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Abstract: In this paper a methodology is presented that can be used to model the annual wind
energy yield (AEYmod) on a high spatial resolution (50 m ˆ 50 m) grid based on long-term
(1979–2010) near-surface wind speed (US) time series measured at 58 stations of the German Weather
Service (DWD). The study area for which AEYmod is quantified is the German federal state of
Baden-Wuerttemberg. Comparability of the wind speed time series was ensured by gap filling,
homogenization and detrending. The US values were extrapolated to the height 100 m (U100m,emp)
above ground level (AGL) by the Hellman power law. All U100m,emp time series were then converted
to empirical cumulative distribution functions (CDFemp). 67 theoretical cumulative distribution
functions (CDF) were fitted to all CDFemp and their goodness of fit (GoF) was evaluated. It turned out
that the five-parameter Wakeby distribution (WK5) is universally applicable in the study area. Prior to
the least squares boosting (LSBoost)-based modeling of WK5 parameters, 92 predictor variables were
obtained from: (i) a digital terrain model (DTM), (ii) the European Centre for Medium-Range Weather
Forecasts re-analysis (ERA)-Interim reanalysis wind speed data available at the 850 hPa pressure
level (U850hPa), and (iii) the Coordination of Information on the Environment (CORINE) Land Cover
(CLC) data. On the basis of predictor importance (PI) and the evaluation of model accuracy, the
combination of predictor variables that provides the best discrimination between U100m,emp and the
modeled wind speed at 100 m AGL (U100m,mod), was identified. Results from relative PI-evaluation
demonstrate that the most important predictor variables are relative elevation (Φ) and topographic
exposure (τ) in the main wind direction. Since all WK5 parameters are available, any manufacturer
power curve can easily be applied to quantify AEYmod.

Keywords: annual wind energy yield (AEY); Wakeby distribution (WK5); least squares boosting
(LSBoost); predictor importance (PI); wind speed extrapolation

1. Introduction

The world’s energy supply is facing multiple challenges. The depletion of conventional fuels
is unavoidable [1,2], greenhouse gas emissions from the burning of fossil fuels most significantly
contributes to global warming [3,4] and the emissions of air pollutants affect human health [3,5].
Although nuclear energy production enables the reduction of carbon dioxide (CO2) emissions [6],
nuclear power plants bear great short- and long-term risk of accidents [7]. In order to reduce and
avoid negative impacts of the current use of energy resources on the environment and human health,
alternative forms of energy utilization must be found.

Renewable energies provide a clean, environmentally friendly and health-compatible alternative
to fossil energies and nuclear energy [2,5]. One major renewable energy resource is the kinetic energy
contained in the atmosphere, commonly known as wind energy. The potential for wind energy
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utilization to play a key role in the future global energy mix is enormous. Wind energy could supply
more than 40 times [8] the annual global electricity consumption. Consequently, the wind power
generation capacity of the world is growing constantly with an average annual rate of about 30% over
the last decade [2]. In the European Union, directive 2009/28/EC [9] aims to cover 20% of the primary
energy demand by renewable energies in 2020, including wind energy. The leading wind power
producer in Europe is Germany. Germany aims to supply at least 30% of the energy consumption in
2020 by renewable energies [4]. Yet, in some German federal states the utilization of wind energy is
still far from being exhausted. For instance, the ministry of Environment, Climate Protection and the
Energy Sector of the southwestern German federal state of Baden-Wuerttemberg plans to increase the
share of wind energy in the energy mix from ~1% in 2015 to 10% in 2020 [10]. In order to achieve this
political target, up to 1200 new wind turbines with an average output power between 2.5 MW and
3.0 MW must be installed in a period of only five years [10].

The first step in the onshore assessment of potential wind turbine sites is to quantify the
site-specific atmospheric wind energy resource at the wind turbine hub height (~80–100 m) [11].
The wind resource is predetermined by the large-scale atmospheric circulation and modified by
characteristics of surface roughness [12] and terrain [13]. As a result, the local wind resource can vary
significantly over short distances [8]. In contrast to this, ground-based measurements of long-term
wind speed at the landscape level are rare and only available for heights near the surface (10 m above
ground level (AGL)). Because of the high spatiotemporal variability of the local wind resource [14,15],
the low number of available near-surface wind speed measurement sites alone often limits the detailed
assessment of the site-specific wind resource.

To overcome the problem of the low number of wind speed measurements and the strong
influence of surface and terrain characteristics on the local wind resource, one option is highly resolved
statistical modeling of wind speed at hub height. However, mapping of average wind speed alone is
insufficient [16], since not only the central tendencies of wind speed distributions determine the wind
resource. Therefore, fitting an appropriate theoretical wind speed distribution to empirical wind speed
distributions is crucial [17]. Which theoretical distribution fits empirical wind speed distributions best
is currently under discussion [18,19].

Due to the limited availability of wind speed measurement sites in Southwest Germany, a region
with highly complex topography and mosaic-like land cover pattern, the goals of this study are (i) the
quantification of the annual wind energy yield (AEY) on a high spatial resolution grid and (ii) the
identification of the most important factors influencing the local wind resource.

2. Materials and Methods

2.1. Study Area and Wind Speed Measurements

The study area is the German federal state of Baden-Wuerttemberg (Figure 1). The low mountain
ranges Black Forest (length ~150 km, width ~30–50 km, highest elevations >1400 m) and Swabian
Alb (length ~180 km, width ~35 km, highest elevations >1000 m) are the most complex topographical
features with the strongest impact on the wind resource over the study area [20]. The top of the
Feldberg (1493 m) is the highest elevation in the study area. Approximately 38% (13,700 km2) of the
study area is covered with forests [21]. More details about land cover and topographical features in
the study area are summarized in [20].

