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Abstract: All-vanadium redox flow batteries (VRBs) are potential energy storage systems for
renewable power sources because of their flexible design, deep discharge capacity, quick response
time, and long cycle life. To minimize the energy loss due to the shunt current, in a traditional
design, a flow field is machined on two electrically insulated frames with a graphite plate in between.
A traditional bipolar plate (BP) of a VRB consists of many components, and thus, the assembly process
is time consuming. In this study, an integrally molded BP is designed and fabricated to minimize
the manufacturing cost. First, the effects of the mold design and injection parameters on frame
formability were analyzed by simulation. Second, a new graphite plate design for integral molding
was proposed, and finally, two integrally molded BPs were fabricated and compared. Results show
that gate position significantly affects air traps and the maximum volume shrinkage occurs at the
corners of a BP. The volume shrinkage can be reduced using a large graphite plate embedded within
the frame.

Keywords: all-vanadium redox flow battery (VRBs); bipolar plate (BP); injection molding;
energy storage

1. Introduction

Solar and wind energy are not stable power sources because their power generation depends on
the weather. To improve their stability and reliability, energy storage systems are needed for saving
the excess energy and balancing the energy supply and demand. Among energy storage systems,
all-vanadium redox flow batteries (VRBs) have attracted much attention because of their flexible
design, quick response time, long cycle life, high energy efficiency, and low maintenance cost [1–4].
In a VRB system, positive and negative electrolytes are recirculated from a VRB stack to electrolyte
storage tanks using pumps; therefore, the energy capacity and power can be separately designed. The
energy capacity depends on the amount of electrolytes, whereas the power depends on the size of VRB
stacks. The chemical energy of a VRB system is stored in different valence states of vanadium ions
(V5+, V4+, V3+ and V2+). Reactions occurring in a VRB are given below. On the positive side:

VO`
2 +2H`+e´

Discharge
ÝÝÝÝÝÝáâÝÝÝÝÝÝ

Charge
VO2++H2O (1)

and on the negative side:

V2+ Discharge
ÝÝÝÝÝÝáâÝÝÝÝÝÝ

Charge
V3++e´ (2)
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The overall reaction is:

VO`
2 +2H`+V2+ Discharge

ÝÝÝÝÝÝáâÝÝÝÝÝÝ
Charge

VO2++H2O+V3+ (3)

To date, several challenges still hinder commercialization of VRB systems, including their low
energy density and the high cost of vanadium species and other key components. A VRB stack
generally consists of bipolar plates (BPs), porous electrodes, and an ion-exchange membrane. The
major function of BPs in a VRB is to support the stack structure, separate positive and negative
electrolytes, and electrically connect electric paths among cells [5].

Many researchers have focused on developing BPs. To reduce the manufacturing cost of traditional
graphite plates, carbon–polymer composite materials have been investigated [6]. Because the polymer
structure is not electrically conductive, the addition of conductive fillers is critical to achieve the
required electrical conductivity. Graphite fiber [7], carbon fiber [8], carbon black [9], and carbon
nanotubes [8] have been used as conductive fillers in BPs for fuel-cell applications. Investigations have
focused on the dispersion and distribution of fillers, interaction between fillers and polymer matrix,
and electrical and mechanical properties of fillers.

BPs for fuel-cell applications cannot be directly used in VRBs owing to the presence of acidic
electrolytes in VRBs. Because BPs need to operate in an acidic environment, their chemical stability is
critical in the selection of BP materials; however, BPs for VRB applications have not been extensively
studied to date. Lee et al. [10,11] developed composite BPs with different polymers and investigated the
durability of graphite-coated carbon composite BPs [12]. Caglar et al. [13] used titanate-based coupling
agents and carbon nanotubes for bridging graphite particles. Their experimental results showed that
the dispersion of fillers improved and the difference between the through- and in-plane electrical
conductivities of BPs decreased. Lee et al. [14] developed carbon composite BPs with different carbon
black contents via compression molding and showed that such BPs with 15 wt% carbon black exhibited
good electrical conductivity and improved electrochemical stability in the working environment of
VRBs. Park et al. [15] used aromatic epoxy of diglycidyl ether of bisphenol A as a polymer matrix,
diaminodiphenyl sulfone as a curing agent, and graphite flakes and carbon particles as fillers to
fabricate BPs and established the optimal composition for stable composite BPs in a VRB stack.

