap. Assuming that the angle of oscillation of the flap is small and
has no flow condition present across the flap, the drag moment can be ignored. The hydrostatics
and hydrodynamics moments can further be decomposed, fh(t) = fb(t) + fr(t) + fEx(t) where fb(t)
is the buoyancy moment (for a thin flap, fb(t) ≈ 0), fr(t) is the radiation moment and fEx(t) is the
excitation moment.

2.2. Governing Equation in Frequency Domain (Linear System)

For a harmonic wave of frequency ω, the radiation moment can be decomposed as follows:

fr(t) = −(Iθ̈ + Bθ̇ + Kθ) (2)

where I is the frequency dependent added inertia, B is the frequency dependent radiation damping,
and K is the hydrostatic restoring coefficient (spring constant). Assuming the Power take off (PTO)
system is linear, it is best expressed as:

fp(t) = −(Nθ̇ + Kpθ) (3)

where N is the damping coefficient of PTO and Kp is the restoring coefficient of PTO. As the flap
oscillates in small angles, the restoring moment due to the inertia of the flap can be expressed as
fk(t) = Kkθ(t), Kk = lgmg where lg is the distance between the hinged point and the centre of gravity
of the flap, m is the flap mass and g is the acceleration due to gravity. Therefore, the Equation (1) can
now be expressed as:

(I0 + I)θ̈ + (B + N)θ̇ + (K + Kp + Kk)θ = fEx(t) (4)

Considering a harmonic wave of frequency ω, fEx(t) = Re[FEx,0eiωt] and θ(t) = Re[θ0e(iωt+α)].
Where α is the phase difference. Therefore, the amplitude of flap oscillation can now be expressed as:

θ0 =
Fex,0∣∣∣[− (I0 + I)ω2 + K + Kp + Kk

]
+ i
[
ω(B + N)

]∣∣∣ (5)

Time average absorbed power Pab [19] is seen in the Equation (6).

Pab =
1
2

Nω2|θ0|2 (6)

The non dimensional Capture factor C f = Pab/Pw is found by using Equations (A30), (A34) and
(A36) (refer Appendix A) as:

C f =
4ω2BN∣∣∣[− (I0 + I)ω2 + K + Kp + Kk

]
+ i
[
ω(B + N)

]∣∣∣2 (7)

Time averaged power of incoming wave of height H is:

Pw =
1
4

b
(

H
2

)2
ρg

ω

k0

(
1 +

2k0h
sin h(2k0h)

)
(8)
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where b is the width of the flap, ρ is the static density of water, kn is the given by the dispersion
relationship ω2/g = kn tan(knh) where kn = ik0, k j; j ∈ N∗ and h is the water depth.

C f shown in Equation (7) is achieved to 1 for the regular waves at resonance condition
(Equation (9)) and impedance matching condition (Equation (10)).

(I0 + I)ω2 = K + Kp + Kk (9)

B = N (10)

During actual sea operations, the incoming wave frequencies are normally found to hover between
0.5 and 0.9 rad/s. To complement that requirement, most of the point absorbers and OWCs require
negative values of PTO spring-stiffness (Kp). As the physical implementation itself of such systems is
not easy, an alternative latching control was introduced by Budal and Falnes [20]. The Pendulor device,
however, can be designed to match the incoming wave frequency by selecting the correct inertia of the
flap and caisson profile. A few such features will be discussed in Section 3.

2.3. Governing Equation in Time Domain

Cummins [13] developed the linear time domain approach for floating marine structures in
seas characterised by waves. Later, that theory was applied extensively to wave energy devices and
associated applications [19,21–23]. For zero forward speed, by employing similar concepts, Equation (1)
can be expressed in the form of Equation (11):

I0θ̈ = fk(t)−
∫ t

0
ẑ(τ)θ̇(t− τ)d(τ) + fEx(t) + fp(t) (11)

where ẑ(t) is the impulse response function (memory function) and the convolution term
−
∫ t

0 ẑ(τ)θ̇(t− τ)d(τ) = fr(t).
As there are two hydrodynamic regions, it is fitting to decompose the impulse response in

Equation (11) into two segments, one for the sea side ẑs(t) and the other for the chamber side ẑc(t).
Therefore, the governing equation is now expressed as:

I0θ̈ = fk(t)−
∫ t

0
[ẑs(τ) + ẑc(τ)]θ̇(t− τ)d(τ) + fEx(t) + fp(t) (12)

The methods of attaining the convolution integral in terms of Equation (12) (corresponding
radiation moments) will be discussed in Sections 2.3.1 and 2.3.2.

2.3.1. Radiation Moment Function in Sea Side

The frequency-based hydrodynamic parameters obtained by the potential theories (discussed in
the Appendix A) are used for the evaluation of the impulse response functions. As the hydrostatic
restoring moment is lacking in the sea side due to continuous generation of waves by the flap motion,
it is only the added inertia and the radiation damping that contribute to the radiation moments
(refer to the Appendix A for more details).

The radiation moment acting on the sea side is fr,s(t) =
∫ t

0 ẑs(τ)θ̇(t − τ)d(τ), in which
the subscript refers to the sea side. The radiation impedance of the sea side is expressed as
Ẑs(iω) = iÂs(ω) + B̂s(ω), where Âs(ω) = ωIs(ω) and B̂s(ω) = Bs(ω).

Hydrodynamics added inertia, radiation damping and excitation moments for sea side are
expressed in Equations (13)–(15), respectively, for a harmonic wave of height H and frequency ω

(refer to the Appendix A). The preliminary device parameters of the 50 kW unit based on the regular
wave Te= 12 s and Hs= 1 m are given in Table 1.

Figure 3 reveals the results of the added inertia and radiation damping with the frequency for a
device with the parameters listed in Table 1.
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Table 1. Preliminary device parameters of the 50 kW unit.