The wind speed database used in this study consists of time series of the daily mean wind speed
measured from 1 January 1979 to 31 December 2010 at 58 meteorological stations by the German
Weather Service (DWD). The height (hS) of wind speed measurements varies between 3 m AGL
(stations Bad Wildbad-Sommerberg, Isny) and 48 m AGL (station Karlsruhe). Data preparation
included gap filling, testing for homogeneity and detrending according to [20].

The median wind speed near the surface values (rUs) vary in the range 0.5 m/s (station Triberg) to
7.5 m/s (station Feldberg) (Table 1). To extend the database, four measurement stations located in the
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bordering federal states Hesse and Bavaria were included in this study. Out of the 58 wind speed time
series, 48 time series were put into a parameterization dataset (DS1). The remaining 10 time series, for
which the original length was less than 10 years, belong to the validation dataset (DS2).Energies 2016, 9, 344 3 of 20 
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Figure 1. The study area Baden-Wuerttemberg in Southwest Germany and locations of German
Weather Service (DWD) stations. Dots indicate parameterization dataset (DS1) stations; stars indicate
validation dataset (DS2) stations.

Table 1. List of DWD stations and corresponding data features. DS1 stations are indicated by
identification numbers (ID) 1–48; DS2 stations are indicated by ID values 101–110. rUs: median
wind speed near the surface values; hS: height.

ID Station rUs hs ID Station rUs hs

1 Albstadt-Onstmettingen 1.7 17 30 Öhringen 2.3 16
2 Bad Säckingen 0.9 10 31 Schluchsee 1.6 10
3 Bad Wildbad-Sommerberg 0.7 3 32 Schömberg 0.6 10
4 Baiersbronn-Obertal 0.9 10 33 Schwäbisch-Gmünd 0.7 10
5 Beerfelden 1.7 10 34 Sipplingen 2.5 16
6 Dobel 2.3 10 35 Stimpfach-Weiptershofen 2.1 10
7 Dogern 1.7 10 36 Stötten 4.1 12
8 Donaueschingen 2.5 10 37 Stuttgart (Schnarrenberg) 2.5 12
9 Enzklösterle 1.0 10 38 Stuttgart-Echterdingen 2.5 10

10 Eschbach 2.4 10 39 Titisee 0.7 11
11 Feldberg 7.5 19 40 Triberg 0.5 15
12 Freiburg 2.4 12 41 Uffenheim 1.3 10
13 Freudenstadt 3.7 34 42 Ulm 2.2 10
14 Friedrichshafen 3.1 10 43 Ulm-Wilhelmsburg 2.7 15
15 Gailingen 1.6 12 44 Waldachtal-Lützenhardt 1.2 6
16 Hinterzarten 1.2 6 45 Waldsee, Bad-Reute 2.2 10
17 Höchenschwand 1.2 6 46 Walldürn 2.9 10
18 Hornisgrinde 5.9 10 47 Weingarten 1.9 12
19 Isny 2.1 3 48 Würzburg 2.8 12
20 Kandern-Gupf 2.0 10 101 Bad Dürrheim 1.3 10
21 Karlsruhe 3.3 48 102 Bad Herrenalb 0.6 10
22 Klippeneck 3.9 16 103 Müllheim 1.3 6
23 Königsfeld 1.0 6 104 Neuhausen ob Eck 2.5 10
24 Konstanz 1.7 17 105 Pforzheim-Ispringen 2.6 12
25 Lahr 2.3 10 106 Söllingen 2.6 10
26 Laupheim 2.5 10 107 Stockach-Espasingen 1.5 12
27 Leipheim 2.3 10 108 Stuttgart-Stadt 1.7 26
28 Mannheim 2.7 22 109 Todtmoos 1.1 10
29 Münstertal 1.3 10 110 Weilheim-Bierbronnen 2.6 10
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2.2. Wind Speed Extrapolation

All wind speed near the surface (US) time series were extrapolated to 100 m AGL using the
Hellman power law [22–24]. It was demonstrated by [11] that the power law performs well compared
to similar wind speed extrapolation methods. According to [22], the accuracy of the power law
increases when stratification effects and the influence of the wind speed are considered. Therefore, the
Hellmann exponent (E) was computed on a daily basis.

As has previously been done by [20,25], daily mean wind speed at the 850 hPa pressure level
(U850hPa) and the height of the 850 hPa pressure level AGL (h850hPa), both available from the European
Centre for Medium-Range Weather Forecast [26], were used to calculate daily, station-specific E-values:

E “
ln
´

U850hPa
Us

¯

ln
´

h850hPa
hs

¯ (1)

After the E-values were determined, daily, station-specific US-values were extrapolated to 100 m
AGL yielding U100m,emp:

U100m,emp “ Us ˆ

ˆ

100m
hs

˙E
(2)

2.3. Probability Distribution Fitting

Prior to the probability distribution fitting, U100m,emp time series were transformed to empirical
cumulative distribution functions (CDFemp). Afterwards, 67 CDF were fitted to each CDFemp.
The goodness of fit (GoF) of each CDF was quantified by calculating the coefficient of determination
(R2) from probability plots [19,27] and the Kolmogorov-Smirnov statistic (D) [28–30] to the fits.
The D-values were obtained by measuring the largest vertical difference between CDF and CDFemp.
The transformation of time series, fitting and GoF evaluation were done by EasyFit software (Version
5.5, MathWave Technologies, Dnepropetrovsk, Ukraine) and Matlab® Software Optimization Toolbox
(Release 2015a; The Math Works Inc., Natick, MA, USA).

According to D- and R2-value evaluation, which will be presented in detail in the results section,
the five-parameter Wakeby distribution (WK5) [31] is clearly the best-fitting distribution. It can be
defined by its quantile function [20,25,31,32]:

U100m,distrpFq “ ε`
α

β
ˆ

”

1´ p1´ Fqβ
ı

´
γ

δ
ˆ

”

1´ p1´ Fq´δ
ı

(3)

where F is the cumulative probability with U100m,distr (F) being the associated wind speed value.
The four parameters α, β, γ, and δ are distribution parameters and the fifth parameter, ε, is the location
parameter. WK5 can be interpreted as a mixed distribution [33] consisting of a left and right part [31,32].
This enables WK5 to reproduce shapes of wind speed distributions that other distributions cannot
reproduce [25,31].

