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Abstract: Real-time power management in the presence of one or more reversible energy storage
systems is a current issue with hybrid electric vehicles (HEVs). To evaluate the potentials of rule-based
power management, optimization with respect to two conflicting objectives, fuel consumption and
state of charge (SoC) deviation, is considered in this contribution. A modular structure of power
management with decoupled offline and online parts is presented. The online part incorporates
look-up tables (LUTs) with parameters from the offline optimization part. This permits an inclusion
of more LUTs corresponding to different drive patterns. The goal of this contribution is to combine
the real-time applicability of rule-based power management and the multi-objective optimization
property of genetic algorithms in a single control strategy. Component aging problems are addressed
by suitable design. The influence of sizing is investigated. Finally, an experimental setup consisting of
components capable of realizing the dynamics of real powertrain components is realized and introduced.
A verification/plausibility assessment of modeled dynamics based on the literature is considered.
This newly-introduced concept represents a class of power management, which is easy to implement,
can tackle different objectives in real time, and adapt itself to unknown driver demands.

Keywords: rule-based power management; optimization; HEV

1. Introduction

Due to the growing concerns of the fuel crisis and increasing environmental degradation,
hybrid vehicles are being intensively researched. All-electric powertrains with a fuel
cell-battery-supercapacitor combination have been considered in [1–5]. In the presence of multiple
sources, the distribution of power while ensuring various objectives, such as fuel efficiency, battery
aging, etc., can be considered as a vital aspect in hybrid vehicles. Multiple sources can imply both
primary and secondary sources or storage elements. The design and application of different power
management optimizations are available in the literature. Of these methods, the extent of rule-based
methods and multi-objective optimization is given in [6] and briefly summarized in this contribution.
This contribution contains parts of the text from [6,7].

Rule-based strategies are generally designed based on heuristics, human expertise or mathematical
models and do not require prior knowledge of the drive cycle [8]. These strategies are less
complex than other types and can be implemented online and in real time. Their major
drawback is that they are not optimal with respect to desired vehicle performance, such as fuel
consumption minimization, etc. Several alternatives are available as detailed in [9]. Considering the
advantages of rule-based methods and optimal solutions offered by the alternatives, a combination
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of rule-based power management to optimization-based methods can be considered: in [10],
dynamic programming (DP) is used to understand the deficiency of rules; in [11], parameter
optimization using genetic algorithms (GA) is considered to determine the optimal control variables
for fixed parameters; using this as the baseline, equivalent consumption management strategy
(ECMS) and route-based strategies are developed; in [12], both GA and DP are used; in [13],
ECMS and DP are used, whereas in [14], a combination of rule-based power management
with the sophisticated Non-Dominated Sorting Genetic Algorithm II (NSGA II) is considered.
The use of multi-objective genetic algorithms, such as NSGA II, is advantageous due to the
conflicting nature of optimization goals often encountered in HEVs. In [14], for instance,
the two conflicting objectives of fuel consumption minimization and sizing are considered, whereas
in [15], the minimization of fuel consumption, as well as battery aging is an issue. Multi-objective
algorithms are generally offline implementable, and hence, their integration with online rule-based
power management requires decoupling of the offline and online parts. A simple technique described
in [9] as a time-invariant feedback controller consists of storing control algorithms in look-up tables
(LUTs). The control variable/variables are functions of current driving conditions (like power demand,
velocity) and state variables (like SoCs of storage elements). Thus, the advantages of rule-based
strategies, namely relatively simpler structure and low computational effort required, can be utilized
along with the multi-objective optimization property of offline algorithms. They can also be combined
with prediction and real-time control strategies to provide solutions where no pre-defined drive cycle
is given. From the concept of embedded-online optimization by using offline algorithms [16], it can be
concluded that the embedding of optimization results from a decoupled offline process to an online
power management controller is possible. Embedding of offline calculated parameters in the context
of rule-based power management has been discussed in [17,18].

Under real driving conditions for which no pre-defined drive cycle can be used, an adaption
of the power management strategy is important. Adaptive power management strategies without
using car navigation data are discussed in [19]. Two options are mentioned: driving condition
recognition based on the history of motion and driving condition prediction based on the history
of motion. For both options, the procedure is to prepare optimal databases offline and to match
the present ones to previously optimized past ones. The difference between the two options is that,
in the first option, optimization of the entire drive pattern is considered, whereas in the second
option, segment-wise optimization is carried out. Recognition of the present based on the past
is considered in the first option, whereas the present is matched to the past in the second option.
Moreover, in the first option, updating of rules to integrate new driving patterns is required at
regular intervals. In [20], an adaptive power management based on driving pattern recognition
is presented. Here, two separate offline processes are considered. In one process, given drive
cycles are used to generate driving patterns. These patterns are classified according to power,
such as low, medium and high power demand, and the resulting patterns are stored in look-up
tables (LUTs) for online implementation. In the other process, the same drive cycles are analyzed
for determining the optimal parameters that minimize fuel consumption. Next, control rules are
formulated for a sub-optimal rule-based controller. This controller can be implemented online.
In the online process, the classification of the driver velocity into patterns is carried out based on the
LUT values from one offline process. The corresponding control rule is determined based on the data
from the other offline process, which is optimized before.

Thus, rule-based strategies are online-implementable, real-time control schemes applicable
for hybrid electric vehicles. A combination with global optimization methods, such as dynamic
programming, multi-objective genetic algorithms, etc., to optimize various objectives is possible.
Individually optimizing the power management rules offline, such that the results from the
optimization are stored in look-up tables, can be used to tune controller parameters online.
The decoupling of the optimization process ensures the use of offline-applicable multi-objective
optimization techniques in online power management. Moreover, decoupling leads to a possibility of
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adapting the rule-based controller to real driving scenarios. This can be considered by integrating more
LUTs for different driving patterns. Thus, by evaluating the potentials and application prospects of
rule-based power management, the foundations for the development of an appropriate optimal power
management controller that takes into account multiple optimization objectives can be laid. From the
detailed literature review presented in [6] and briefly summarized in this contribution, it can be noted
that one generalized power management strategy is required that can deal with multiple objectives
online and in real time. The remaining open issue is to realize real-time optimization of power flows
such that desired powertrain operations can be achieved. Minimization of fuel consumption and
lifetime management of components are the main objectives to be considered. Moreover, the design of
a suitable structure to accommodate varying driving patterns is also a necessity. With respect to the
above-mentioned concerns, a suitable concept is developed in this contribution.

The HEV powertrain considered in this work is an all-electric powertrain. The configuration
comprises a fuel cell as the primary energy source and a battery-supercapacitor combination as the
storage unit. According to [1], the efficiency of all-electric hybrid vehicles depends on the capability
of the energy storage unit. The concept of hybrid storage systems (HESS) was previously proposed
in [21–23] and later elaborated in [24]. This concept can be used to overcome the problems faced by
batteries, that is low charge/discharge efficiency and short cycle life, by utilizing the properties of
a supercapacitor. This is possible due to the better power density of supercapacitors and the better
energy density of batteries. By combining the two, an improvement in overall performance can be
achieved, as the supercapacitor acts as a support to the batteries and is much more robust in handling
surge current. A combination of battery-supercapacitor leads to a significant improvement in fuel
economy [25]. The advantages of HESS are detailed in [1,2,24]. Based on the advantages of the
fuel cell-battery-supercapacitor hybrid powertrain as stated in [1,3] and utilizing the benefits of the
battery-supercapacitor combination, a three-source HEV is considered in this contribution. The optimal
utilization of each of these sources is a task of power management. The DC/DC converter plays
a central role in power management, and it serves two important purposes: to maintain a constant bus
voltage and to send desired current requests to the three sources as defined by the power management.
In spite of the benefits offered by multiple input DC/DC converters, such as reduced overall size,
weight, losses and cost, three single input DC/DC converters are considered in this contribution for
the sake of modeling simplicity. This is because the main objective is to develop an appropriate power
management concept that determines the optimal distribution of power between the sources.