Parameter Unit

Still water height, h 4 m
Chamber length, d 18 m
Inner width of the chamber, b 3 m
Flap length from hinge to still water level, l 4 m
Flap mass, m 3750 kg
Distance from the hinge to the flap centre of gravity, lg 4.5 m
Design wave height, Hs 1 m
Design wave period Ts 12 s

Is(ω) =
∞

∑
n=1

Rn (13)

Bs(ω) = ωR0 (14)

M0(ω) = 2ω2R0θ0 (15)

where Rn = 4ρbY2
n /k4

nZn; Yn = knlsin(knh)−cos(knh) + 1, Zn = 2knh+sin(2knh). Here, both Bs(ω)

and Is(ω) are even functions of ω as kn ≥ π/2 because standing waves need to be decayed away
from the wave maker [24]. As evident in Figure 3, Bs(ω) does not reach zero when ω → 0 as is
anticipated in the 3D oscillating bodies. This is because of the 2D approximation made in the specific
problem. Comparable results of this type have been reported in the works of Anami et al. [25],
Lewandowski [26] (p. 233). Besides, Porter and Biggs [27] showed comparable results as can be seen
for the 2D model of the bottom-hinged flap type wave energy device.

The impulse response of the sea side can be calculated by employing either the added inertia
or radiation damping data in the frequency domain [19]. Therefore, the radiation moments can be
expressed as:

fr,s(t) = −
t∫

0

zs(τ)θ̇(t− τ)dτ − Is(∞)θ̈(t) (16)

where

zs(t) =
2
π

∫ ∞

0
As(ω) sin(ωt)dω =

2
π

∫ ∞

0
Bs(ω) cos(ωt)dω, As(ω) = ω[Is(ω)− Is(∞)] (17)

0 2 4 6 8 10

ω(rad/s)

0

0.5

1

1.5

2

2.5

3

I s(k
g
m

2
),

B
s(k

g
m

2
s-1

)

×10
6

I
s
(ω)

B
s
(ω)

Figure 3. Variation of added inertia (dotted line) and the radiation damping (solid line) with
frequency (ω).
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2.3.2. Radiation Moment Function in Chamber Side

In the chamber side, the added inertia and hydrostatic restoring moments alone constituted the
hydrodynamic moments on the flap (refer appendix A). Damping was absent in the chamber side.
All the energy contributed by the flap to the water mass returns once again back to the flap via the
hydrostatic restoring action. The chamber side added inertia and hydrostatic restoring moment are
expressed in Equations (20) and (21), respectively (see the same equations in the Appendix A as
Equation (A27) and Equation (A26)). Figure 4 reveals the variation of the added inertia with frequency
for the range 0 to 2 rad/s. The added inertia function reveals its asymptotic nature at the points
k0d = nπ; n ∈ N∗ (k0 is related to ω by dispersion relationship), where the anti-nodes of the standing
waves in the chamber coincide with the flap. It is significant that the large negative or positive added
inertias are found at those frequencies due to the production of great positive or negative pressures
at the flap surface. These great negative pressures can induce a possible flow separation between
the flap and water mass that generally affects the bodies with the surface piercing effect. Whereas,
the hydrostatic restoring coefficient (given in Equation (21)) is dependent solely on the chamber
geometry (refer to the Appendix A).

1 2

ω(rad/s)

-1.5

-1

-0.5

0

0.5

1

I c(k
g
m

2
)

×10
8

Figure 4. Variation of added inertia (Ic) with wave frequency (ω).

The following equation shows the radiation moment acting on the chamber side using the
convolution integral:

fr,c(t) = −
t∫

0

ẑc(t)θ̇(t− τ) (18)

The radiation impedance is as follows:

Ẑc(iω) = iÂc(ω); Âc(ω) = [ωIc(ω)− Kc/ω] (19)

where

Ic(ω) =
∞

∑
n=0

Rn

tan h(k0d)
+

ρgh2(l + h/2)2

dω2 (20)

Kc =
ρgh2(l + h/2)2

d
(21)

As restoring coefficient Kc does not depend on frequency, Equation (18) can be expressed as:

fh,c(t) = −
∫ t

0
zc(τ)θ̇(t− τ)d(τ)− Kcθ(t)− Ic(∞)θ̈(t) (22)
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where
zc(t) =

1
π

∫ ∞

0
Ac(ω) sin(ωt)dω, Ac(ω) = ω[Ic(ω)− Ic(∞)] (23)

2.4. System Identification

The direct numerical computation of the convolution integral in Equation (11) is a very time
consuming operation. As the convolution term is a linear operation, an equivalent system can be
achieved as a transfer function (TF) or state space model (SSM). In the literature, several related
studies on the approximation of the convolution integral are available [14–17,22,28]. These are the well
established methods, however, based on the type of the problem encountered minimal changes are
anticipated. The methodologies included in this study have been highlighted for easy reader reference
and to facilitate convenient replication of the results.

Here the TF model which can be approximated in two ways was employed. They are time domain
identification (TDI) and frequency domain identification (FDI). Based on the features of the data,
a suitable approximation technique was chosen after many trials using different methodologies.
In this study, the approximation quality was observed considering the R2 value, computed as follows.

R2 = 1−
∑(Gapx

i − Gr
j )

2

∑(Gapx
i − Ḡr

j )
2

; 0 ≤ R2 ≤ 1 (24)

where Gapx
j represents the approximated function and Gr

j refers to the reference function, while (Ḡr
j )

gives the mean value reference function.