2.4. Predictor Variable Building

A total number of 92 predictor variables (50 mˆ 50 m) covering the study area were built by using
the ArcGIS® 10.2 software (Esri, Redlands, CA, USA). All predictor variables originate from a digital
terrain model (DTM), CORINE Land Cover (CLC) data [34] or ERA-Interim reanalysis U850hPa [26].

The DTM was used to map Φ, τ [35,36], curvature, aspect and slope. The Φ-values were calculated
by subtracting the mean elevation of an outer circle around each grid point from the grid point-specific
elevation. Five different Φ variants with outer-circle radii of 250 m, 500 m, 1000 m (Φ1000m), 2500 m
(Φ2500m) and 5000 m (Φ5000m) were created.

The τ-maps were built for eight main compass directions (northeast (22.5˝–67.4˝), east
(67.5˝–112.4˝), southeast (112.5˝–157.4˝), south (157.5˝–202.4˝), southwest (202.5˝–247.4˝), west
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(247.5˝–292.4˝), northwest (292.5˝–337.4˝), north(337.5˝–22.4˝)) at 200 m radius intervals. This was
done by summing angles up to a distance limited to 1000 m. Curvature, aspect and slope were
calculated by using the Spatial Analyst Toolbox in ArcGIS.

Roughness length (z0) was derived from CLC data with an original spatial resolution of
100 m ˆ 100 m. Roughness length values were assigned to land cover types according to [20] yielding
the local roughness length (z0,l). Additionally, “effective” roughness length values (z0,eff) for the eight
main compass directions were calculated. This was done for four different radii around each grid
point (100 m, 200 m, 300 m, 400 m). In the end, all z0-values were interpolated to 50 m ˆ 50 m
resolution grids.

U850hPa data (0.125˝ ˆ 0.125˝ resolution) were included into model building because it represents
large-scale airflow undisturbed by the surface [37]. The 0.01, 0.30, 0.50, 0.75 and 0.99 percentiles of
U850hPa time series covering the period from 01 January 1979 to 31 December 2010 were calculated
(U850hPa,0.01, U850hPa,0.30, U850hPa,0.50, U850hPa,0.75 and U850hPa,0.99) and mapped in ArcGIS®. A spline
interpolation was applied to convert the U850hPa layers to 50 m ˆ 50 m resolution grids.

2.5. Wakeby Parameter Estimation and Modeling

The procedure applied to obtain the Wakeby parameters at every grid point in the study area
comprised the following work steps: (1) estimating the Wakeby parameters of every CDFemp based
on L-moments [38,39]; (2) analyzing the obtained Wakeby parameters and identifying common
characteristics of all distributions ; and (3) modeling target variables (Y) that enable the calculation of
all WK5 parameters at every grid point in the study area. To make the WK5 parameter modeling more
robust, the WK5 parameters estimated by L-moments were modeled indirectly according to [20,25].

Analyzing the estimated distributions led to the following parameter modeling and calculation
approach: First, the estimated left-hand tail of WK5 (YL), which is represented by α, β and ε,
was modeled:

YL “ ε`
10
β
ˆ

”

1´ p1´ 0.25qβ
ı

(5)

The estimated location parameter ε, which represents the lower bound of the distribution, was
directly modeled. Because the L-moment-based WK5 parameter estimation showed that α = 10 at nearly
all stations, it was set to this value. The use of a fixed α-value enabled the subsequent calculation of β.

Since YL affected WK5 parameter estimation up to F = 0.25, exactly as described by [31,32], the
percentiles F = 0.30 (YR1), F = 0.50 (YR2), F = 0.75 (YR3) and F = 0.99 (YR4) were modeled to build the
right-hand tail of WK5 (YR). A system of non-linear equations was solved at every grid point yielding
γ and δ:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

γ
δ ˆ

”

1´ p1´ 0.30q´δ
ı

` rYR1 ´YLs “ 0
γ
δ ˆ

”

1´ p1´ 0.50q´δ
ı

` rYR2 ´YLs “ 0
γ
δ ˆ

”

1´ p1´ 0.75q´δ
ı

` rYR3 ´YLs “ 0
γ
δ ˆ

”

1´ p1´ 0.99q´δ
ı

` rYR4 ´YLs “ 0

(6)

In order to calculate U100m,mod, YL and YR were recombined yielding WK5 with modeled
parameters (WK5mod).

All Y were computed for every grid point by least squares boosting (LSBoost) [40]. This was done
by using the Ensemble Learning algorithm LSBoost implemented in the Matlab®Software Statistics
Toolbox (Release 2015a; The Math Works Inc.). LSBoost is basically a sequence of simple regression
trees, which are called weak learners (B). The objective of LSBoost is to minimize the mean squared
error (MSE) between Y and the aggregated prediction of the weak learners (Ypred). In the beginning,
the median of the target variables (rY) is calculated. Afterwards, multiple regression trees B1, . . . , Bm
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are combined in a weighted manner [41] to improve model accuracy. The individual regression trees
are a function of selected predictor variables (X):

Ypred pXq “ rY pXq ` ν
M
ÿ

m“1

pmˆBm pXq (4)

with pm being the weight for model m, M is the total number of weak learners, and v with 0 < v ď 1 is
the learning rate [20,41].

The predictor variable selection process comprised several steps. First, the most appropriate
length of outer-circle radii for τ and z0,eff were determined by the correlation coefficient (r) between τ
respectively z0,eff and Y. Secondly, the importance of the remaining predictor variables was evaluated
by predictor importance (PI) which quantifies the relative contribution of individual predictor variables
to the model output [21]. The PI-values were determined by summing up changes in MSE due to splits
on every predictor and dividing the sum by the number of branch nodes. All predictor variables with
PI = 0.00 were sorted out.