Mathematical models of hybrid vehicle components are often required for detailed analysis of
powertrain performance and power management strategies. Simulation of these models is the first
step for realizing their behavior in experimental setups and real driving scenarios. For a given drive
cycle, the vehicle energy losses and its performance can be calculated backwards, as mentioned
in [9]. For an unknown velocity pattern, forward modeling becomes necessary, as introduced
in [26]. It is possible to combine a backward model with a forward model to measure the drivability
error or to model an entire vehicle in a forward manner to investigate real-time systems where
the drive cycle is not given. Depending on whether the HEV powertrain is forward or backward
modeled, the individual components have to be modeled accordingly. In [27], both quasi-static and
dynamic models are considered, where the reason for considering a dynamic model of the battery
is stated. Therefore, it is possible to consider quasi-static models of the inverter, motor and vehicle.
Components like batteries and supercapacitors, where the state-of-charge is an unknown result of
power management and optimization algorithms, need to be modeled dynamically. A fuel cell, on
the other hand, can be modeled based on experimentally-determined parameters, as detailed in [28].
Thus, instead of a complex dynamical model as developed in [28], a quasi-static model can be used
based on look-up table values of experimentally-determined parameters in [28]. A DC/DC converter,
which is an essential component in pure-electric powertrains, can be dynamically modeled like the
battery and supercapacitor.
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The paper is organized as follows: the topologies with HESS are briefly introduced followed by
the configuration chosen for this contribution; next, the modeling and sizing of powertrain components
is detailed followed by a verification of their dynamics based on the literature; next, the concept of
emulation is described followed by a possibility to realize powertrain dynamics with controllable
sources and sinks; in the next section, the developed power management optimization concept is
explained in detail. The operation of the different blocks and the interactions between them is described.
Finally, the simulation and emulation results are presented followed by a summary and conclusions.

2. Possible Topologies and Considered Configuration

The topologies resulting from hybridization of the storage unit are classified as passive,
semi-active and active hybrids [2], as shown in Figure 1. This classification is based on the
presence/absence/position of DC/DC converters. One of the three topologies, the parallel active
topology, is considered as the best option in [2] and has therefore been chosen in this work.
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Figure 1. Typical topologies in electrical powertrains: (a) passive; (b) parallel semi-active;
(c) capacitor semi-active; (d) battery semi-active; (e) series active; (f) parallel active (PM refers to
power management, supercap. refers to supercapacitor).

The considered HEV powertrain consists of three sources, namely fuel cell, battery and supercapacitor,
each accompanied by a DC/DC converter. This part is modeled in a forward manner. The vehicle
together with motor and AC/DC converter is modeled in a backward manner. The New European
Drive Cycle (NEDC) drive cycle is given as the input. The link between the forward and backward
parts is the power management controller. This controller checks the power demand and requests the
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power from sources by sending control signals to DC/DC converters. The considered configuration
is shown in Figure 2. The control output from the supervisory controller can be fed to the backward
part with the help of a driver model, which can be a simple PI-controller [29] or an imitation of a real
human driver [26]. As a first step, the driver model is not considered, but the difference between the
power demand from the backward part and the power available from the forward part is compared
to analyze the working of the supervisory controller. According to [9], the electrical coupling of the
quasi-static backward part and the dynamic forward part by a common bus is possible. The bus power
in that case will simply be the sum of all three output power from the three DC/DC converters, such
that the required or demanded power is always satisfied.
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Figure 2. Configuration of an HEV along with the power management optimization. NSGA II,
Non-Dominated Sorting Genetic Algorithm II.

3. Modeling and Sizing of Components

The drive cycle chosen in this work is the New European Drive Cycle (NEDC). It is fed to
a backward modeled powertrain comprised of the vehicular dynamics, an electric motor/generator
modeled according to [9,30] and an inverter according to [30]. The forward modeled powertrain is
comprised of a fuel cell with look-up tables (LUTs) from a validated model, dynamically-modeled
battery, supercapacitor and DC/DC converters. In this contribution, specific modeling approaches
are chosen from the literature, where the models have been experimentally validated. Since the focus
is on power management optimization, a detailed analysis of different experiment-based modeling
approaches is not considered. However, the correctness of these easy-to-realize models is verified by
comparing the dynamic behaviors of real components, as reported in the literature. Here, verification
is used to state that the results are in accordance with literature, whereas validation is used to define
the correctness of those results by related experiments.
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3.1. Fuel Cell

Fuel cells are electrochemical devices that convert chemical energy to electrical energy.
Unlike internal combustion engines, they deliver pure electrical energy. Fuel cells are more efficient as
compared to internal combustion engines [31]. The actual energy conversion efficiency in a fuel cell is
about 65%, whereas in an internal combustion engine, it is about 30%–35% [31]. Moreover, by utilizing
hydrogen as the energy source, the dependency on fossil fuels can be reduced. The by-products of the
electrochemical reaction are generally water and electrical energy, unlike the pollutants released by
fossil fuel use.

In a fuel cell, the two electrodes, anode and cathode, are separated by an electrolyte that conducts
the free electrons generated as a result of chemical process. The electrons transferred to the cathode side
can be used to conduct electricity. The maximum voltage over the anode and cathode are calculated
in [28] according to Gibbs free energy:

∆G f = G f ,products − G f ,reactants, ∆G = 237.2 KJ/mole (1)

The maximum voltage of an individual cell is given by:

v0 =
∆G f

NF
, v0 = 1.2999 volts (2)

where N denotes the Avogadro number and F denotes the Faraday constant. The typical relation
between individual cell voltage v f c and current density i is given in [9] along with the dependence
of v f c on irreversible losses, called polarizations. In [28], a real fuel cell from the Ballard Nexa power
module is considered, which has a rated output of 1.2 kW at 26 V and 46 A and consumes 18.5 SLPM
(standard L/min) of hydrogen. The output voltage varies between 22 and 50 V. The fuel cell system
considered is firstly mentioned in [28]; modeling details and fundamentals are given.

Based on the results obtained in [28], a fuel cell model based on look-up tables (LUTs) has been
considered in this work. The used LUTs represent the fuel cell voltage-current, and efficiency-power
relations are shown in Figures 3 and 4, respectively.

To determine the size of the fuel cell in the considered configuration, the total energy demand
corresponding to the given drive cycle is calculated as:

Etotal = 3821 kJ (3)

resulting in an average power of Pavg, calculated over ttotal = 1200 s as follows:

Pavg =
Etotal
ttotal

= 3.184 kW (4)
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1

0.8

0.6

0.4

0.2

0

LUT values

E
ffi

ci
e
n
c
y

Power (W)

1

0.8

0.6

0.4

0.2

0
0           100         200         300         400         500 0           100            200          300           400          500

Figure 4. Extrapolation of power-efficiency characteristics.

The fuel cell, as a primary energy source, should be able to supply the total required
power as demanded by the given drive cycle. Considering the losses of the DC/DC converter (with
µDCDC,nor = 0.98% approximately), together with the losses of the fuel cell (with an optimum efficiency
of µFC,opt = 0.92%), the average fuel cell power PFC,avg can be calculated as:

PFC,avg = Pavg ·
1

µDCDC,nor
· 1

µFC,opt
= 3.515 kW (5)

The power management strategy must consider both operating the fuel cell in its most efficient
region, as well as the peak loads of the power demand. The sizing of the fuel cell can done by changing
the factor n f c.