A BP for a VRB consists of two parts: an electrically insulated frame and an electrically conductive
graphite plate. Because the electrolytes of a VRB are electrically conductive, shunt current emerges
among cells, resulting in performance degradation. The shunt current can be reduced using electrically
insulated frames to the periphery of an active area. A common traditional design of a BP is shown in
Figure 1a. As shown in the figure, contact faces between graphite and frames require gaskets to avoid
electrolyte leakage. Clearly, leakage in a VRB stack needs to be solved.Energies 2016, 9, 350 3 of 10 
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To the best of our knowledge, the leakage problem of BPs in VRBs has not been extensively
studied to date. Some studies focused on improving the bonding between a graphite plate and
frame. Soohyun et al. [16] developed a smart cure cycle to reduce the thermal residual stress of a
co-cured E-glass/carbon/epoxy composite BP. Using the smart cure cycle, BP deflection decreased by
32%. Sumitomo Electric Industries designed a frame comprising more than 50% vinyl chloride and a
composite graphite plate. The frame and graphite plate were bonded to each other with improved
adhesives to enhance sealing [17]. They also designed inner and outer seal grooves for gaskets to
prevent electrolyte leakage [18]. These studies [16–18] focused on preventing leakage between a
graphite plate and frame, resulting in increasing manufacturing costs and assembly time. To reduce
the number of components, a BP can be fabricated via injection molding. Moreover, the risk of leakage
between a graphite plate and frame can be reduced. dos Santos et al. [19] proposed a molded frame
with a graphite plate; however, the mold design and injection parameters were not investigated in
their report.

In this study, an integrally molded BP is designed and fabricated via injection molding. Figure 1b
shows the integrally molded BP. First, the effects of the gate location and injection parameters on
frame formability are studied by simulation. The effect of the graphite plate design on formability is
also discussed.

2. Mold Design and Analysis

This study aims to develop an integrally molded BP with an active area of 100 cm2. The effects
of mold design and injection parameters on BP formability are investigated. A graphite plate with
dimensions of 17 cm ˆ 8 cm ˆ 5 cm was machined to 16 cm ˆ 6.5 cm ˆ 1 cm at the centers of both
sides of graphite electrodes. Two channels were machined around the active area to prevent electrolyte
leakage, as shown in Figure 2a. A flow-field pattern to improve electrolyte distribution, shown in
Figure 2b, was designed on an injection-molded frame.
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2.1. Governing Equations

The formability of an injected frame depends on the flow behavior of a melted polymer in a mold.
During injection molding, the melted polymer is assumed to behave as a generalized Newtonian fluid.
A nonisothermal polymer resin in a mold cavity can be described by the following equations:

Bρ

Bt
`∇ˆ ρu “ 0 (4)

B

Bt
pρuq `∇ˆ pρuu´ σq “ ρg (5)
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σ “ ´pI` ηp∇u`∇uTq (6)

ρCp

ˆ

BT
Bt
` uˆ∇T

˙

“ ∇ pk∇Tq ` η
.
γ

2 (7)

where u is the velocity vector, T is the temperature, p is the pressure, σ is the total stress tensor, ρ is
the fluid density, η is the viscosity, k is the thermal conductivity, Cp is the specific heat, and

.
γ is the

shear rate. In this study, the modified-Cross model with Arrhenius temperature dependence is used to
describe the viscosity of melted polymer:

η
`

T,
.
γ

˘

“
η0 pTq

1`
´

η0
.
γ

τ˚

¯1´n (8)

where:

η0 pTq “ Bexp
ˆ

Tb
T

˙

(9)

where η0 is the zero shear viscosity, τ* is a parameter to describe the transition region between zero
shear rate region and the power law region of the viscosity curve, n is the power law index, B is an
exponential-fitted constant, and Tb is a temperature-fitted constant.

Since the behavior of injected material is simulated in Moldex3D, only the completed frame
model needs to be constructed, as shown in Figure 3. The frame model was built using SolidWorks
and imported to Moldex3D for injection modeling simulation. Before running the simulation,
the gate position and operating parameters, such as polymer temperature, molding temperature,
injection pressure, maintaining pressure, and ambient temperature, need to be set up in Moldex3D.
Polypropylene (PP) was selected as the frame material. The physical properties such as viscosity,
specific heat, and specific volume of PP used in the simulation are functions of temperature and were
provided by Moldex3D, as shown in Figure 4.
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2.2. Position of Injection Gate

Figure 3 shows three gate-position designs. The gate position was on an unremarkable area of the
frame; therefore, there were only a few suitable areas on the frame. In G1, two gates were placed at the
edge of the frame, as shown in Figure 3a. In G2, four gates were designed at the edge of the frame,
as shown in Figure 3b. In G3, two gates were at the edge of the frame and the other two were at the
central part of the flow field, as shown in Figure 3c.

2.3. Injection Parameters

In addition, the software also suggested injection parameters for each commonly used polymer.
For example, the suggested parameter values for PP are listed as case P1 in Table 1. In this study, the
effects of injection pressure and polymer temperature on BP formability were studied. The injection
pressures for P2, P3, and P4 were 100, 180, and 220 MPa, respectively. The melted polymer temperatures
for P5 and P6 were 200 ˝C and 220 ˝C, respectively. In all simulation cases, the molding temperature
was 60 ˝C and the ambient temperature was 25 ˝C.