After PI-evaluation, combinations of predictor variables were tested for their predictive power.
Starting with one predictor variable, further predictor variables were added to the model and kept
when the model accuracy measures R2, mean error (ME), mean absolute error (MAE), MSE and mean
absolute percentage error (MAPE) improved [42–44]. For model parameterization, DS1 data were used.
Model validation was done with both DS1 and DS2 data.

Multicollinearity among the predictor variables was investigated by assessing the variance inflation
and the condition index in combination with variance decomposition proportions according to [45].

2.6. Annual Wind Energy Yield Estimation

The relationship between wind speed and the electrical power output (P) of wind turbines
is typically established by a power curve [46]. Power curve values are developed from field
measurements and can be used for studies involving energy calculations [47]. There are three important
points characterizing a typical power curve (Figure 2): (1) at the cut-in speed the wind turbine starts to
generate usable power; (2) after exceeding the rated output speed the maximum output power (rated
power) is generated; and (3) after exceeding the cut-out speed turbines cease power generation and
shut down [46]. A standard 2.5 MW power curve [48] for onshore wind power plants was applied to
calculate the AEY.

Energies 2016, 9, 344 6 of 20 

 

Statistics Toolbox (Release 2015a; The Math Works Inc.). LSBoost is basically a sequence of simple 

regression trees, which are called weak learners (B). The objective of LSBoost is to minimize the 

mean squared error (MSE) between Y and the aggregated prediction of the weak learners (Ypred). In 

the beginning, the median of the target variables ( Y
~

) is calculated. Afterwards, multiple regression 

trees B1, …, Bm are combined in a weighted manner [41] to improve model accuracy. The individual 

regression trees are a function of selected predictor variables (X): 

     pred

1

M

m m

m

Y X Y X p B X


    (4) 

with pm being the weight for model m, M is the total number of weak learners, and v with 0 < v ≤ 1 is 

the learning rate [20,41]. 

The predictor variable selection process comprised several steps. First, the most appropriate 

length of outer-circle radii for τ and z0,eff were determined by the correlation coefficient (r) between τ 

respectively z0,eff and Y. Secondly, the importance of the remaining predictor variables was evaluated 

by predictor importance (PI) which quantifies the relative contribution of individual predictor 

variables to the model output [21]. The PI-values were determined by summing up changes in MSE 

due to splits on every predictor and dividing the sum by the number of branch nodes. All predictor 

variables with PI = 0.00 were sorted out. 

After PI-evaluation, combinations of predictor variables were tested for their predictive power. 

Starting with one predictor variable, further predictor variables were added to the model and kept 

when the model accuracy measures R2, mean error (ME), mean absolute error (MAE), MSE and 

mean absolute percentage error (MAPE) improved [42–44]. For model parameterization, DS1 data 

were used. Model validation was done with both DS1 and DS2 data. 

Multicollinearity among the predictor variables was investigated by assessing the variance inflation 

and the condition index in combination with variance decomposition proportions according to [45]. 

2.6. Annual Wind Energy Yield Estimation 

The relationship between wind speed and the electrical power output (P) of wind turbines is 

typically established by a power curve [46]. Power curve values are developed from field 

measurements and can be used for studies involving energy calculations [47]. There are three 

important points characterizing a typical power curve (Figure 2): (1) at the cut-in speed the wind 

turbine starts to generate usable power; (2) after exceeding the rated output speed the maximum 

output power (rated power) is generated; and (3) after exceeding the cut-out speed turbines cease 

power generation and shut down [46]. A standard 2.5 MW power curve [48] for onshore wind power 

plants was applied to calculate the AEY. 

 

Figure 2. Power curve used to calculate empirical annual wind energy yield (AEYemp) and modeled 

annual wind energy yield (AEYmod) depending on wind speed in 100 m above ground level (AGL) (U100m). 
Figure 2. Power curve used to calculate empirical annual wind energy yield (AEYemp) and modeled annual
wind energy yield (AEYmod) depending on wind speed in 100 m above ground level (AGL) (U100m).



Energies 2016, 9, 344 7 of 20

The discrete P-values from the manufacturer power curve were interpolated by a spline to
obtain a continuous power curve. The basic attributes of the applied power curve are: cut-in speed
U100m = 3.0 m/s; cut-out speed U100m = 25.0 m/s; rated output speed U100m = 13.0 m/s and; rated
output power P = 2580 kW. The empirical annual wind energy yield (AEYemp) was calculated for each
station in DS1 and DS2 following [49]:

AEYemp “ p

N
ÿ

i“1

PpU100m,emp,iq{Z1 (7)

with N = 11,688 being the total number of days in the investigation period and the number of years in
the investigation period (Z1).

The average electrical power output (P) was calculated according to [19,50]:

P “

8
ż

0

PpU100m,modq ˆ f pU100m,modqdU100m,mod (8)

The above equation describes the electrical power produced at each wind speed class multiplied
by the probability of the specified wind speed class and integrated over all possible wind speed
classes [50] with f(U100m,mod) being the probability density of U100m,mod. After P is calculated modeled
annual wind energy yield (AEYmod) can be computed by multiplying P with the respective number of
days per year (Z2):

AEYmod “ Pˆ Z2 (9)

2.7. Summary of the Methodology

The methodology for the quantification of AEY in the study area is summarized in Figure 3.
The basic steps are:

(1) Extrapolation of near-surface wind speed time series to hub height;
(2) Identification of a theoretical distribution that is capable of reproducing various shapes of

empirical wind speed distributions;
(3) Modeling the estimated parameters of the identified theoretical distribution, based on large-scale

airflow, surface roughness and topographic features;
(4) Mapping of distribution parameters in the study area; and
(5) Calculation of the AEY using a wind turbine-specific power curve.
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3. Results and Discussion

3.1. Distribution Fitting

According to results from the D-evaluation, WK5 fits 23 CDFemp best. As can be seen in
Table 2, the D-value averaged over all stations for WK5 (0.02) is lower than the average D-value
of all other theoretical distributions. Another well-fitting distribution is the four-parameter Johnson
SB distribution (D = 0.03). The best fitting three-parameter distribution is the inverse Gaussian
distribution (D = 0.03). In general, the performance of theoretical distributions defined by three or
more parameters is better than the performance of two- and one-parameter distributions. In the case of
eight theoretical distributions (Johnson SU, Log-Gamma, Log-Pearson 3, Nakagami, Pareto, Reciprocal,
Phased Bi-Exponential, Phased Bi-Weibull) no fit to CDFemp could be achieved and therefore the
parameter estimation procedure failed.