The long time constant limits the performance of fuel cells in HEVs [1]. According to [1],
the efficiency and range of HEVs depend on the capability of the energy storage unit. A possible
option is to combine a fuel cell with a battery, but due to the disadvantages posed by batteries,
supercapacitors can be used as an option [3]. According to [3], the simultaneous use of batteries
and supercapacitors can lead to a promising solution. Therefore, both batteries and supercapacitors
are considered in this work in addition to fuel cells to overcome the disadvantages of fuel cells
(time constants, aging, etc.).
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3.2. Battery

Batteries are electrochemical storage components where energy that is chemically bound is
converted to electrical energy, just like the fuel cells; in batteries, the process is reversible. Chemical energy
is converted to electrical energy and vice versa. According to [9], a battery can be modeled as
a large capacitor. The chemical processes in the electrolyte can be represented by an internal resistance.
According to [32], to ensure safe and reliable battery operation, battery management (or power
management) systems are important. For this purpose, monitoring of temperature, voltages and
currents is required, and an estimation of states, like SoC, is needed. Commonly-used models are
electrochemical models and equivalent circuit models. A comparison and evaluation of seven battery
models have been presented in [32]. As electrochemical models are complex and deal with a large
number of unknown parameters, only equivalent circuit models are considered in this contribution.
As detailed in [32], some of the equivalent circuit models are the Thevenin, Rint and DP models.
The disadvantage is that the relation between internal resistance and current is not considered.
In reality, internal resistance is related to non-linear processes for which electrochemical models
are required [9]. In [33], the non-linearity of battery resistance is investigated, and the dependency of
impedance on factors, such as SoC, is studied. According to [9], an alternative solution is to develop
black box models using experimental data derived from constant current discharge tests. Fitting techniques
can then be used to obtain input-output relations. Developing accurate methods to estimate states, like
SoC, is a challenge. A comparison of different approaches to estimate battery states is given in [32].
The approach called ‘Coulomb counting’ is briefly described in [9] along with quasi-static and dynamic
modeling of batteries. The quasi-static model is based on the Rint model and the dynamic model based
on the Thevenin model.

In this work, a Li-ion battery is chosen, and the battery is modeled using a dynamic modeling
approach according to [34,35]. With the help of dynamic models, the transient behavior of the battery
can be described [9]. Inductive and capacitive effects are taken into account, and a model-based
determination of SoC is possible [9]. The circuit diagram is shown in Figure 5. In one circuit,
the overall capacity of the battery is represented, while in the other, the internal resistance and
other dynamic effects. The SoC of the battery is determined from the total capacity Ccap and the battery
current Ibat.

Ccap Ibatt

Usoc Rs Rts Rtl

Uoc Cts Ctl Ubat+
-

Figure 5. Circuit diagram of the battery model.

The voltage source linking the two circuits, represents the non-linear relation between the battery
state of charge and open circuit voltage Uoc. This non-linear relation between SoC and Uoc using
33 cells can be represented by a LUT, as shown in Figure 6.
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Figure 6. Relation between SoC and voltage.

According to [34,35], by solving the equation for the circuit, state space models can be generated:

ẋ =

0 0 0
0 −(RtsCts)−1 0
0 0 −(RtlCtl)

−1

 x +

−C−1
cap

−C−1
ts

−C−1
tl

u (6)

with,

x =

Usoc

Uts

Utl

 , u = Ibat (7)

y = Ubat = g(Usoc) +Uts +Utl − Rs · Ibat (8)

where battery current Ibat is the input and terminal voltage Ubat is the output.
In [34], first an initial model is built with parameters based on the literature. Then, the Uoc-SoC

relationship is derived from experiments on a real battery; then a refined model is built based on
the Uoc-SoC relationship; and finally, the resistances and capacitances, namely Rts, Cts, Rtl, Ctl and
Rs, are estimated. The experimental setup with the real battery connected to programmable load is
given in [34]. After a constant resistance discharge test, the SoC over the entire test is calculated by
integrating the current as:

Usoc = −
1

Ccap ·
∫

Ibat
⇒ U̇soc = −

Ibat
Ccap

, (9)

where normalized values of Usoc from 0–1 volts correspond to SoC values between 0% and 100%.
The relationship between Uoc and Usoc or SoC is given by:

Uoc = g(Usoc) (10)

and can be established with the help of a LUT [36], as shown in Figure 6.
The specifications of the real Li-ion battery (used in [34]) as available from the manufacturers is:

maximum cell voltage as 4.2 V and capacity as 60 Ah. For a fully-charged battery, Usoc should be 1 V,
but as 4.09 V is measured in [34] instead of the specified value by the manufacturer, that is 4.2, so
instead of 1 V, 0.9 V is calibrated for full charge.

Estimation of the values of Rts, Cts, Rtl, Ctl and Rs are given in [34], where constant current
discharge tests are carried out. The load is switched between 3.6 A and 0 A by the programmable
sink. The battery is discharged over nine cycles (constant current followed by rest), the beginning
of each cycle depending on when a specific Usoc value is reached. The test data are analyzed for
the discharge and rest phases leading to the estimation of the resistances and capacitances. In [34],
this is done using the curve fitting toolbox. The parameters are plotted as a function of SoC. These
variations of resistances and capacitances with SoC can either be implemented as LUTs or assumed
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as constants (averaged values over nine discharge cycles). The numbers are assumed as constants to
avoid unnecessary model complexity in this contribution.

For the determination of the battery size, the ability of the battery to supply the maximum peak
of power can be considered. The maximum energy to be stored is given for the corresponding time
period of the assumed drive cycle as:

E(t0 = 820s)− E(t1 = 1144s) = 3.1 MJ (11)

with a factor k = 2, which takes into account the losses while the battery is discharging and charging.
The maximum energy to be stored can be considered as:

Ebat = 6.2 MJ (12)

The model design parameters and capacity of the battery can be adjusted according to this value.
In spite of the design considered, the actual maximum power delivered by the battery will be defined
by the power management strategy. The power management will keep the battery operation within
the limits by using the second storage element, namely the supercapacitor. It should be noted that the
battery model is not designed based on the charging/discharging limits of a real battery. A real battery
is equipped with a battery management system that keeps the SoC within operation limits (15%–95%).
In this work, this feature is considered to be a task of power management.

3.3. Supercapacitor

Supercapacitors (also known as ultracapacitors or double-layer capacitors) are capable of storing
a large amount of energy as compared to conventional capacitors. Their specific power is much higher
than batteries, but the specific energy is lower. Due to their higher power density, they can be used
in hybrid powertrains to realize fast transient power demands. Here, the energy is stored as a result
of charge separation. The charge separation occurs between the layers that separate the electrolyte
and the electrodes. According to [37], the difference in the way energy is stored in the battery and in
the supercapacitor is that, in the battery, an indirect storage via an electrochemical process is used.
In a supercapacitor, a direct storage of charge as a result of electrostatic process occurs. The difference
in the discharge curves of the battery and supercapacitor is given in [37].

The supercapacitor model considered in this work is based on the models used in [37,38].
As shown in Figure 7, the main capacitance CSC is connected in parallel to a resistance R2, which
represents the self-discharge of supercapacitors. The RCnetwork is connected to another RC network
consisting of capacitance Cp and resistance Rp. The charge/discharge losses are represented by
the resistance R1, and the resistance used for protecting the supercapacitor against overcharge is
represented by R3. Considering that the switch is open,

ISC = Inorm (13)

and,
USC = U1 +Up +U2 (14)

where,
U1 = R1 · Inorm (15)
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Rp Cp

R2 Csc

R1R3

I3 IscInorm

Usc

Gate

Figure 7. Circuit diagram of the supercapacitor model.