2.4.1. Sea Side System Identification

The TDI method is used to assess the sea side TF. The corresponding time domain impulse
response function can be achieved by incoroporating the method of Ogilvie [29] as seen in Figure 5.
The TF is thus approximated by utilising these data and the TDI method termed the least square
method [15] based on the Matlab function “prony”, which converts the impulse response function to
z-transformation. The discrete TF needs to be converted to the continuous time domain which can be
done by using “d2c” function with the Tustin method in the Matlab control tool box [30]. The added
inertia and radiation damping given by TF were thus identified. A comparison of these was done with
the corresponding theoretical potential function as seen in Figure 6. Both functions are well fitted with
R2 = 0.99 accuracy.
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Figure 5. Impulse response of added inertia and radiation damping.
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Figure 6. (a) Added mass (Is) vs. ω; (b) Radiation damping (Bs) vs. ω, indicates frequency domain
data and transfer function approximation data (dashed red line; frequency domain data, solid line;
transfer function approximation data).

2.4.2. Chamber Side System Identification

For the chamber side, trials conducted using the TDI methods produced poor matching results
mostly because of the errors in the frequency response function caused by singularities in the added
inertia function (as seen in Figure 4). A good alternative was the “tfest” command in Matlab [30] which
was successful in approximating the TF directly without converting to the time domain. Therefore,
the radiation moment function simply takes on the form of Equation (18) without modifying it with the
limiting value of the term added inertia Ic(∞). In such cases, the frequency domain data were drawn
from the area of interest in which a majority of the ocean waves were concentrated (0.1 to 2 rad/s).
In Figure 7 the frequency domain data given by the approximated TF and frequency domain data of the
potential functions for the added inertia were compared. Both are well fitted with R2 = 0.99 accuracy.
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Figure 7. Added inertia (Ic) vs. ω of the chamber side for frequency domain and transfer
function approximation (dashed red line; frequency domain data, solid line; transfer function
approximation data).

Combining the time domain models of the sea side and chamber side, the governing equation of
the total system is expressed as given.
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[I0 + Is(∞)]θ̈(t) = fh(t)−
∫ t

0
[zs(τ) + ẑc(τ)]θ̇(t− τ)d(τ)− Kcθ(t) + fEx(t) + fp(t) (25)

To verify the validity of the approximations, the time domain solutions of Equation (4) are
compared with the corresponding solutions in Equation (25). Figure 8 lists the results of the amplitude
of oscillations for different frequencies at no load condition (N = 0) for 50 s duration. The dotted lines
indicate the time domain results of Equation (4) whereas the solid lines imply the corresponding time
domain solution of Equation (25). Both solutions are well fitted for the wider frequency range and
thus the validity of the approximated time domain model is confirmed for further calculations.
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Figure 8. Amplitude of oscillations of the flap with time for different wave frequencies (Solution of
Equation (4), dotted line; Solution of Equation (25), solid line).

3. Characteristics of the Plant

3.1. The Case of Regular Waves

In the case of regular waves This section discusses the device characteristics for simplified power
take-off systems (PTO). Depending on the torque applied by the PTO system, the load torque could
simply be modelled as linear damping torque (Equation (26)) or Coulomb type frictional torque
(Equation (27)).

(I0 + I)θ̈(t) + Bθ̇(t) + (K + Kp + Kk)θ(t) = fEx(t)− Nθ̇ (26)

(I0 + I)θ̈(t) + Bθ̇(t) + (K + Kp + Kk)θ(t) = fEx(t)± Tp (27)

where, Tp is the Coulomb damping torque. The features of the governing equations given above are
dependent on the hydrodynamic/static parameters and the the type of the power take off system.
The Linear damping gives 100% theoretical maximum efficiency (ignoring frictional losses) at the
resonance conditions and impedance matching conditions as explained in Section 2.2. However, the
linear damping PTO systems are not easy to put into practice and therefore most of the practical PTO
systems can be modelled as Coulomb damping.

3.1.1. Linear Damping

The device dynamics can be obtained for linear damping in the frequency domain employing
Equation (26). In order to utilise maximum power, it must fulfil the resonance condition
Kk + Kp + Kc = [I0 + I(ωres)]ω2

res, and impedance matching condition N = B(ωres) where ωres

is the resonance frequency. A dimensionless frequency is introduced as ωnd = ω′/ω where

ω′ =
√
((K + Kp + Kk)/[I0 + I(ω)]). The total added inertia, radiation damping and hydrostatic
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restoring coefficient can be identified as I(ω) = Is(ω) + Ic(ω), B(ω) = Bs(ω) and K = Kc respectively.
Kp is ignored through the entire calculations assuming that the PTO system does not exist a restoring
effect. The dimensionless frequency is plotted with the dimensionless chamber length as seen in
Figure 9 in which the dimensionless chamber length is dnd = k0d, dimensionless wave length is
λnd = k0λ and λ is the incident wave length. Then ωnd = 1 indicates the flap resonance frequency,
and it happens when dnd attains the value (2n + 1)λnd/4; n ∈ N, where the nodes of the standing
wave are noted with reference to the back wall. Therefore, the placement of the flap at a node is crucial
for the device performance (frequency matching) and the first node point is observed at one-quarter of
the wave length from the back wall. For the device model in this study, the corresponding chamber
length becomes to d = d0 ' 18 m at the 12 s design wave period.

0 1 2 3 4 5 6 7

k
0
d
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5

ω
n

d

2

λ
nd

/4 3λ
nd

/4

Figure 9. Dimensionless frequency vs. dimensionless chamber length. Solid line, ωnd; vertical dashed
lines, λnd/4 and 3λnd/4.