Table 2. Distributions ranked (RK) by Kolmogorov-Smirnov statistic (D)-values with their number of
parameters (NP). D- and coefficient of determination (R2)-values are averages over all meteorological stations.

RK Distribution D R2 NP RK Distribution D R2 NP

1 Wakeby 0.02 0.9992 5 35 Weibull 0.10 0.9768 2
2 Johnson SB 0.03 0.9991 4 36 Pert 0.11 0.9732 3
3 Inv. Gaussian 0.03 0.9981 3 37 Rayleigh 0.12 0.9721 2
4 Pearson 6 0.03 0.9984 4 38 Erlang 0.12 0.9866 3
5 Pearson 6 0.03 0.9983 3 39 Normal 0.13 0.9492 2
6 Lognormal 0.03 0.9982 3 40 Rice 0.13 0.9653 2
7 Dagum 0.03 0.9978 3 41 Logistic 0.13 0.9511 2
8 Fatigue Life 0.03 0.9978 3 42 Hypersecant 0.14 0.9497 2
9 Gen. Extreme 0.04 0.9975 3 43 Uniform 0.14 0.9351 2
10 Burr 0.04 0.9974 4 44 Cauchy 0.15 0.9845 2
11 Log-Logistic 0.04 0.9971 3 45 Erlang 0.15 0.9909 2
12 Burr 0.04 0.9971 3 46 Chi-Squared 0.16 0.9908 2
13 Lognormal 0.04 0.9973 2 47 Error 0.16 0.9437 3
14 Bimodal Weibull 0.04 0.9985 5 48 Laplace 0.17 0.9412 2
15 Fatigue Life 0.04 0.9970 2 49 Chi-Squared 0.19 0.9920 1
16 Inv. Gaussian 0.04 0.9974 2 50 Gumbel Min 0.20 0.8976 2
17 Pearson 5 0.04 0.9958 3 51 Exponential 0.23 0.9863 2
18 Bimodal Normal 0.04 0.9956 5 52 Exponential 0.27 0.9833 1
19 Gen. Pareto 0.04 0.9976 3 53 Pareto 2 0.28 0.9841 2
20 Gen. Gamma 0.04 0.9954 4 54 Triangular 0.31 0.9132 3
21 Dagum 0.04 0.9957 4 55 Power Func. 0.31 0.9138 3
22 Pearson 5 0.05 0.9954 2 56 Levy 0.36 0.9777 2
23 Gen. Logistic 0.05 0.9947 3 57 Levy 0.39 0.9769 1
24 Log-Logistic 0.05 0.9952 2 58 Error Func. 0.70 0.9103 1
25 Gamma 0.06 0.9931 3 59 Student’s t 0.82 0.7991 1
26 Beta 0.06 0.9922 4 - Johnson SU No Fit 4
27 Gen. Gamma 0.06 0.9904 3 - Log-Gamma No Fit 2
28 Gamma 0.06 0.9910 2 - Log-Pearson 3 No Fit 3
29 Frechet 0.06 0.9909 3 - Nakagami No Fit 2
30 Gumbel Max 0.07 0.9879 2 - Pareto No Fit 2
31 Weibull 0.07 0.9851 3 - Reciprocal No Fit 2
32 Frechet 0.07 0.9892 2 - Phased Bi-Exp. No Fit 4
33 Kumuaraswamy 0.09 0.9805 4 - Phased Bi-Wei. No Fit 6
34 Rayleigh 0.10 0.9776 1 - - - -

A widely used theoretical distribution applied to empirical wind speed distributions is the
two-parameter Weibull distribution [30,51–58]. However, in this study, the fit of the Weibull
distribution is poor (D = 0.10) compared to many other theoretical distributions. These results are
in accordance with similar studies where the GoF of various theoretical distributions to empirical
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distributions was compared [59–61]. The Weibull distribution is not even the best-fitting two-parameter
distribution, which is the lognormal distribution. The best GoF of a one-parameter distribution
was achieved by the also widely used Rayleigh distribution [62,63]. However, compared to many
distributions defined by more parameters the GoF of the Rayleigh distribution was rather poor
(D = 0.10). An explanation for the poor fit of distributions with less than three parameters might be
that their capacity for reproducing irregular shapes of empirical distributions is limited. Irregularly
shaped empirical wind speed distributions often result from complex topography [64].

The evaluation of averaged R2-values confirms results of the D-values evaluation. The best-fitting
distribution is WK5 (R2 = 0.9992), followed by Johnson SB (R2 = 0.9991).

The superior fit of WK5 is in accordance to GoF measures of empirical near-surface (10 m AGL)
wind speed distributions in the study area [20]. Based on the results presented in this study it is
concluded that WK5 is a universal wind speed distribution for the study area.

3.2. Predictor Variable Selection and Importance

The screening of r-values showed that the most appropriate length of outer-circle radius was
1000 m for τ and 200 m for z0eff. Table 3 lists the predictor variables used for all six least squares
boosting models (LSBM) and their relative impact to the model outputs. From the large set of predictor
variables, predictor selection finally reduced their number to 14.