For the RC network, the following equations can be derived:

U̇p =
Inorm

Cp
−

Up

Rp ·Cp
(16)

U̇2 =
Inorm

CSC
− U2

R2 ·CSC
(17)

From Equations (14)–(17), the following state space equations:

ẋ =

[
−(RpCp)−1 0

0 −(R2CSC)
−1

]
x +

[
C−1

p
C−1

SC

]
u (18)

where,

x =

[
Up

U2

]
, u = Inorm (19)

y = USC = R1 · Inorm +Up +U2 (20)

can be derived.
The extraction of model parameters is done based on a real supercapacitor model [37]. The data

available from manufacturers are: nominal voltage: 14 V, nominal capacity: 350 F; mass: 24 kg. In [37],
constant current tests are carried out with the real supercapacitor by connecting it to a programmable load.
The supercapacitor is charged at 10 A until the voltage reaches 11 V, then the current is cut off for
about 10 min, and a constant current discharge phase follows at −20 A. For the calculation of CSC, the
time period when the voltage rise from 2 V–9 V is chosen, namely ∆t = 225 s − 46 s = 209 s. Therefore,

CSC =
∆Q
∆U

(21)

and:
Q =

∫
i(t)dt (22)

where, ∆t = 209 s and ∆U = 9 V − 2 V = 7 V,

Q = 10 A ∗ 209 s = 2090 C (23)

and,

CSC =
2090

7
≈ 300 F (24)
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The value of capacitance Cp is chosen as one-thirteenth of CSC.
To estimate R1, the phase right after the charge current is cut off is taken into account. This corresponds

to [37] as:

R1 =
∆U
∆i
≈ 2 mΩ (25)

The resistance R2 is estimated as 200 Ω. To estimate R3, the voltage drop after turning off of the
charging current is considered as:

R3 =
∆t

− ln(U1
U0
) ·CSC

R3 = 10 Ω (26)

The parameters chosen to model the supercapacitor in this work are taken from [37]. The sizing
of the supercapacitor is determined by arranging the capacitors in series and parallel. The nominal
voltage of the supercapacitor Vn = 14 V is not enough to maintain a constant bus voltage of 500 V.
It can be achieved by a series arrangement of supercapacitors as follows:

Utotal =
seriesSC

∑
n=0

USC,n (27)

where seriesSC is the number of capacitors arranged in series. Thus, the total capacitance is reduced to:

1
Ctotal

=
seriesSC

∑
n=0

1
USC,n

(28)

If seriesSC is chosen as 36, then the maximum voltage Vn,total will be:

Vn,total = Vn · seriesSC = 504 V (29)

Similarly, the parallel arrangement of capacitors causes an increase in the total capacitance as:

Ctotal =
parallelSC

∑
n=0

CSC,n (30)

where parallelSC is the number of capacitors arranged in parallel. Thus, the storage capacity of the
supercapacitor can be adjusted by changing the configuration. Deciding on the battery dimensions, here a
safety factor of k = 2 is considered, so the maximum energy to be stored is given by:

ESC = 6.2 MJ (31)

To achieve this, a parallel configuration of supercapacitors such that parallelSC = 4 is necessary.
Once again, this is to be taken into consideration by the power management strategy.

3.4. DC/DC Converter

The purpose of the DC/DC converter in this work is to maintain a constant output voltage despite
varying input voltage. It is possible to control the output voltage in order to track a reference, but this
makes the DC/DC converter more complex and expensive. The converter should be dynamic enough
to respond to the changes in demanded power and make the required power available on the bus.
Buck, boost and buck-boost DC/DC converters are the commonly-known types. DC/DC converters
can be mono- or bi-directional. Bi-directional DC/DC converters can transfer power to and from
the source, thus allowing the regenerated energy to be saved. In this work, two storage elements
are considered: battery and supercapacitor. The DC/DC converter model chosen is a CUK-DC/DC
converter with buck-boost behavior, in accordance with the model already described in [28]. The
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circuit diagram of the DC/DC converter is shown in Figure 8. The two states of the DC/DC converter
can be given as:

1. Gate 0 is closed and Gate 1 open⇒ u0 = 0 ; u1 = 1 ,
2. Gate 0 is open and Gate 1 closed⇒ u0 = 1 ; u1 = 2 .

L1 R1

Uout
Gate 0 C2

U0 = 0
Gate 1
U0 = 1

Uin

C1 L2 R2

3 2 1

IL1 IL2 I0

IC2

Figure 8. Circuit diagram of the DC/DC converter.

The duty cycle is defined as:

D =
ton

to f f
(32)

From the two states, two equations can be derived as follows:

U̇C1 =
IC1

C1
; U̇C2 =

IC2

C2
(33)

and:
UL1 = İL1 · L1 ; UL2 = İL2 · L2 (34)

For the first state where u0 = 0 ; u1 = 1,

−Uin +UL1 +UR1 = 0 (35)

and:
İL1 = −R1IL1

L1
+

Uin
L1

(36)

For the left loop and right Loops 3 and 2,

UC1 +UL2 +UR2 +UC2 = 0 (37)

and:
İL2 = −UC1

L2
− UC2

L2
− R2IL2

L2
(38)

where,
IC1 = IC2 = IL2 (39)

From Equations (33) and (35)–(39), the model in state space form:

ẋ =


−R1

L1
0 0 0

0 −R2
L2
− 1

L2
− 1

L2

0 1
C1

0 0
0 1

C2
0 0


︸ ︷︷ ︸

A1

x +


1
L1

0
0 0
0 0
0 − 1

C2

u (40)
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with:

x =


IL1

IL2

UCl
UC2

 , u =

[
Uin
Iout

]
, y = x (41)

can be derived. The input current IL1 is the current signal sent from power management to the DC/DC
converter, and this is the current required to be drawn from the sources. The capacitor voltage UC2 is
the output voltage, as the bus voltage is to be held constant.

For the second state where u0 = 1 ; u1 = 2, the state space model:

ẋ =


−R1

L1
0 − 1

L1
0

0 −R2
L2

0 − 1
L2

1
C1

0 0 0
0 1

C2
0 0


︸ ︷︷ ︸

A2

x +


1
L1

0
0 0
0 0
0 − 1

C2

u (42)

with:

x =


IL1

IL2

UCl
UC2

 , u =

[
Uin
Iout

]
, y = x (43)

can be derived.
According to [28], the coupling between A1 and A2 can be expressed by the duty cycle D as:

Atot = A2 + D · (A1 −A2) (44)

For the coupled system, the non-linear state-space equations,

ẋ =


−R1

L1
0 − 1

L1
0

0 −R2
L2

0 − 1
L2

1
C1

0 0 0
0 1

C2
0 0


︸ ︷︷ ︸

Alin

x +


0 0 D

L1
0

0 0 − 1
L2

0
− D

C1
D
C1

0 0
0 0 0 0


︸ ︷︷ ︸

Anonlin

x +


1
L1

0
0 0
0 0
0 − 1

C2

u (45)

with:

x =


IL1

IL2

UCl
UC2

 , u =

[
Uin
Iout

]
, y = x (46)

can be derived.
Thus, the state space form of DC/DC converter model has a linear system matrix Alin and a non-linear

system matrix Anonlin, which is dependent on the duty cycle D. According to [39], the DC/DC converter
can be internally controlled by a PI-controller with bus voltage as the reference input, and externally,
it can be controlled by the power management controller that sends the required current output signal
to the converter. The switching losses of the DC/DC converter can be calculated based on a LUT,
which is based on validated results from [40]. From this LUT, the energy conversion efficiency µDC/DC
can be calculated. Using:

Pout = PDC/DC · µDC/DC = Iout ·UC2 · µDC/DC (47)
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the output power of the converter Pout can be determined.

4. Model Verification Based on Literature Results

To determine the accuracy of the concepts and relations represented by the models, verification is necessary.
The importance of laboratory-based tests before real road tests is declared in [41]. A possibility to
improve modeling techniques by using data from laboratory tests or experimental papers is also stated.
In this contribution, verification is based on a comparison with validated models from the literature.

