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Abstract: In this work, we investigate scheduling problems for electrical energy storage systems and
formulate an algorithm that finds an optimal solution with minimal charging cycles in the case of
a single device. For the considered problems, the storage system is used to reduce the peaks of the
production and consumption within (part of) the electricity distribution grid, while minimizing device
wear. The presented mathematical model of the storage systems captures the general characteristic of
electrical energy storage devices while omitting the details of the specific technology used to store
the energy. In this way, the model can be applied to a wide range of settings. Within the model, the
wear of the storage devices is modeled by either: (1) the total energy throughput; or (2) the number of
switches between charging and discharging, the so-called charging cycles. For the first case, where the
energy throughput determines the device wear, a linear programming formulation is given. For the
case where charging cycles are considered, an NP-hardness proof is given for instances with multiple
storage devices. Furthermore, several observations about the structure of the problem are given when
considering a single device. Using these observations, we develop a polynomial time algorithm of
low complexity that determines an optimal solution. Furthermore, the solutions produced by this
algorithm also minimize the throughput, next to the charging cycles, of the device. Due to the low
complexity, the algorithm can be applied in various decentralized smart grid applications within
future electricity distribution grids.

Keywords: electrical energy storage; peak shaving; device aging; mixed integer linear program
(MILP); polynomial time optimal algorithm

1. Introduction

Electricity distribution grids in the Western world have been changing rapidly over the last
decade. Traditionally, a small number of large-scale power plants produced the power consumed by a
large number of customers. This structure of the power distribution system implies that power flows
unidirectionally from the large suppliers through the transmission and distribution grids towards the
customers [1,2]. However, in recent years, large amounts of small-scale distributed generation are
being introduced into the system at the customer level [3,4]. This shift from bulk generation at a few
sites to both small-scale and local generation requires a different approach in thinking about, planning
for and using our electricity distribution grid.

Local, small-scale generation units are often based on renewable sources, such as wind and sun.
Their introduction is driven by environmental and sustainability targets, such as the 20-20-20 targets
in the EU [2,5]. If a small number of these units is introduced in an area, the effect on the power
flow within the area is negligible. However, a large penetration within an area may lead to larger,
severe negative effects on the electricity distribution grid within the area. At specific times, the energy
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generated by the small-scale units may be far larger than the energy consumed. This results in a large,
inverted power flow upstream to transport the power away to other areas where it can be consumed
(see, e.g., [6]). Furthermore, our society is increasingly relying on electricity as a power source, as is
clear from the introduction of, amongst other devices, heat pumps, electric stoves and electric vehicles
(see, e.g., [7,8]). These devices tend to have a high simultaneity factor, causing high peak demand.
However, our electricity distribution grids were not designed for these changes and need to be adapted
in the future to accommodate such changes.

Electrical energy storage is seen as a viable option to address many of the challenges resulting
from the recent changes in our electricity distribution grids (see, e.g., [9,10]). For example, an electrical
energy storage system (EESS) is considered as one of the options to reduce the peaks in both supply
and demand within distribution grids (see, e.g., [11–13]). Such a reduction of peaks leads to a reduced
amount of stress on the network assets and by that increases their expected remaining lifetime.
Furthermore, the need for costly grid reinforcements can be deferred through the use of an EESS to
keep power flows within grid limitations. Finally, an EESS can be used to bridge the time gap between
the generation of renewable energy and the desired time of use (see, e.g., [3,14]).

The potential positive effects of an EESS within the electricity distribution grid stimulated research
within this area. For example, Johnson et al. [11] attempted to model and schedule an EESS to reduce
maximum demand. Furthermore, Nykamp et al. [15] investigated the possibilities of an EESS to
reduce the feed-in peaks of renewable energy sources based on data from Germany. Furthermore,
Swierczynski et al. [16] demonstrated the capability of an EESS to operate on the Danish primary
frequency regulation market. However, most of the current storage techniques are far from mature
and are not economically feasible due to very high capital costs [10], except under rare conditions [6].
While prices are expected to drop in the future, as a result of technological advances, also the reduction
of the wear of storage devices used within an EESS can greatly increase the number of economically
feasible applications in the near future.