Table 3. Relative importance of predictor variables used for final least squares boosting models (LSBM)
in percent. The top three important predictor variables are highlighted in red.

ID Predictor variable Symbol YL ε YR1 YR2 YR3 YR4

1 Wind speed at 850 hPa level (F = 0.75) U850hPa,0.75 - - - - 21.4 -
2 Wind speed at 850 hPa level (F = 0.99) U850hPa,0.99 - - - - - 14.8
3 Roughness length, local z0,l 1.9 0.1 0.4 - - 1.5
4 Roughness length, effective, W z0eff,W - - - 9.2 - -
5 Roughness length, effective, SW z0eff,SW - - 0.6 - - -
6 Roughness length, effective, S z0eff,S - - 7.8 2.2 1.5 6.2
7 Roughness length, effective, N z0eff,N - - 1.1 - 6.9 -
8 Topographic exposure, NW τNW - - - 9.8 - 5.2
9 Topographic exposure, W τW - 21.4 - - - 20.8
10 Topographic exposure, SW τSW 24.4 23.5 9.6 - 20.8 -
11 Topographic exposure, SE τSE - - - - - 2.4
12 Relative elevation, 1000 m Φ1000m 73.7 55.0 - - 49.4 -
13 Relative elevation, 2500 m Φ2500m - - 80.5 - - -
14 Relative elevation, 5000 m Φ5000m - - - 78.8 - 49.1

The main wind directions in the study area are west and southwest. It is therefore reasonable that
southwesterly and westerly oriented τ- and z0eff-predictor variables have a distinct impact to the model
outputs. The highest PI-values for any roughness length predictor variable are found for the LSBM
output YR2 and the western sector (PI = 9.2%). However, the PI-value for YR1 and the southwestern
sector is relatively low (PI = 0.6%). The topographic exposure for the southwestern sector, respectively
the western sector, is one of the most important predictor variables for modeling ε, YL, YR3 and YR4.

It is important to note that U850hPa was not used to model the left-hand tail of WK5, which
represents U100m,mod-values. Low wind speed values mostly occur when the atmosphere is stably
stratified [22]. Thus, the influence of U850hPa on U100m,mod is rather small.

When modeling YR3 and YR4, the large-scale airflow becomes more important PI = {21.4%, 14.8%}
because high U100m,mod-values usually occur when the atmosphere is neutrally stratified [22].

Results from PI-evaluation indicate the fundamental role of relative elevation in wind turbine
site assessment. The high PI-values for Φ indicate the great importance of Φ for model outputs.
The highest PI-value is 80.5% for Φ2500m when modeling YR1. In contrast, the absolute elevation (ψ)
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was never used as predictor variable. This is reasonable because sites with high ψ-values are not
necessarily exposed to high wind speeds.

3.3. Wind Speed Mapping

Median U100m,mod-values (rU100m,mod) are shown in Figure 4. In large parts (75%) of the study
area, rU100m,mod-values are in the range between 3.0 m/s and 4.0 m/s. In only 0.2% of the study area,
rU100m,mod-values are above 4.9 m/s. Due to the complex topography, high and low rU100m,mod-values
can occur within small distances (<500 m). For example, in the Black Forest, which is characterized
by narrow, forested valleys, rU100m,mod-values are very low. However, there are many exposed
mountaintops in close proximity to these valleys where rU100m,mod-values are high. Beside narrow,
forested valleys, lowest rU100m,mod-values (<3.1 m/s) occur in large cities. In the entire study area
the effect of topographic exposure on the modeling results is evident by predominantly higher
rU100m,mod-values at sites exposed to the West and Southwest.
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3.4. Annual Wind Energy Yield

In Figure 5, the empirical AEY per wind speed class (∆AEYemp), the modeled AEY per wind
speed class (∆AEYmod), the probability density distributions of WK5mod and the probability density
distributions fitted to US-values (US,distr) are presented as a function of wind speed classes (intervals
of 0.1 m/s) for the stations Hornisgrinde (Figure 5a) and Laupheim (Figure 5b).

It is clear that percentiles (F = {0.30–0.99}) from the right-hand tail of WK5mod contribute more to
AEY and are thus more important for the total amount of AEYmod. In Laupheim the mode of U100,mod
is 2.3 m/s, whereas highest ∆AEYmod is obtained at 8.0–8.1 m/s. Even at the top of the Hornisgrinde,
which is one of the windiest places in the study area, the U100m,mod mode value at 4.2 m/s is clearly
lower than the wind speed class assigned to the highest ∆AEYmod-value (9.0–9.1 m/s). Overall, the
∆AEYmod-curves fit ∆AEYemp-values obtained for both stations well.
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Figure 5. ∆AEYemp and ∆AEYmod as a function of wind speed classes (U) (intervals of 0.1 m/s) as well
as the probability of wind speed near the surface fitted to a WK5 distribution (US,distr)- and modeled
wind speed in 100 m AGL (U100m,mod)-classes for stations: (a) Hornisgrinde; and (b) Laupheim.

The map of AEYmod (Figure 6) shows similar patterns like the rU100m,mod-map. By applying the
power curve to U100m,mod, the mean AEYmod-value in the study area is 3.4 GWh/yr. The highest
AEYmod-value (13.6 GWh/yr) occurs at the top of the Feldberg. Only in 3% of the study area is AEYmod
higher than 5.0 GWh/yr. In 31% of the study area AEYmod is lower than 3.0 GWh/yr with a tendency
towards lower AEYmod-values in the southeast, which is mainly due to low U850hPa-values in this part
over the study area. In contrast, generally higher AEYmod-values were calculated in the northeast
where U850hPa-values are highest at the landscape level. The spatial AEYmod-pattern indicates that the
local wind resource is mainly determined by terrain features and surface roughness.
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This is underlined by the map extract shown in Figure 7. In the topographically structured
Black Forest region, it appears that highest and lowest AEYmod-values occur over horizontal distances
shorter than 500 m. This finding is in good accordance to a previous study regarding gust speed
in the same area [25]. The main wind direction can be inferred from highest AEYmod-values over
southwest-facing slopes.
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Figure 7. AEYmod in the Southern Black Forest region. The legend values indicate highest class values.