Table 1. Injection parameters used in the simulation.

Injection Parameters P1 P2 P3 P4 P5 P6

Polymer temperature (˝C) 210 210 210 210 200 220
Molding temperature (˝C) 60 60 60 60 60 60
Injection pressure (MPa) 140 100 180 220 140 140

Maintaining pressure (MPa) 140 100 180 220 140 140
Ambient temperature (˝C) 25 25 25 25 25 25

3. Results and Discussion

The effects of the position of the injection gate and injection parameters on formability are
discussed in the following sections.

3.1. Effect of Gate Position on Formability

The formability of molded products can be evaluated by a number of air traps and volume
shrinkage. Air traps are usually located in areas where melted polymer fills last. Trapped air will
result in bubbles or voids within the molded part, or surface defects. Volume shrinkage may cause
dimensional errors, resulting in electrolyte leakage. It is desired to minimize the number of air traps and
volume shrinkage when considering gate positions. For the BP of a VRB, there are only a few positions
suitable for placing gates. Before the filling stops, injected materials are expected to completely fill all
spaces in a simultaneous manner while maintaining uniform pressure distribution. The effect of the
gate position on air traps is shown in Figure 5. The number of air trap can be quantified by Moldex3D.
It can be seen that the number of air traps in G3 is 112, which is fewer than 178 in G1 and 175 in G2,
because gates at the center of the flow field help to distribute injected materials from the central area.
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Figure 6 shows the volume shrinkage of the integrally molded BPs for G1, G2, and G3. Although
gate position influences the number of air trap, it shows little effect on the volume shrinkage. In all
three cases, the maximum shrinkage is approximately 2.61 mm at the four corners.
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3.2. Effect of Injection Parameters on Formability

Figure 7 shows air traps in the simulation results for P1, P2, P3, P4, P5, and P6. The effect of
injection pressure on formability can be investigated by comparing Figure 7a–d. It can be seen that
when the injection pressure varies from 100 MPa to 220 MPa, the locations of air traps are almost the
same as those in P1 and the numbers of air traps for the two cases are 112.
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Figure 7. Effects of injection parameters on air traps: (a) P1 (112), (b) P2 (112), and (c) P3 (112),
(d) P4 (112), (e) P5 (109), and (f) P6 (103). (The value in parentheses indicates the number of air traps.)

By comparing Figure 7a,e and f, it is observed that when the polymer temperature is increased
from 200 ˝C to 220 ˝C, the number and location of air traps show some minor variation, but no obvious
trend observed, 109 for P5 and 103 for P6. Furthermore, volume shrinkages in all cases (P1 to P6) are
between 2.6 and 2.8 mm, as shown in Figure 8. Maximum shrinkage occurs at the four corners of the
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molded frame. According to Figures 7 and 8 selecting different injection parameter values than the
suggested ones does not significantly reduce volume shrinkage.
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Figure 8. Effects of injection parameters on volume shrinkage: (a) P1; (b) P2; (c) P3; (d) P4; (e) P5; and
(f) P6.

On the basis of the discussions in the previous sections, air traps can be reduced by selecting an
appropriate gate position; however, volume shrinkage cannot be significantly reduced by varying the
gate positions or injection parameters. Because there is no graphite plate within the corner area of the
frame to support polymer materials, maximum shrinkage occurs at the four corners.

3.3. Improved Design of Bipolar Plates

Volume shrinkage occurs at a relatively thicker injected material outside the graphite plate area.
Thus, to minimize shrinkage around the corners, the graphite plate is redesigned to have a larger
area so that the thickness of the injected material covering the graphite plate can be reduced. Figure 9
shows two new graphite plate designs: one without ribs around the periphery, as shown in Figure 9a,
and the other with ribs to enhance the bending strength, as shown in Figure 9b.
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The simulated air traps in injected BPs for D2 and D3 are shown in Figure 10. The numbers of air
traps for D2 and D3 are 134 and 158, respectively, which are more than that of the original design (G3).
Because the gate position is the same in all three designs, it is expected that a secondary flow field is
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the last area wherein the injected material is filled. As a result, the graphite design does not affect air
traps; it is the gate location that affects the traps.

Energies 2016, 9, 350 8 of 10 

 

  
(a) (b) 

Figure 10. Location of air traps for improved designs of graphite plates: (a) D2 (134) and (b) D3 (158). 

(The value in parentheses indicates the number of air traps.) 

The simulated volume shrinkages of D2 and D3 are shown in Figure 11. Maximum shrinkages 

are approximately 0.43 and 0.38 mm for D2 and D3, respectively. Compared with the original design 

(G3), a relatively larger graphite plate significantly reduces the shrinkage of injected materials. The 

simulation results of D3 show less volume shrinkage than those of D2. Because of the rib around the 

periphery of the graphite plate in D3, both the thickness of the injected polymer material at the 

corners and volume shrinkage are reduced. 