4.1. Verification of the Battery Model

To verify the dynamic behavior of the simulated model, the results are compared to
experimentally-validated models of [34–36,42]. The battery is first fully charged then fully discharged
in a cyclic manner. A constant current of Ibat = 25 A is applied till the next SoC level (SoCbat = 10%, 20%, ... ,
90%) is reached. At the next SoC level, current is turned off, then turned on again after a 25-min pause.
The voltage variation resulting from the SoC-Usoc relationship (Figure 6) is similar to that discussed in
the literature. In Figure 9, the voltage variation while the battery is charging is shown. At the moment
when the current is turned off, the resulting voltage curve exhibits an initial peak followed by a gradual
logarithmic decay. Similarly, when the current is turned on again, a short dip in voltage is followed by
a gradual increase. As shown in Figure 9, this behavior is inverted during the discharging process.
In Figure 10, the SoC variation is shown. The SoC and energy saved in the battery increase continuously
with each charge cycle. In reality, the energy supplied to the battery is not always the same as the
energy that the battery is capable of supplying. The supplied energy or the power required to charge
the battery depends on the battery voltage. During the charge-discharge cycles, a part of this energy is
lost in irreversible chemical processes.
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Figure 9. Battery voltage variation during charging and discharging.
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Figure 10. Battery SoC and energy during charging.

4.2. Verification of the Supercapacitor Model

To verify the simulation model, tests according to [37] are carried out. First, the supercapacitor
is charged with a constant current of 10 A till USC is almost equal to 11 V; then, current is turned
off, and after an 8-min pause, the supercapacitor is completely discharged with −20 A. As shown in
Figure 11, the voltage of the supercapacitor increases till the current is turned off. At the moment
when the current is turned off, a small peak is followed by a gradual decay of voltage. This is due to
the self-discharging tendency of supercapacitors. By comparing the response of the supercapacitor
while charging and discharging (Figure 11) with the experimentally-determined results of [37,43],
the correctness of modeling can be confirmed.
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Figure 11. Capacitor voltage during charging and discharging.

4.3. Verification of the DC/DC Converter Model

To verify the DC/DC converter model, a current Iout = 25 A is used. The task of the DC/DC
converter here is to maintain constant bus voltage. Thus, the load demand to be fulfilled by the source
connected to the converter is 12.5 kW. The source connected to the converter during this test is a battery.
After 5 s, the current is turned off, and a 2-s pause follows. Then, Iout is changed to −25 A, so as to
charge the battery with 12.5 kW. The result of this test can be seen in Figure 12. Due to the inverted
bust-boost behavior, the voltage is negative. If it is multiplied by negative values of Iout, which will
be the output from the power management and reference input to the converter, the bus voltage can
be made positive. As shown in Figure 12, the relatively short oscillatory behavior at the switching
moments die down fast due to the control action of the PI-controller in the DC/DC converter. The
response to the load demand is the input current to the DC/DC current from the battery. It shows
a damped proportional behavior, as shown in Figure 13. A short oscillation at the beginning of the
simulation can be detected, but the CUK-DC/DC converter is capable of keeping the ripples as small as
possible [44] to avoid extreme current transients. Thus, from the above-mentioned tests, in combination
with the validated results from [40], the dynamics of the bi-directional DC/DC converter is verified.
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5. Powertrain Configuration with Emulated Components

Although modeling and simulation are useful for gaining detailed understanding of system
dynamics and behavior, experiments are important for investigating the applicability by the validation
of these models. According to [45], validation refers to the precision at which the model represents the
physical world, whereas validation experiments are performed to produce data for model validation.
For instance, in [41], experiments are performed with the help of a 1:1 scale laboratory-based dynamic
setup; in [46], first, experiments are conducted on individual units in stationary conditions to evaluate
their behavior at constant electric parameters, then their performance under dynamic operations
with real driving cycles is evaluated. Instead of performing experiments with real powertrain
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components, in this contribution, a comparison with experimentally-determined parameters from
real components is considered along with a brief introduction of a concept known as emulation.
To carry out the power management and control of an analog subsystem integrated with a digital
subsystem [47], the emulation of component dynamics has already been discussed in the literature.
According to [16], emulation is based on controllable powertrain components, which can be used as a
replacement for real components. This solves the problems posed by classical setups, namely high cost,
deterioration/damage risks, large energy and fuel consumption, etc.

Emulation of fuel cell dynamics using a programmable power source [48,49] and a power
electronic converter [50–52] has been discussed. Similarly, emulation of a supercapacitor [48] and a
battery [47,53] using a programmable power source-sink combination has been discussed. In [53],
an automotive power net test-bench is mentioned. Here, emulation is based on the fact that physical
models can be run on a real-time system and the current calculated from the model set by electronic
loads. The test-bench proposed in [53] can be used not only for batteries and supercapacitors, but
also systems that behave as controllable source-sink combinations, such as bi-directional DC/DC
converters. Load emulation using a dynamically-controllable source-sink [54] to ensure bi-directional
power exchange can also be considered. A fuel cell-supercapacitor-based hardware-in-the-loop (HiL)
test rig was built [28] at the Chair of Dynamics and Control (University of Duisburg-Essen). It was
modified and generalized for the emulation of different powertrains, for example hybrid hydraulic
powertrains and wind energy conversion systems [55,56], along with hybrid electric powertrains.
In this work, a further generalization is considered by replacing all of the real powertrain components
by emulated components. The experimental setup is shown in Figure 2. On the left side is the model
layer comprising the powertrain configuration. This simulation model of an HEV along with the
supervisory controller are compiled into a real-time interface that enables communication with the
emulation layer. On the right side is the emulation layer comprising the real hardware components.
Here, the simulated models of the fuel cell and DC/DC converter can be considered as a single unit,
and the corresponding hardware component- controllable power source q1 can be used. Similarly, for
the battery and supercapacitor, source-sink combination q2− s2 and source-sink combination q3− s3
can be used, respectively. Corresponding to the backward simulated part, the power demand or load
can be emulated by another source-sink combination q4− s4. The charging dynamics of the battery
and supercapacitor are in accordance with the results given in [16].

For testing the capability of the source-sink combinations in replicating powertrain dynamics,
an example for emulating only the backward part of the HEV model can be considered. The simulated
behavior and emulated power demand are compared. The performed test results are explained in
Figure 14. The source-sink combination q4− s4 is checked for the emulation of both positive and
negative power demand. Here, as demand, the load current from the backward part of the powertrain
is used. Its value is positive when the HEV is accelerating or driving at constant velocity and negative
when the HEV is braking. During the positive half, the power source q is expected to supply the
demand to the power sink s4. A constant current value is set at q, and the simulated demand is realized
by s4 as motor action. During the negative half, the generator action is realized by q4 as it recuperates
energy back to the sink. Here, a constant current is set at the sink.

Demand

Iq4

Is4

Supply

Brake

I = Constantq

I = Simulateds4

value

I = Simulatedq4 I = Constants

value
Source 
q4

Sink 
s4
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s

Source
q

0

0

0
t

Figure 14. Emulation of motor/generator behavior.
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The result of this test is shown in Figure 15. It can be noted from the figure that the q4− s4
combination is capable of emulating the motor/generator dynamics. During the positive half of the
load cycle, current is drawn by the sink s4 (motor mode), and in the negative half of the load cycle,
power is supplied by the source q4 (generator mode).
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Figure 15. Simulated and experimentally-emulated load current.

This initial test is important to check the ability of power source-sink combinations in emulating
not just the motor/generator dynamics, but also the battery and supercapacitor. The constant current
supplied by q in the positive half will be replaced by supply from each/either of the sources, as
defined by power management. The constant current demanded by the sink in the negative half will
be replaced by the demand from each/either of the storage components.