Figure 8 shows r-values which were calculated between AEYmod and various predictor variables.
The r-values confirm the results of the PI-evaluation. The highest and lowest r-values are obtained for
the most important predictor variables. The highest absolute r-values are (r = |´0.59|) for τSW and
(r = |0.58|) for Φ2500m. The correlation between ψ and AEYmod is relatively weak (r = 0.08). This is
due to the fact that some highly elevated Black Forest valleys are sites with the lowest AEYmod-values.
The correlation between U850hPa,0.75 and AEYmod (r = 0.08) is also relatively low since the influence of
the large-scale airflow on AEYmod is superimposed by influences of local terrain features and surface
roughness. All correlations are highly significant with significance values (p) p ď 0.0000.
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3.5. Model Validation 

The MAPE-values indicate that U100m,mod was simulated accurately (Table 4). They are always 

below 6% for both DS1 and DS2. The R2-values are mostly 0.97 for DS1 percentiles and about 0.95 for 

DS2 percentiles. The largest downward bias is ME = −0.30 m/s for F = 0.99. 

Figure 8. Correlation coefficient (r)-values calculated between AEYmod and various predictor varibles.

The exemplary functional relationships between classes of four important predictor variables and
AEYmod are shown in Figure 9. The variability of AEYmod-values as a function of U850hPa,0.75 (Figure 9a)
is lower than the variability of the other displayed predictor variables. This is interpreted to mean that
the variability of U850hPa,0.75 is of minor importance for explaining the spatial AEYmod-patterns in the
study area. Due to their high roughness, AEYmod is lower over forests and cities (Figure 9b). Areas
that are exposed to the southwest (τSW < 2˝) show higher AEYmod-values (median: 3.9 GWh/yr) than
sheltered areas (τSW > 18˝) (median: 1.5 GWh/yr) (Figure 9c). The strongest functional relationship
is between Φ2500m and AEYmod (Figure 9d). The assigned median AEYmod-values increase from
1.6 GWh/yr at Φ2500m < ´150 m to 4.7 GWh/yr at Φ2500m > 150 m.
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Figure 9. Boxplots of AEYmod as a function of: (a) 0.75 percentile of the wind speed at the 850 hPa
pressure level (U850hPa,0.75); (b) local roughness length (z0,l); (c) topographic exposure in southwest
direction (τSW); and (d) relative elevation with outer circle radius of 2500 m (Φ2500m). Boxplot style:
red lines indicate medians, boxes indicate interquartile ranges, whiskers indicate 1.5-times interquartile
ranges. The legend values indicate highest class values.
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3.5. Model Validation

The MAPE-values indicate that U100m,mod was simulated accurately (Table 4). They are always
below 6% for both DS1 and DS2. The R2-values are mostly 0.97 for DS1 percentiles and about 0.95 for
DS2 percentiles. The largest downward bias is ME = ´0.30 m/s for F = 0.99.

Table 4. Performance measures coefficient of determination (R2), mean error (ME), mean absolute error
(MAE), mean squared error (MSE) and mean absolute percentage error (MAPE) calculated from the
comparison of empirical and modeled cumulative probabilities (F) associated with U100m-time series
included in DS1 and DS2.

Data Set F R2 ME (m/s) MAE (m/s) MSE (m/s) MAPE (%)

DS1

0.10 0.97 0.05 0.11 0.02 5.9
0.20 0.97 0.04 0.11 0.02 5.1
0.30 0.97 0.01 0.12 0.02 4.6
0.40 0.97 0.00 0.13 0.03 4.3
0.50 0.97 0.00 0.14 0.03 4.2
0.60 0.97 ´0.01 0.16 0.04 4.1
0.70 0.97 ´0.01 0.20 0.06 4.2
0.80 0.97 ´0.01 0.25 0.09 4.3
0.90 0.97 ´0.09 0.33 0.17 4.6
0.99 0.98 0.00 0.38 0.23 3.2

Data Set F R2 ME (m/s) MAE (m/s) MSE (m/s) MAPE (%)

DS2

0.10 0.95 ´0.01 0.07 0.01 3.6
0.20 0.95 ´0.03 0.10 0.01 4.5
0.30 0.96 ´0.06 0.10 0.02 4.0
0.40 0.97 ´0.07 0.12 0.02 4.3
0.50 0.97 ´0.07 0.14 0.02 4.4
0.60 0.96 ´0.08 0.17 0.04 4.7
0.70 0.95 ´0.10 0.21 0.07 5.0
0.80 0.95 ´0.12 0.25 0.10 5.1
0.90 0.95 ´0.24 0.36 0.17 5.5
0.99 0.94 ´0.30 0.46 0.42 4.0

The model performance for DS2 is only marginally worse than for DS1. This indicates the
portability of LSBM to other data sets.

Performance measures from the comparison of modeled cumulative distribution functions
(CDFmod) with CDFemp associated with U100m-time series included in DS2 are shown in Table 5.

Table 5. Performance measures from the comparison of modeled cumulative distribution function
(CDFmod) with empirical cumulative distribution function (CDFemp) associated with U100m time series
included in DS2.