    
(a) (b) 

Figure 11. Volume shrinkage of injected materials for: (a) D2; and (b) D3. 

Figure 12 shows the integrally molded BPs with different embedded graphite plates. In Figure 

12a a BP with a relatively smaller graphite plate exhibits notable volume shrinkage at the four corners. 

When the graphite plate is replaced by a relatively larger one, volume shrinkage at the corners is 

significantly reduced, as shown in Figure 12b. Although volume shrinkage can be minimized by 

appropriately designing an embedded graphite plate, the flatness of the molded BPs is also critical to 

the stack assembly. Thus, in the future, the flatness of the molded BPs will be investigated. 

Figure 10. Location of air traps for improved designs of graphite plates: (a) D2 (134) and (b) D3 (158).
(The value in parentheses indicates the number of air traps.)

The simulated volume shrinkages of D2 and D3 are shown in Figure 11. Maximum shrinkages are
approximately 0.43 and 0.38 mm for D2 and D3, respectively. Compared with the original design (G3), a
relatively larger graphite plate significantly reduces the shrinkage of injected materials. The simulation
results of D3 show less volume shrinkage than those of D2. Because of the rib around the periphery of
the graphite plate in D3, both the thickness of the injected polymer material at the corners and volume
shrinkage are reduced.

Energies 2016, 9, 350 8 of 10 

 

  
(a) (b) 

Figure 10. Location of air traps for improved designs of graphite plates: (a) D2 (134) and (b) D3 (158). 

(The value in parentheses indicates the number of air traps.) 

The simulated volume shrinkages of D2 and D3 are shown in Figure 11. Maximum shrinkages 

are approximately 0.43 and 0.38 mm for D2 and D3, respectively. Compared with the original design 

(G3), a relatively larger graphite plate significantly reduces the shrinkage of injected materials. The 

simulation results of D3 show less volume shrinkage than those of D2. Because of the rib around the 

periphery of the graphite plate in D3, both the thickness of the injected polymer material at the 

corners and volume shrinkage are reduced. 

    
(a) (b) 

Figure 11. Volume shrinkage of injected materials for: (a) D2; and (b) D3. 

Figure 12 shows the integrally molded BPs with different embedded graphite plates. In Figure 

12a a BP with a relatively smaller graphite plate exhibits notable volume shrinkage at the four corners. 

When the graphite plate is replaced by a relatively larger one, volume shrinkage at the corners is 

significantly reduced, as shown in Figure 12b. Although volume shrinkage can be minimized by 

appropriately designing an embedded graphite plate, the flatness of the molded BPs is also critical to 

the stack assembly. Thus, in the future, the flatness of the molded BPs will be investigated. 
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Figure 12 shows the integrally molded BPs with different embedded graphite plates. In Figure 12a
a BP with a relatively smaller graphite plate exhibits notable volume shrinkage at the four corners.
When the graphite plate is replaced by a relatively larger one, volume shrinkage at the corners is
significantly reduced, as shown in Figure 12b. Although volume shrinkage can be minimized by
appropriately designing an embedded graphite plate, the flatness of the molded BPs is also critical to
the stack assembly. Thus, in the future, the flatness of the molded BPs will be investigated.
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approximately 0.4 mm at the corners. 

Acknowledgments: The authors gratefully thank the Bureau of Energy, Ministry of Economic Affairs, Taiwan, 

and the Institute of Nuclear Energy Research of Taiwan for the financial support for this study under Project No. 

104-D0115. 

Author Contributions: All authors read and approved the manuscript. Chih-Hsun Chang performed the 

simulation. Han-Wen Chou performed experiments and checked simulation results. Ning-Yih Hsu thoroughly 

reviewed literature and provided precious advice on the structure of this article. Yong-Song Chen provided the 

main idea of this work and prepared the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Rychcik, M.; Skyllas-Kazacos, M. Characteristics of a new all-vanadium redox flow battery. J. Power Sources 

1988, 22, 59–67. 

Figure 12. Pictures of integrally molded BPs for: (a) G3; and (b) D3.

4. Conclusions

BPs are key components of VRBs. To reduce the number of components and simplify the
assembling process, integrally molded BPs are designed and fabricated. The effects of the gate
position and injection parameters on BP formability were investigated by simulation using commercial
software Modex3D. The conclusions derived are as follows:

1. Gate position significantly affects air traps. Gates located at the central part of a flow field reduce
the number of air traps.

2. Maximum volume shrinkage occurs at the corners of a BP owing to the relatively thicker
injected material.

3. Volume shrinkage can be reduced using a large graphite plate with the maximum shrinkage of
approximately 0.4 mm at the corners.
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