6. Power Management and Optimization

As the vehicle considered is a hybrid vehicle and involves multiple sources of power, a supervisory
power management control strategy is needed to determine the power flows along single power flow
paths to satisfy various objectives while satisfying the power demand at the same time [9].

The developed approach in this work comprises a supervisory controller based on rules
designed for a particular drive cycle. The optimization of controller parameters is carried out as
a decoupled offline process, the results from which are later embedded online. This power management
optimization is implemented on the considered powertrain configuration with three power sources.
The developed concept is depicted in Figure 2. The values of battery and supercapacitor SoCs from
the forward part of the powertrain, along with the power demand values from the backward part of
the powertrain are sent to the mode selection block of the supervisory controller. This block contains
IF-THEN rules based on the SoC values and demand. The rule/mode selected corresponds to certain
values in the look-up table (LUT) block. These values in the look-up table are used to tune the power
management (PM) controller. The controller output is in the form of desired DC/DC converter currents.
The LUT block of the supervisory controller contains optimized parameters, as shown in Figure 2.
These optimized parameters are generated as a result of a separate offline process, where a multi-objective
genetic algorithm-NSGA II is used. The detailed working of each of the supervisory controller blocks [7]
is briefly described in the sequel.

The objective of the new developed concept is to tackle multiple facets of HEV control at the
same time. A judicious distribution of power between the three sources to ensure proper utilization of
each source is considered. This is done by a suitable choice of optimization parameters that ensure that:
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• the required load demand is satisfied at all times,
• the rate of change of the battery and fuel cell current are limited to minimize aging effects,
• the battery current is bound, and the remaining, more dynamic peaks are taken over by

the supercapacitor,
• the fuel cell is operated near its optimal range,
• the battery and supercapacitor are never fully charged nor fully discharged,
• the fuel cell delivers maximum power when the SoCs of both the battery and supercapacitor are

too low, and
• the bus voltage is held constant to a reference value.

The goal is to integrate optimized parameters that tune the PM controller such that the above
criteria are fulfilled. This approach is designed for an assumed drive cycle. If the drive cycle is
changed, the designing of modes has to be done accordingly, and new optimal controller parameters
will be obtained. The advantage of the developed approach lies in its adaptability. Adaptability
here includes the capability to modify/extend it to cases where the drive cycle is not known. The
decoupling of the optimization process enables the use of sophisticated algorithms, like multi-objective,
global techniques. Only the results are embedded online, thereby reducing the computational effort.
The controller takes into account the advantage of the battery-supercapacitor combination and allows
the supercapacitor to take over the more dynamic variations in power, thereby extending battery life.

6.1. Details of the Supervisory Controller

This section describes the design and working details of the supervisory controller block in
Figure 2. In a previous publication [7], the basic working principles of the supervisory controller blocks
are explained. A possibility to optimize boundaries and initial conditions is not discussed. In this
contribution, optimization of controller parameters along with boundaries and initial conditions
is considered. Boundaries refer to the maximum and minimum SoC limits of the battery and
supercapacitor, whereas initial conditions refer to the initial SoC levels of the battery and supercapacitor.
The role of each parameter in power management and the reasons for optimizing them are also
discussed in this contribution. Further details are given in [57]. The hierarchical control concept
developed in this work consists of three blocks, as shown in Figure 2: the mode selection block, the
look-up table (LUT) block and the power management (PM) controller block. The load is a predefined
drive cycle from which three different driving modes can be defined: acceleration and constant
velocity (positive load current direction), deceleration (negative load current direction) and standstill
(zero load current).

6.1.1. Mode Selection Block

The mode selection block takes three inputs from the powertrain model, as shown in Figure 16.
The first input is the load current direction Iboard for the purpose of distinguishing between the
three different driving modes, namely acceleration and constant velocity, deceleration and standstill.
The second and third inputs are the battery and supercapacitor SoCs (SoCb and SoCsc) to decide when
the battery/supercapacitor or both the battery and supercapacitor have to be charged/discharged and
also when the fuel cell needs to provide maximum power. The output of the mode selection denotes
a specific value. For example, when the vehicle is accelerating and both the battery and supercapacitor
SoCs have fallen below a certain pre-defined minimum value, the fuel cell is expected to provide the
maximum power, so as to satisfy the power demand and also to charge the storage elements. This
corresponds to the first case in the mode selection block, and the corresponding value one is sent to the
look-up table (LUT) block. When the vehicle velocity is positive, while charging and discharging the
battery and supercapacitor, boundary values of maximum and minimum SoC are defined as Bmax,Bmin
and SCmax,SCmin. There is a possibility to determine the optimal boundary values, and therefore, these
parameters can also be considered for the optimization process. When the vehicle is in deceleration
mode and if the fuel cell still continues to provide power, then the excess power is used to charge the
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supercapacitor. The supercapacitor is given a priority here, as according to [58], the dynamics of the
powertrain depend mostly on the more dynamic element. In that case, the lower and upper optimal
SoC limit of the supercapacitor (SoCscopt) for the case of deceleration and standstill must be determined.
If after mode standstill, the HEV needs to accelerate immediately, then the highest possible reserve
should be available from the storage system. If the HEV needs to brake soon after standstill, then the
upper limit of the supercapacitor SoC needs to be kept in mind. Similarly, the initial battery and
supercapacitor SoC values can also be considered during the optimization process. The related relations
are expressed by parameters according to the algorithms graphically expressed in Figure 16.
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Figure 16. Details of the mode selection block. Fuel cell, battery, and supercapacitor are represented by
FC, SC, and B respectively. Charging is defined by chrg. and optimal by opt.

6.1.2. Look-Up Table Block

This block consists of four look-up tables for the mode dependent controller parameters: fuel cell
current input, power split between the battery and supercapacitor, maximum battery current and
minimum battery current. There are LUTs for mode independent parameters, that is boundaries and
initial conditions. These parameters can be optimized by specifying the boundaries of variation.
The outputs from this block are: the reference fuel cell current depending on its optimal working
current value and maximum allowed value given by IFCin; the power sharing between the battery
and supercapacitor decided by Powersplit; the battery current, which is limited by IBat,max, IBat,min; and
the dynamics of the fuel cell and battery, which are restricted by RatelimitFC, RatelimitBat. Thus, the
aging problems faced by batteries and fuel cells are minimized by the choice of parameters. These
parameters correspond to optimal fuel consumption and are pre-loaded as a result of a separate
offline process. As shown in Figure 17, the input to the LUT block from the mode selection block is a
number, and it denotes a particular row in each of the four LUTs. For example, when the input is one,
the corresponding values of one from all of the LUTs are sent to the PM controller.



Energies 2016, 9, 439 22 of 33

Ifc_in

Ibmax

Ibmin

Output mode
(1 to 9)

Desired FC current Max. batt. current

Min. batt. current Power split

Power split

Mode1

Mode9

Mode2

Value1

Value9

Value2

........... ...........

Mode1

Mode9

Mode2

Value1

Value9

Value2

........... ...........

Mode1

Mode9

Mode2

Value1

Value9

Value2

........... ...........

Mode1

Mode9

Mode2

Value1

Value9

Value2

........... ...........

Ratelimit FC Ratelimit batt.

Value Value

Ratelim FC

Ratelim batt

Figure 17. Details of the look-up table block.