Station D R2 Station D R2

Bad Dürrheim 0.05 0.9977 Söllingen 0.06 0.9973
Bad Herrenalb 0.05 0.9973 Stockach-Espasingen 0.08 0.9918

Müllheim 0.05 0.9982 Stuttgart-Stadt 0.09 0.9924
Neuhausen ob Eck 0.02 1.0000 Todtmoos 0.07 0.9968

Pforzheim-Ispringen 0.04 0.9991 Weilheim-Bierbronnen 0.06 0.9978

It appears that the GoF measures for modeled WK5 parameters are better than for many statistical
distributions that were directly fitted to CDFemp (compare Table 2).
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In Figure 10, AEYemp is plotted against AEYmod. Related performance measures for DS1
(Figure 10a) and DS2 (Figure 10b) are R2 = {0.98, 0.97}, ME = {´0.16 GWh/yr, ´0.23 GWh/yr},
MAE = {0.32 GWh/yr, 0.31 GWh/yr}, MSE = {0.16 GWh/yr, 0.13 GWh/yr} and MAPE = {10.0%, 17.1%}.
Thus, it can be concluded that the calculated AEYemp-values were modeled with sufficient accuracy.
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4. Conclusions

A methodology is presented that allows assessing the statistical AEY on a high spatial resolution
(50 m ˆ 50 m) grid in an area with mosaic-like land cover pattern and complex topography. It was
found that highest and lowest AEY occurs in highly textured terrain within very small distances
(<500 m). The results of this study therefore emphasize the need to assess AEY at very small spatial
scales. This is demonstrated in particular by the great importance of the predictor variables relative
elevation and topographic exposure in the main wind direction.

Since the methodology allows for the calculation of all WK5 parameters, the AEY for any
manufacturer power curve can be estimated. The methodology is easily portable to other heights
above ground level as well as to other study areas. The only requirements for the portability are the
availability of the following: (i) near-surface wind speed time series as measured in meteorological
networks; (ii) a DTM; (iii) a land cover data set; and (iv) wind speed data not influenced by local
topography or land use.

The proposed modeling approach is a useful first step in the exploration of the most appropriate
wind turbine sites based on the local wind resource. The produced model outputs and maps are
valuable starting points for further in-depth wind turbine site assessment.

Conflicts of Interest: The author declares no conflict of interest sponsors had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish
the results.

Nomenclature
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AEYmod Modeled annual wind energy yield
B Regression tree
Bm Regression tree m
D Kolmogorov-Smirnov statistic
E Hellmann exponent
f Probability density
F Cumulative probability
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h850hPa Height above ground level of the 850 hPa pressure level
hs Measurement height of US

M Total number of weak learners
MAE Mean absolute error
MAPE Mean absolute percentage error
ME Mean error
MSE Mean squared error
N Number of days in the investigation period
p Significance value
P Electrical power output
P Average electrical power output
PI Relative predictor importance
pm Weight for model m
r Correlation coefficient
R2 Coefficient of determination
U Wind speed
U100m Wind speed in 100 m AGL
U100m,distr Wind speed in 100 m AGL fitted to a WK5 distribution
U100m,emp Empirical wind speed in 100 m AGL
U100m,mod Modeled wind speed in 100 m AGL
rU100m,mod Median of modeled wind speed in 100 m AGL
U850hPa Wind speed at the 850 hPa pressure level
U850hPa,0.01 1.st percentile of the wind speed at the 850 hPa pressure level
U850hPa,0.30 30.th percentile of the wind speed at the 850 hPa pressure level
U850hPa,0.50 50.th percentile of the wind speed at the 850 hPa pressure level
U850hPa,0.75 75.th percentile of the wind speed at the 850 hPa pressure level
U850hPa,0.99 99.th percentile of the wind speed at the 850 hPa pressure level
US Wind speed near the surface
rUs Median wind speed near the surface
US,distr Wind speed near the surface fitted to a WK5 distribution
v Learning rate
X Predictor variables
Y Target variables
rY Median of target variables
YL Left-hand side of WK5
Ypred Aggregated prediction of predictor variables
YR Right-hand side of WK5
YR1 30.th percentile of WK5
YR2 50.th percentile of WK5
YR3 75.th percentile of WK5
YR4 99.th percentile of WK5
z0 Roughness length
z0eff Effective roughness length
z0eff,E Effective roughness length in east direction
z0,l Local roughness length
z0eff,N Effective roughness length in north direction
z0eff,NE Effective roughness length in northeast direction
z0eff,NW Effective roughness length in northwest direction
z0eff,S Effective roughness length in south direction
z0,effSE Effective roughness length in southeast direction
z0eff,SW Effective roughness length in southwest direction
z0eff,W Effective roughness length in west direction
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Z1 Number of years in the investigation period
Z2 Number of days per year
α Parameter of WK5
β Parameter of WK5
γ Parameter of WK5
δ Parameter of WK5
∆AEYemp Empirical annual wind energy yield per wind speed class
∆AEYmod Modeled annual wind energy yield per wind speed class
ε Location parameter of WK5
τ Topographic exposure
τE Topographic exposure in east direction
τN Topographic exposure in north direction
τNE Topographic exposure in northeast direction
τNW Topographic exposure in northwest direction
τS Topographic exposure in south direction
τSE Topographic exposure in southeast direction
τSW Topographic exposure in southwest direction
τW Topographic exposure in west direction
Φ Relative elevation
Φ1000m Relative elevation with outer circle radius of 1000 m
Φ2500m Relative elevation with outer circle radius of 2500 m
Φ5000m Relative elevation with outer circle radius of 5000 m
ψ Absolute elevation

Abbreviations

AGL Above ground level
CDF Theoretical cumulative distribution function
CDFemp Empirical cumulative distribution function
CDFmod Modeled cumulative distribution function
CLC CORINE Land Cover
CORINE Coordination of Information on the Environment
DS1 Parameterization dataset
DS2 Validation dataset
DTM Digital terrain model
DWD German Weather Service
ERA European Centre for Medium-Range Weather Forecasts re-analysis
GoF Goodness of fit
ID Identification number
LSBM Least squares boosting model
LSBoost Least squares boosting
NP Number of parameters
RK Rank of distribution according to D-evaluation
WK5 Wakeby distribution
WK5mod Modeled Wakeby distribution
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