Figure 10a lists the C f variations with chamber length d. The peak capture factors are observed at
different wave periods corresponding to the nodal points of the standing waves as explained above.
Zero C f is seen at the corresponding anti-nodes. It is evident that the flap needs to be placed at a
node at which the horizontal water particle velocity is predominant. At about the second peak region
(relative to the wave period), where the device in this study is tuned, the bandwidth frequency is
rather high. The curve gradient at lower wave period side also is higher than that of the higher wave
period side. Therefore, in the design/tuning the device these features should be considered by setting
the dominant frequency on the the higher side. Figure 10b indicates variations in the C f with the
change in distance from the hinge point to the free water surface l (for same lg). In this instance, small
changes are noted in the peak period but without any critical effect to the system. Figure 10c shows the
C f variations with the tide. A significant shift of about 1 s per 0.5 m change to the peak wave period of
the tide can be seen.

Figure 10d shows the comparison of the theoretical results from this study and the experimental
results recorded by Murakami et al. [31] for the capture factor with the normalised wave length λ/d.
Here, only the comparable experimental results with the Pendulor device from the floating pendulum
experiments were extracted, where the floater remains almost stable in the range of λ/d= 1 to 2.
The floater oscillations are significant beyond that region and therefore the C f is considerably decreased.
The experimental results concur well with the theoretical results when the floating pendulum device
behaves as the fixed Pendulor device.

Figure 11a indicates the variation of C f with wave period (T) for different PTO system
damping (N). Figure 11b shows the variation of the amplitude of oscillations (θ0) for the same.
The maximum C f of 1 reaches only when N = N0 as expected at the resonance wave period of
12 s. Anyhow, C f values correspond to larger damping get little higher for wave periods around the
anti-node. It can be understood by the power capture which is proportional to the PTO damping and
the square of amplitude of oscillation. According to Figure 11b, around the anti-node, the changes in
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the damping value does not significantly influence to the variations of the amplitude of oscillations.
Therefore, higher damping values give higher C f at the corresponding wave periods.
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Figure 10. Variation of capture factor (C f ) with wave period (T), for variable (a) d, (b) l, (c) h, and
(d) experimental [31] and theoretical comparison of C f with normalized wave length (λ/d).

4 6 8 10 12 14 16 18 20

T(s)

0

0.2

0.4

0.6

0.8

1

C
f

N=0.2N
0

N=0.6N
0

N=N
0

N=1.4N
0

N=1.8N
0

(a)

4 6 8 10 12 14 16 18 20

T(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

θ
0
 (

ra
d

)

N=0.2N
0

N=0.6N
0

N=N
0

N=1.4N
0

N=1.8N
0

(b)

Figure 11. (a) Variation of capture factor (C f ) and (b) Amplitude of angle of oscillations (θ0), with wave
period (T), for different PTO system damping (N).
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3.1.2. Coulomb Damping

In order to assess the optimum frictional torque Tp, an equivalent frictional toque was attained by
equating the half-cycle energy dissipation of the linear damper at the optimal tuned condition [32] as
seen in Equation (28). Here the reference value of Tp(Tp0) was taken for the regular 12 s wave period
and the 1.35 m wave height (in this case, Tp0 = 3.6× 105 Nm assessed by employing Equation (28)).

Tp =
Bωπθ0

4
(28)

Figure 12 shows the time averaged C f (calculated as: (cumulative output energy up to a particular
instant)/ (average wave power × time)) for both types of damping models for regular waves. The C f
was decreased by about 1% compared with the linear damping model at the steady state operating
condition. Figure 13a shows angular velocity (dθ/dt) variations with time under regular wave
conditions. A minor latching effect was evident which causes an expected drop in the efficiency.
A further increase in the torque (line corresponds to 1.5Tpo ) reveals a more dominant latching effect
where the flap remains for some time until the wave-induced torque is more than the torque needed to
move the flap | fEx(t)| ≥ |(K + K f + Kk)θ ± Tp(t)|. Figure 13b reveals the cumulative energy capture
with times for the different loading torque conditions and when the loading torque is equivalent to the
Tp0 the maximum power capture is attained.
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Figure 12. C f variation between the linear (viscous) and coulomb damping models (blue line: C f for
linear (viscous) damping; black line: C f for Coulomb damping).

40 45 50 55 60

t(s)

-0.3

-0.2

-0.1

0

0.1

0.2

d
θ

/d
t 

(r
a
d
/s

),
 1

0
f e

x
 (

M
N

m
)

0.5T
P

0

T
P

0

1.5T
P

0

f
Ex

(t)

(a)

0 20 40 60 80 100

t(s)

0

0.5

1

1.5

2

E
n

er
g

y
 (

M
J)

0.5T
P

0

T
P

0

1.5T
P

0

(b)

Figure 13. (a) Phase difference of fEx vs. θ̇ and (b) Cumulative energy capture for different loads
with time.
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3.2. The Case of Irregular Waves

To study the device performance in the real sea state, the device features are simulated by
computer generated irregular waves. The Pierson Moskowitz type spectral distribution is employed to
approximate the wave spectra for the fully developed wind waves [33]. The spectrum observed in
Equation (29) which best matched the Sri Lankan south coastal wave climate [34] has been incorporated,
in which Hs is the significant wave height and Te the significant wave period.

Sw(ω, Te, Hs) = 0.05H2
s T−4

e (ω/2π)−5e−1.2T−4
e (ω/2π)−4

(29)

For comparison purposes, the C f for the irregular waves were also defined using the spectral
power of the incoming waves.