6.1.3. PM Controller Block

Once the optimal values of I f cin, Powersplit, IBat,max, IBat,min, RatelimitFC and RatelimitBat have
been pre-loaded in the LUT block, they can be used for tuning the PM controller online. As
detailed in Figure 18, the fuel cell current I f cin is restricted by a rate limiter before sending it to
the DC/DC converter as I f c. The rate limiter is used to limit the first derivative (rate) of the signal
passing through it, such that the output does not change faster than a specified limit [59]. The load
current Iboard is divided into fuel cell current I f c and the difference Idi f f . Here, Idi f f is multiplied
by the power split value from the LUT. This pre-optimized value of power split influences the
charging/discharging dynamics of the battery and supercapacitor. An example of the influence of
power split values on the distribution of power between the battery and supercapacitor is given
in Figure 19. Here, values between zero and one denote power sharing between the battery and
supercapacitor to satisfy the demand. Similarly, values above one and below zero can be used
to indicate power flow from the battery to the supercapacitor and vice versa. A suitable choice of
power-split values can be made to accommodate all of the possible charging and discharging options
of the two storage elements. The actual value of the multiplied variables Idi f f ∗ Powersplit is sent to a
rate limiter that determines the rising and falling slopes of the current. The output of the rate limiter
is sent to a dynamic saturation block that determines the upper and lower limits based on battery
minimum and maximum current values (Ibmin and Ibmax) from the LUT. Both rate limiter and dynamic
saturation are time-dependent components. The output of the saturation block is the battery current Ib,
as shown by the green dotted region in Figure 19, and is sent as the DC/DC converter output.
This battery current subtracted from Idi f f gives the current that needs to be supplied by the
supercapacitor, as shown by the blue dotted region in Figure 19. This is the dynamic part of the current,
which needs to be supplied by the supercapacitor, which possesses much higher charging/discharging
efficiency than the battery. The outputs from this block, that is the desired currents to be drawn from
the three sources, are sent to the DC/DC converters, as shown in Figure 2. The dynamic behavior of
the DC/DC converter can be described by:

x =


IL1

IL2

UCl
UC2

 , u =

[
Uin
Iout

]
, y = x (48)
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where currents over inductors are denoted by IL1 and IL2 and voltages over capacitances by UCl and UC2.
The inputs to the system are the desired current from PM controller Iout and voltage from the fuel cell,
battery or supercapacitor Uin. The capacitor voltage UC2 denotes the bus voltage, which needs to be
held constant, and IL1 the inductor current required to be drawn from the sources. According to [39],
the DC/DC converter can be internally controlled by a PI-controller with bus voltage as the reference
input, and externally, it can be controlled by the PM controller that sends the desired current output
signal to the converter.
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Figure 18. Details of the PM controller block.
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Figure 19. Working of the PM controller block.

6.2. Optimization as a Decoupled Process

Optimization problems in hybrid vehicles mainly relate to three types [9]: structural optimization,
which finds the best possible powertrain structure; parametric optimization, where the powertrain
structure is considered as fixed and the goal is to find the best set of parameters; control system
optimization, which finds the best possible supervisory algorithms. This section describes the
optimization of the parameters mentioned in the previous section [7]. In this contribution, a parametric
optimization is considered for the topology chosen. First, the optimization is carried out at varying
supercapacitor sizes for all of the controller parameters along with boundary and initial conditions.
Then, a reference size for the supercapacitor is chosen, and the effect of the optimization process is
investigated. To sum up, the optimization of the supervisory controller described in the previous
section is carried out for two objectives, fuel consumption and SoC deviation, with 46 parameters, four
mode dependent for nine modes, 10 mode independent, and the optimization is carried out for four
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different supercapacitor sizes. The optimized results are based on pre-defined drives cycles, here for
example, the NEDC drive cycle is used.

In the context of supervisory control strategies, a classification can be made [9], namely
heuristic control strategies and optimal control strategies. The advantage of heuristic controllers
is their simplicity, but due to the tuning effort required to obtain the optimum fuel economy, optimal
control strategies, such as dynamic programming, ECMS, etc., are used. Instead of using an optimal
control strategy, which provides a direct optimization of the control input, an offline parametric
optimization based on Non-Dominated Sorting Genetic Algorithm (NSGA II) is considered. In [60],
NSGA II has been implemented on a hybrid hydraulic powertrain system to generate optimal sizes
and control parameters corresponding to given objective functions. As described in [60], the algorithm
starts by randomly generating an initial population of possible solutions within the search space,
keeping the boundaries of variation of each variable in consideration. The objective functions are
evaluated. Each individual is assigned to a rank to generate fronts based on non-dominated sorting.
Next, crowding distance is assigned to the individuals to maintain diversity. In the final steps, the
selection and assignment of genetic operators, such as crossover and mutation, are performed to
obtain the best parameter variables. Details on the adjustment of NSGA II parameter settings, such as
crossover probability, mutation rate, etc., can be found in [57]. One of the reasons for selecting this
algorithm is its ability to tackle multi-objectives, which might be conflicting in nature [61], which is
often the case with hybrid powertrains.

Optimization Goals and Constraints

The objective function and constraints are given in [9]. The minimization of fuel consumption is
given by:

J =
∫ t f

0
ṁ f (t, u(t))dt , J → min (49)

where the performance index is denoted by J and fuel mass consumed over a mission of duration t f is
denoted by ṁ f , depending on the system input u(t). The fuel mass consumed ṁ f can also be given
by the energy required by the fuel cell for the given drive cycle and represented in terms of fuel cell
power PFC as follows:

JFC =
∫ t f

t0

PFC(t, u(t))dt , JFC → min. (50)

The other objective is to minimize the SoC deviation, which represents the difference between
the initial and final SoC values of both battery SoCb and supercapacitor SoCsc. Generally, the charge
sustenance of the storage elements requires small deviations from the nominal value of SoC over
the drive cycles. The deviation of the two SoCs, ∆SoCb and ∆SoCsc, can be considered as an integral
constraint [9] by:

J = φ(∆(SoCb + SoCsc)) +
∫ t f

0
ṁ f (t, u(t))dt (51)

where the penalty term φ is called the charge-sustaining performance index, given as:

φ(∆SoCb) = α
∣∣∣(SoCb(t0)− SoCb(t f ))

∣∣∣ (52)

φ(∆SoCsc) = β
∣∣∣(SoCsc(t0)− SoCsc(t f ))

∣∣∣ (53)

with ∆SoCsc and ∆SoCb as the SoC deviations of the supercapacitor and battery at time interval t0 to t f .

7. Simulated and Emulated Results

In this subsection the effect of the developed power management control concept is discussed.
From Figure 20a, the basic working principles of the power management strategy become clear using
an NEDC drive cycle as the example. The battery current is limited, and the more dynamic fluctuations
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are taken over by the supercapacitor. The fuel cell is operated close to its efficient operating point as
calculated in [28]. To evaluate the feasibility of the emulation hardware in realizing the dynamics of
the powertrain, the simulated results are compared to emulation results. In Figure 20b, the charging
of the battery and supercapacitor is shown. This is in accordance with the simulated battery and
supercapacitor current, as shown in Figure 20a. The curves in Figure 20b demonstrate an inversion of
the values shown in Figure 20a. The negative parts of load represent charging or an increase in sink
s2 and s3 currents and positive parts, discharging or an increase in source q2 and q3 currents. Here,
only the emulation of charging current is shown. Similarly, the emulation of supply and regeneration
dynamics using s and q is explained with Figure 15.
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Figure 20. (a) Simulated source and load current; (b) experimentally-emulated battery and
supercapacitor current.

Here, the emulation of both positive and negative parts of the load demand by q4− s4 is given.
During the positive half of the load cycle, current is drawn by the sink s4 (motor mode), and in
the negative half of the load cycle, power is supplied by the source q4 (generator mode). Therefore,
the emulated q4 current, which is an absolute value, can be seen as an inversion of simulated value.
From Figures 15 and 20, a good coincidence between model behavior and emulation can be noted. Thus,
the dynamics of the simulated models of components together with the supervisory controller can
be realized using the emulated experimental setup. Corresponding to the three sources, the DC/DC
converter current outputs as defined by the power management controller are sent to q1, q2− s2
and q3− s3. The simulated load current from the backward modeled part is sent to q4− s4.