C f (Te, Hs) =
Pa(Te, Hs)

Ps(Te, Hs)
(30)

where Pa(Te, Hs) is the power absorbed by the device and Ps(Te, Hs) is the power available in the
irregular wave spectrum. Both terms can be expressed as a simplified version of Rusu [35] as follows:

Pa(Te, Hs) =
∫ ∞

0
Pa(ω, Te, Hs)dω (31)

Ps(Te, Hs) =
∫ ∞

0
Ps(ω, Te, Hs)dω (32)

where, Pa(ω, Te, Hs) is the power absorbed at frequency ω and can be expressed as Pa(ω, Te, Hs) =

C f (ω)Ps(ω, Te, Hs). Where, C f (ω) is the device capture factor (Equation (7)) when a regular wave
of frequency ω approaches the device which is tuned at the wave period Te and wave height Hs.
In fact, Ps(ω, Te, Hs) indicates the power of a wave at a single frequency chosen from the spectrum
and is equal to (1/2)ρgb(H/2)2Cg where Cg is the group velocity and H/2 =

√
2Swdω. For shallow

water Cg = (ω/k0)[(1/2)(1 + 2k0h/ sin h(2k0h))]. Using the analysis given above and the frequency
domain results, Figure 14 shows the spectral performance of the device under both regular and
irregular wave conditions. The dashed lines indicate the regular wave C f variations for both damping
conditions. The solid lines represent the C f for the irregular waves for both damping conditions.
Any representative point on the solid curve (irregular waves) indicates the maximum C f at that
specific significant wave period (because there is a spectrum corresponding to that point) when
the PTO damper is adjusted to utilise the maximum power of each wave in that specific spectrum.
Thus, practically, a control strategy must be applied to alter the damping torque correctly to suit each
incoming wave. Then, plant optimum control can be attained. Consequently, the maximum C f = 0.92
is reached in the instance of linear damping for the spectrum selected. Nevertheless, the practical
implementation of such optimum control is not easy and several studies are still being done in this
regard [36].

Figure 14 reveals the wave period at peak C f for the irregular waves (solid curves) which are
moved to a higher value than the one corresponding to the regular wave (dotted curves). This is
because of the lower steepness of the gradient of the C f curve at higher wave periods (i.e., after 12 s)
compared with the lower wave periods (i.e., before 12 s). This also means that the majority of the
waves in the spectrum come under the higher efficiency range. Therefore, this feature can be utilised
positively to decrease the chamber length (tuning the plant for a lower wave period/wave length) than
which is relevant to the specific significant wave period. Quantitative analysis like this needs to be
meticulously done as such features are highly dependent on the type of the wave spectrum. A deeper
analysis on this subject is given in Section 3.3.

Figure 15a reveals the C f variations with the significant wave period for different loading
conditions without any control strategy being done. In this instance, the Coulomb damping model is
employed with the device tuned at Te = 12 s and Hs= 1.35 m where the wave height corresponds to
1 m wave height in deep water. The maximum C f ' 0.8 at the significant 12 s wave period is attained
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when the device is tuned at Tp = 0.8Tp0 . Figure 15b shows the C f variations with Hs at the significant
12 s wave period, implying that the maximum C f remains unchanged with the incoming wave height.
In order to maintain the C f at the higher level, the Tp must be correctly adjusted. Figure 15c shows the
Tp variation with Hs when maximum C f is attained at Te = 12 s. As the Tp and Hs are almost linearly
proportional, the device can operate even at higher efficiencies by utilising a proportional controller.
This can be practically implemented as suggested by Watabe et al. [37].
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Figure 14. Spectral performance of the plant (solid lines indicate spectral C f and the dashed lines show
the C f of a regular wave).
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Figure 15. Variation of C f with (a) Te; (b) Hs for different loading conditions; and (c) Optimum loading
conditions for maximum C f for different Hs.
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Figure 16a reflects variations in the angular velocity of the flap and wave excitation moment for
different loading conditions. Figure 16b shows the cumulative energy capture for a 1500 s period
for the same, demonstrating that the maximum energy is yielded when the load torque is at 0.8Tp0 .
Under identical conditions, the maximum energy yield for a regular wave is attained when the loading
condition is tuned at Tp = Tp0 (as seen in Figure 13b). This is because the regular waves have power
greater than the spectral power of the irregular waves for the spectrum chosen. Figure 16a, the latching
behaviour of the flap is observed for different loading conditions and the corresponding stages with
the incoming wave. All the curves linked to flap velocity are not significantly in phase with the waves
as there is no optimum controller. When device is at the maximum energy yield setting (Tp = 0.8Tp0 ),
the flap oscillations follow the phase comparatively closely.
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Figure 16. (a) Variation of angular velocity of the flap and wave excitation moment for different loading
conditions; (b) Cumulative energy capture with time.

3.3. Influence of the Chamber Length

A considerable part of the construction cost of the “Pendulor” wave energy device is mainly
due to the caisson erection. The caisson size is mostly dependent on the chamber length; therefore,
the influence of a decrease in the chamber length on the performance is discussed in this Section.

Figure 17 reveals the C f variations for the different chamber lengths (d) at the optimal control
condition as given in Section 3.1.2. The results indicate that the peak efficiency corresponds to the
significant 12 s wave period which happens when d = 0.7d0 to 0.8d0. This, thus implies that there is
a prospect to reduce the chamber length. In Figure 18a, C f variations are seen with significant wave
period for the different chamber lengths without any controller. When d = 0.8d0, the maximum C f is
seen at = 12 s. The corresponding spectral characteristic of the curve (0.8d0) also covers a wide range
of significant wave periods quite well when compared with the other curves. Figure 18b shows the
cumulative energy capture at Te = 12 s by varying the chamber lengths. The three curves corresponding
to the chamber lengths d = d0, 0.8d0 and 0.6d0 closely follow one another. Of them 0.8d0 shows the
maximum energy capture and 0.6d0 is also very similar to the same. This is an indication that the
chamber length can be reduced even more by a further 20% to d = 0.6d0 by compromising only around
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4% of the energy yield, if it is economically feasible. Therefore, there is a potential to reduce the
chamber length by sacrificing a small fraction in the energy yield.
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Figure 17. C f for different chamber lengths (d) in the optimal control condition with Te (s).
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Figure 18. (a) C f variation with Te s for varies values of d s without any controller; (b) Cumulative
energy capture at Te = 12 s by varying the chamber lengths.

4. Discussion

A numerical model of the Pendulor device has been developed for a better understanding of the
behavior of the device under regular and irregular wave conditions when the flaps are configured
in an array arrangement. A maximum primary conversion efficiency of about 80% was seen for the
irregular waves (selected wave spectrum) without using any optimal or sub optimal control strategies.
Sea trials performed for similar Pendulor devices have also revealed high energy capture efficiency
between 40 % and 60 % for devices tuned for important wave climatic conditions [4]. Viscous effects,
drag forces, wave diffraction (at the ends of the Pendulor array system), wave directional and breaking
properties (site specific), and point absorbing effects (quasi-point absorbing effect) were not taken into
consideration in our work. Consideration of these factors increase the complexity of the analysis and
remains as a future direction to be pursued.



Energies 2016, 9, 282 18 of 26

The Pendulor device has the distinctive advantage of having the ability to match its natural
frequency (ω′) by setting the design parameters comparatively more easily than that of the point
absorbers and unbounded flap devices. This is because, the chamber effect generates sufficient spring
constant via the chamber side restoring the coefficient Kc (i.e., K2). Therefore, the tuned device reveals
the broader bandwidth of C f in its primary energy conversion phase. As discussed in Section 3.1.1,
the other crucial parameter is the chamber length d, which is easily assessed by the significant wave
length. Using such basic analysis, it is possible to get the fundamental design parameters for the
Pendular device. The designed system was simulated as such in the irregular wave environment and
fairly broader C f above 0.5 were obtained (refer Figure 18a). In this study, the features of the load
torque Tp that are implicitly dependent on the HST system loaded with the accumulator pressure/flow
control systems [23,37] have not been considered. Therefore, to further enhance the energy yield,
the only available controllable parameter is the load torque according to the model proposed. Therefore,
via appropriate load control, the performance could be raised at varying sea states. Falcão [38] had
investigated this approach by phase control via load control while varying the load applied to the PTO
to raise the competence of the point absorbers. Similar types of approaches are possible in this case
also. Further, Watabe et al. [37] proposed an HST system with an autonomous optimum controller for
the Pendulor device control. Further studies are required before implementing such control methods
for greater performance enhancement.

As stated earlier on, one of the major factors affecting the performance is chamber length,
where one-quarter of the wave length results in enormous constructional expenses and related
issues. Therefore, a considerable decrease in the chamber length needs to be considered as a leading
requirement. Many preliminary studies have been performed for this and changing the chamber
shape was found to possibly reduce the length by about 30% for regular wave applications [10].
Further, Folley et al. [39] emphasised that, for the top-hinged flap type devices in the shallow waters,
the power capture was related more to the incident wave forces than to the incident wave power.
These studies showed that the wave surging in the area of the flap controls the device characteristics.
Thus, the caisson must be designed in a manner that effective surge would happen in the vicinity of
the flap while retaining the proper restoring effect (Kc) on the chamber side. Further, as a result of this
work, it was found that it is possible to reduce the chamber length by 20%–40% for the selected wave
spectrum utilized for the irregular waves. At any rate, further practical investigations are required to
clearly quantify such enhancements.

5. Conclusions

Applying the regular wave theories the numerical model of the “Pendular” wave energy
converter, in an array configuration, was developed in an array configuration for irregular wave
conditions. Two methods of time domain identification and frequency domain identification were
utilised to save computational time while incorporating the modified Cummins equation in the model.
The identification accuracy agrees well with the analytical results.

Parametric analysis was done based on the numerical model, in order to identify the influence of
the major geometrical and wave climatic parameters which could affect the capture factor. The distance
from the back wall to the flap location and tidal differences were identified as the factors most
influencing the capture factor. As tidal changes are beyond human control their effect on device
performance must be carefully addressed in the stages of design, operation and control. It was
shown that, about a maximum primary capture factor of 0.8 can be achieved by tuning the basic
parameters of chamber length and power take-off damping torque without the use of any control
strategy. Furthermore, the capture factor is shown a broader bandwidth of more than 0.5 throughout
the 4 to 20 s wave periods.

The distance from the back wall to the flap position (chamber length), normally one-quarter of the
wave length, can be further reduced by about 20% without incurring any energy loss. A further
20%–40% of chamber length can be decreased by compromising 0%–4% energy capture if it is
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economically feasible. Hence, because the potential to reduce the caisson size is substantial, it will
facilitate a significant reduction in the total construction cost. Such quantitative values are dependent
upon the wave climate at the specific site as well as the other device design parameters. Therefore,
the results of this study will be useful in the estimation of the device parameters and evaluation of the
performance under irregular wave conditions.
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Abbreviations and Notations

The following abbreviations are used in this manuscript:

FDI: frequency domain identification
OWC: oscillation water column
OSWC: oscillating Surge Wave Converter
PTO: power take off system
SSM: state space models
TDI: time domain identification
TF: transfer function
A(ω): imaginary part of the radiation impedance
B(ω): frequency dependent radiation moment (real part of the radiation impedance)
b: width of the flap
Cg: group velocity
C f : capture factor
d: Chamber length (length from flap tp back wall of the flap)
dnd: non-dimensional chamber length
d0: effective chamber length (when plant tuned at T = 12 s)
fb: buoyancy moment
fd: drag moment on the flap
fEx: excitation moment
fh: hydro dynamic and static moments applying on the flap
fk: restoring moment due to mass of the flap
fp: external mechanical torque on the flap
fr: radiation moment
g: acceleration due to gravity
H: amplitude of the incoming wave
Hs: significant wave height
h: water depth of the chamber
I0: moment of inertia of the flap
I: frequency dependent added inertia
k: hydrostatic restoring coefficient
kn: root of the dispersion relationship
Kp: restoring coefficient of PTO
Kp: restoring coefficient due to mass of the flap
Lnd: non-dimensional wave length
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l: free surface of water to hinged point of the flap
lg: length from hinged point of the flap to gravity centre of the flap
m: mass of the flap
N: damping coefficient of PTO
Pa: absorbed power of the device
Ps: available power irregular wave
Pw: time averaged power of incoming wave
Sω: frequency spectra of the sea
T: time period of the incoming wave
Te: significant wave period
Tp: external coulomb damping moment on the flap
Tp0 : optimum coulomb damping moment at T = 12 s, and H = 1.35 m
ẑ(t): impulse response function
θ: angle of oscillation of the flap
θ0: amplitude of angle of oscillation of the flap
ω: frequency (rad/s)
ωres: resonance frequency (rad/s)
ρ: static density of water
λ: wave length
λnd: non-dimensional wave length