Next, the effect of the optimized controller parameters on the HEV dynamics is analyzed. For
the two chosen objectives, namely minimization of fuel consumption and SoC deviation of both the
battery and supercapacitor, the results are analyzed in the following manner:

• To investigate the influence of component sizing, the variation of the two objective functions for
different supercapacitor sizes is shown in Figure 21.
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• A supercapacitor size is chosen, and the convergence of the two conflicting objectives for the
chosen supercapacitor is shown in Figure 22.

• The preference between the two objectives is varied, and its influence on SoC variation is analyzed.
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Figure 21. Objective function convergence for (a) the reference supercapacitor, (b) double
the reference supercapacitor, (c) half the reference supercapacitor and (d) one-fourth the
reference supercapacitor.

To demonstrate (and to learn about) the principal behaviors, four supercapacitor sizes are chosen
for comparison: the reference, double the reference, half the reference and one-fourth the reference.
The optimization runs for all of the supercapacitor sizes can be seen in Figure 21. As shown in Figure 21b,
with the double-sized supercapacitor, a slight improvement in fuel consumption values is noted
(Figure 21b2) at the cost of the deterioration of ∆SoC values (Figure 21b1). However, this does
not provide an optimal solution for the total objective function, and further iteration steps of the
optimization algorithm are required. As shown in Figure 21c, with the half-sized supercapacitor,
a prominent improvement in ∆SoC is noted (Figure 21c1). The fuel consumption is not minimized
within the shown iteration steps. Finally, in Figure 21d, with one-fourth the supercapacitor, dynamic
and fluctuating behavior is noted in Figure 21d1,d2. Within the shown iteration steps, minimization,
particularly of fuel consumption values, is not possible. Thus, with such small supercapacitor sizes,
the control task is difficult, and the overall system might become unstable.

In Figure 22, conflicting solutions for the two objective functions for the reference supercapacitor
can be seen. This results from the principle contradictions in the task of fuel consumption minimization
and SoC sustenance. However, a convergence of the total objective function can be obtained.
From Figure 22, it can be noted that although minimum values for ∆SoC are obtained, the values
chosen for fuel consumption are not necessarily the minimum values. Lower fuel consumption values
that did not satisfy the minimum ∆SoC are rejected, so a compromising solution for both objectives
can be obtained.
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In the next step, the parameters corresponding to the optimized values obtained from NSGA II
are integrated in the online power management control strategy. Three supercapacitor sizes, double
(denoted in green), half (denoted in blue) and one-fourth (denoted in black), are compared to the
reference size (denoted in red) to analyze the influence on SoC and on fuel consumption. In Figure 23,
the SoCs of the battery and supercapacitor are shown along with the corresponding fuel cell output
power and distinguished for small and large supercapacitors.
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Smaller supercapacitors: From the battery SoC, it can be seen that the battery is gradually charged
in the beginning, so as to gain reserves for following the high demanding part of the drive cycle, due
to the insufficient storage capacity of the supercapacitor. Then, the battery is discharged till its lowest
SoC value. From the supercapacitor SoC, it can be seen that smaller sizes cause more fluctuations.
With the one-fourth size, the response is very dynamic. From the fuel cell output power, it can be seen
that power supplied by the fuel cell is more for smaller supercapacitors than larger ones. Transient
behavior is noted with the smallest supercapacitor.

Larger supercapacitors: When the supercapacitor is doubled, the battery SoC is constant, meaning
that the battery is not required. In this case, the large supercapacitor has sufficient storage capacity.
The supercapacitor SoC curve is flatter and less fluctuating in comparison with smaller supercapacitor SoCs.
From the fuel cell output power, it becomes clear that the power supplied by fuel cell is also least here.

Thus, with the double-sized supercapacitor, the most desirable performance can be achieved,
whereas by using a one-fourth-sized supercapacitor, undesirable effects may result. These undesirable
effects need to be avoided, keeping the size and cost of the powertrain in mind. The reference size can
be considered as a suitable option.

Next, the priority between the two objectives is varied for the reference supercapacitor. For the
realization of different requirements, the priorities are assigned as given in the following three cases:
Case 1: priority distribution decided by NSGA II (denoted in green); Case 2: high priority on fuel
consumption and less priority on ∆SoC (denoted in blue); Case 3: high priority on fuel consumption
with least priority on ∆SoC (denoted in red). These three cases can be obtained by analyzing the
effects of parameter changes during different stages of optimization. In the first case, the parameters
correspond to those obtained at the end of optimization. In the second and third cases, the parameters
correspond to those obtained in the intermediate stages. In Figure 24, the SoC variations of the battery
and supercapacitor can be seen along with the corresponding fuel cell power.

Case 1 is the standard case and can be used as a reference for the comparison of Cases 2 and 3.
Case 2 (blue curve): From the battery SoC, it can be seen that the battery SoC is mostly sustained and
discharged only towards the end. The supercapacitor is charged from the fuel cell. By comparing
battery ∆SoC to Case 1 (green curve), it is observed that ∆SoC in Case 1 is lower than in Case 2. This is
because in Case 2, the optimization objective-fuel economy is taken into account, but the second
objective-battery ∆SoC is sacrificed.

Case 3 (red curve): From the battery SoC, it can be seen that the battery is more depleted than
in Cases 1 and 2. The supercapacitor is charged from the battery. By comparing battery ∆SoC with
Cases 1 and 2, it is observed that ∆SoC in both Cases 1 and 2 is lower than in Case 3.
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Figure 24. Effect of varying priorities between optimization goals (simulated).

Thus, when priority is assigned in the order fuel consumption followed by supercapacitor
∆SoC followed by battery ∆SoC, the battery is more often discharged, as shown in the above results.
By changing the priority between the objectives, further possibilities can be investigated. However, as
the objectives are conflicting in nature, a compromise has to be made.

In Figure 25, the total energy consumption corresponding to non-optimal power management,
optimal power management and optimal power management as a function of different supercapacitor
sizes is shown. Total energy consumption denotes the energy of the fuel cell plus the energy of the
battery and supercapacitor, which can be added or subtracted from the total energy depending on the
charge/discharge. When the supercapacitor size is increased, energy consumption will be reduced.
This results directly from the ability of exchanging dynamic load peaks. With smaller supercapacitors,
the energy consumption is distinctively higher.
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Figure 25. Comparison of all results in terms of energy consumption.

8. Summary and Conclusions

In this contribution, first, a brief literature review is presented. This emphasizes the role of
rule-based power management and optimization strategies. The existing strategies lack the ability
to provide optimal solutions in terms of multiple objectives online. Along with online optimization,
the adaption of optimized control rules to real driving data is an issue. To overcome the deficits
of existing strategies, namely the integration of multiple objectives along with adaptability to real
driving patterns, an optimized power management controller for a three-source HEV is developed
and realized experimentally by an emulation test-rig. The newly-introduced power management
concept is capable of determining the optimal power distribution between the three sources online,
such that the dynamic part of the load is supplied by the supercapacitor and battery current is limited.
The decoupling of the optimization process from the online part enables the use of offline-implementable,
multi-objective algorithms. From the simulation results, it can be concluded that: multiple, even conflicting
optimization objectives can be integrated in this control strategy; by changing the priority between
the objectives, further options can be investigated; and by a suitable selection of parameters,
all three sources can be operated within desired working ranges while satisfying the load demand
at the same time. Due to the modular structure of the power management optimization concept,
an extension of the concept can be easily realized by integrating more LUTs with sets of optimized
parameters. Real (unknown dynamic) drive cycles can be used to generate these parameters offline to
be embedded online.
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