Appendix A. 2D potential theory for Pendulor device

Appendix A.1. Velocity Potential

The theory is developed by considering the wave energy device as a wave maker. For an array
configurations of Pendulor devices, it is reasonable to assume that the caisson is infinitely long which
enables to analyse the problem in 2D.

Figure A1 shows the graphical replication of a top hinged flap type wave maker by the
superposition of piston type and bottom hinged flap type wave makers. When the piston wave maker
moves from its origin to the +ve x direction, the bottom hinged wave maker oscillates counter-clockwise
direction and vice versa (here θ is the angle of oscillation of top hinged flap).

Figure A1. Graphical interpretation of superposition of piston type wave maker and bottom hinged
flap wave maker.

Supposing the flap is completely extended to the bottom and tightly fitted to the chamber width,
the flow across the flap is assumed to be negligible for smaller angles of oscillations. Also, the fluid
is assumed inviscid, incompressible and irrotational. Then the Velocity potential Φ must satisfy
Laplace equation:

52 Φ(x, y, z, t) = 0 (A1)



Energies 2016, 9, 282 21 of 26

The Linearized form of dynamic and kinematic free surface [ζ(x, z, y) is the free surface] boundary
condition reads:

ζ =
1
g

Φt, ζt + Φy = 0, at y = 0 (A2)

Here subscripts denotes the differentiation with respect to the relevant variable. The bottom
surface of the caisson satisfies the boundary condition as shown in Equation (A3).

Φy = 0, at y = −h (A3)

For harmonic waves, the velocity potential takes the form of:

Φ(x, z, y, t) = Re{ψ(x, z, y)eiωt} (A4)

where ω is the harmonic frequency and ψ is the spatial velocity potential. Applying Newton’s law to
the flap about hinged point, the simplest form of governing equation states:

I0θ̈ = fb + fw + fm (A5)

The divided fluid regions, as described in the main text (see Figure 2), satisfy the boundary
conditions mentioned in Equations (A1)–(A3). Since the Laplace equation and boundary conditions
are linear, by applying principle of superposition, the velocity potential of the fluid domain can be
written as follows by combining sea and chamber side potentials.

Φ = Φs + Φc (A6)

where Φs and Φc are the sea side and chamber side velocity potential functions respectively and the
corresponding potentials are obtained in Sections A.1.1 and A.1.2 respectively.

Appendix A.1.1. Sea Side Velocity Potential

As previously mentioned, the equivalent top hinged flap type wave maker effect is modelled by
superposition of piston and bottom hinged wave makers. Accordingly, velocity potentials of piston
and bottom hinged flap type wave makers described by Deen and Dalrymple [24], are used to obtain
the corresponding velocity potentials in this particular analysis.

Therefore, the velocity potential of the piston type wave maker can be obtained as shown in
Equation (A7):

Φs,p = Re
{ ∞

∑
n=0

4i(h + l)ω sin(knh)Qne−knxeiωt
}

(A7)

where Zn = 2knh + sin(knh) , Qn = cos[kn(y+h)]
(k2

nZn)
θ0 , kn is given by the dispersion relationship and

θ(t) = Re(θ0eiωt). The velocity potential of the bottom hinged flap for sea side is:

Φs, f = Re
{ ∞

∑
n=0

4ωŶnQne−knxeiωt
}

(A8)

Where Ŷn = knh sin(knh) + cos(knh)− 1 , Equation (A9) shows velocity potential of the top hinged
flap type wave maker by combining piston type and bottom hinged flap type wave makers (for more
detailed see Figure A1).

Φs = Φs,p −Φs, f (A9)

Combining Equations (A7)–(A9), the potential function for sea side can be stated as:

Φs = Re
{ ∞

∑
n=0

4ωYnQne−knxeiωt
}

(A10)
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where Yn = knl sin(knh)− cos(knh) + 1.

Appendix A.1.2. Chamber Side Velocity Potential

Boundary conditions for the chamber side except the back wall satisfy Equations (A1)–(A3).
The boundary condition of the back wall is:

Φc
x = 0, at x = − d (A11)

The velocity of the flap in to the x direction is:

Φc
x = ẋ, at x = 0 (A12)

For harmonic waves, time component and the spatial component of the velocity potential can be
factored out as, Φc = Re(Φceiωt). Based on the analysis done by Watabe [7], the velocity potential for
both piston type and bottom hinged flap type wave makers with a back wall can be written as follows:

Φc(x, y, t) = Re
{ ∞

∑
n=0

Gn cos[kn(y + h)] cos h[kn(x + d)]eiωt
}

(A13)

When d→ ∞ chamber side velocity potential should take the form of that of the sea side. That
can be proved by using exponential functions. Here Gn is a parameter which depends on the boundary
conditions. Equation (A14) shows the x coordinate of the bottom hinged flap with respect to the
vertical distance y.

x = (y + h)θ0eiωt (A14)

Equation (A15) shows the horizontal velocity.

ẋ = Re{(y + h)(iω)θ0eiωt} (A15)

Equation (A16) satisfies the lateral boundary condition and taking the effective terms by using
truncated Tailor series [24],

ẋ(0, y, t) = Φc, f
x |x=0 = Re{(y + h)(iω)θ0eiωt} (A16)

Velocity of the flap to the direction x without the time dependent harmonic is:

φ
c, f
x (0, y) =

∞

∑
n=0

knGn cos[kn(y + h)] sin h[knd]

= (y + h)(iω)θa

(A17)

Parameter Gn can be simply found by integrating Equation (A17) by
0∫
−h

cos kn(h + y)dy [24].

Thus Gn = 4iωŶnθ0/k2
nZn sin h(knd). Therefore, velocity potential of the bottom hinged flap for the

chamber side is Φc, f = Re
{

∞
∑

n=0
Gn cos[kn(y + h)] cos h[kn(x + d)]eiωt

}
and it simplifies to:

Gn =
4iωŶnθ0

k2
nZn sin h(knd)

Φc, f = −
∞

∑
n=0

Gn cos[kn(y + h)] cos h[kn(x + d)] sin(ωt) (A18)
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By using the same method, velocity potential for the piston type wave maker can be obtained and
shown in the Equation (A19).

Φc,p = −
∞

∑
n=0

4ω(h + l)Qn sin(knh) cos h[kn(x + d)]
sin h(knd)

sin(ωt) (A19)

Therefore the velocity potential of the top hinged flap type wave maker for chamber side (Φc) is
obtained by using superposition of velocity potential of piston type and bottom hinged flap type wave
makers (see Equation (A9)). The velocity potential is shown by the Equation (A20).

Φc = −
∞

∑
n=0

4ωYnQn cos h[kn(x + d)]
sin h(knd)

sin(ωt) (A20)

Appendix A.2. Hydrodynamic Parameters of the Device

Hydrodynamic parameters acting on the flap are obtained by decomposing the total moment
acting on the flap into the terms of acceleration, velocity, and displacements. They are then separated
as added inertia, damping, and restoring coefficient respectively.

Appendix A.2.1. Chamber Side Hydrodynamic Parameters

The fluid pressure in the chamber side is:

p = −ρΦc
t (A21)

Therefore, the moment acting on the flap about the hinged point can be stated as:

Mc = −
0∫
−h

(l − y)p|x=0dy (A22)

Thus Mc becomes:

Mc = −
∞

∑
n=0

4ρω2Y2
n θ0

k2
nZn tan h(knd)

cos(ωt) (A23)

Equation (A23) can be decomposed as:

Mc = Re
{
(iω)2

[
−

4ρY2
0

k4
0Z0 tan(k0d)

+
∞

∑
n=1

4ρY2
n

k4
nZn tan h(knd)

]
θ0eiωt

}
(A24)

also, Mc can typically be written as:

Mc = Re
{ [

(iω)2 Ic + iωBc + Kc

]
θ0eiωt} (A25)

Where Ic is the hydrodynamic added inertia, Bc is the radiation damping coefficient and Kc is the
hydrostatic restoring coefficient. In order to find Kc taking limiting value ω → 0 (very slow motion of
the flap) in Equations (A24) and (A25).

lim
ω→0

Mc = Re{Kcθ0} =
ρgh2(l + h

2 )

d
θ0

∴ Kc =
ρgh2(l + h

2 )

d
(A26)
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Using the above expressions and equating the compatible terms of Equations (A24) and (A25),
the added inertia of chamber side can be found as follows:

Ic =
∞

∑
n=0

4ρY2
n

k4
nZn tan h(knd)

+
ρgh2(l + h

2 )

ω2d
(A27)

Since there is no damping term in Equation (A24), Bc = 0.

Appendix A.2.2. Sea Side Hydrodynamic Parameters

The analysis for the sea side can be done similarly as described in the above section.
Thus, the moment acting on the flap due to sea side wave action, can typically be written as:

Ms = Re
{
[(iω)2 Is + iωBs + Ks]θ0eiωt

}
(A28)

Then the added inertia, the radiation damping and the hydrostatic restoring coefficient can be
found as below:

Is =
∞

∑
n=1

4ρY2
n

k4
nZn

(A29)

Bs =
4ωρY2

0

k4
0Z0

(A30)

Ks = 0 (A31)

Appendix A.2.3. Excitation Moment

To obtain the excitation moment acting on the flap due to incident waves, the characteristics
waves generated by the flap when x → ∞ is considered. The moment acting on the flap is formulated
when the flap is in fixed condition. Then the incoming wave reflects at the flap and standing wave is
generated. The velocity potential of the standing wave (Φstd) is therefore,

Φstd = −4ωY0θ0

k2
0Z0

cos h[k0(y + h)]× [cos(ωt− k0x) + cos(ωt + k0x)] (A32)

Using the similar method stated in the Section A.2.1, excitation moment fEx(t, ω) is formulated
as bellow:

fEx(t, ω) = −
8ρω2Y2

0 θ0

k4
0Z0

sin(ωt) (A33)

where

FEx,0 =
8ρω2Y2

0 θ0

k4
0Z0

(A34)

The free surface elevation of the standing wave ζ(t, x) is:

ζ(t, x) = − 1
g

Φstd
t |y=0 =

8Y0θ0 sin h(k0h)
k0Z0

cos(k0x) sin(ωt) (A35)

The maximum height of the standing wave should be twice that of the incoming wave height H.
Therefore θ0 can be found as:

θ0 =
k0Z0

8Y0 sin h(k0h)
H (A36)

θ0 is the amplitude of oscillation of the flap.
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