The many factors influencing the aging of a storage device are often captured by highly non-linear
and linked relations, specifically in the case of batteries (see, e.g., [17,18]). Moreover, these relations
are often dependent on the technology in question. Detailed modeling of the wear of an EESS thus
leads to complex and hard to solve models. On the other hand, most applications of an EESS within an
electricity distribution grid require fast control to cope with either real-time fluctuations in the power
flow [16,19] or to ensure scalability to many concurrent systems [1]. Furthermore, as a large number of
different storage devices are to be expected in the (future) grid, we pursue solutions that are applicable
to many different systems. To this end, we model the general characteristics of energy storage device
wearing and investigate the complexity of the obtained optimization models. While these models do
not capture the full complexity of the aging of storage devices in all cases, we believe the results we
obtain about the studied models form a suitable basis to be extended for more complex aging models.

While storage is often considered for grid balancing and peak shaving applications in the literature
(see, e.g., [20–22]), device wearing is hardly considered. Koller et al. [23] do consider device wear in
their storage models in the form of a mixed integer quadratic program, applicable within a model
predictive control setting. However, they suggest to solve the problem via commercially available
solvers, neglecting potential structural properties that can be exploited to construct a tailored and
more efficient approach. Poullikkas et al. [24] investigate the economic potential of an EESS to defer
conventional grid reinforcements on Cyprus. They claim to use a sophisticated model of the wearing,
but no details are given. Haessig et al. [25] investigate the potential of an EESS to compensate for the
fluctuating output of renewable energy sources. They limit wearing of the system in their models by
restricting the number of full cycles. This constraint is shown to be equivalent with limiting the total
throughput of the system. Our models differ in that we consider device wear in the objective instead of
the constraints and that we also incorporate partial charging cycles. Wang et al. [26] consider a model
for a hybrid system, exploiting storage devices of different technologies. Their formulation results in a
convex optimization problem, without giving specifics on the complexity. Finally, Nykamp et al. [15]
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consider an EESS, in particular a battery, as an application to shave peaks of fluctuating renewable
generation. They model the minimization of charging cycles as a mixed-integer linear program (MILP).
We consider a similar problem, solving it using a tailored algorithm with complexity O(N3), where N
is typically small in practice.

In this work, we study the complexity of optimization problems for scheduling the usage of an
EESS. Within the model, the flattening of peaks within a given load profile is set up as a constraint.
The objective is to minimize the aging of the storage devices in the system. As previously mentioned,
the solutions to the considered problems should be fast and efficient. To ensure this, and to keep
the model as general as possible, we concentrate on two common factors that influence the aging of
storage devices: (1) the total throughput of the storage devices; and (2) the number of switches between
charging and discharging made by the devices, the so-called charging cycles. The contributions of this
work are as follows:

• We model the minimization of the storage degradation in the considered peak shaving method as
a linear program (LP) when minimizing throughput, implying polynomial solvability.

• We model the problem as an MILP when minimizing charging cycles.
• We give an NP-hardness proof for the problem when minimizing charging cycles using

multiple devices.
• We give several structural properties of an optimal solution that minimizes the number of charging

cycles of a single device, which we use as a basis to construct a polynomial-time algorithm that
minimizes both the number of charging cycles and the throughput of the devices.

The rest of this work is organized as follows. In the next section, a mathematical description of
the considered setting and the associated optimization problems are given. Afterwards, in Section 3,
the difference in the complexity status of the two considered objectives is discussed. This is followed
in Section 4 by a study of the structure of the problem when the EESS consists of a single device. This
results in a polynomial-time algorithm for this case. Then, in Section 5, we compare the obtained
results for the two different objectives considered. Finally, in Section 6, some conclusions are drawn.

2. Model Description

In this section, we first give a short overview of the considered model, followed by a mathematical
description of the associated optimization problem. We consider a given electricity distribution grid
with an asset (e.g., a transformer or cable) for which an EESS is used to ensure the energy flows are
within predetermined bounds. For this grid, we consider a given time horizon, which we assume is
discretized into time intervals. For every time interval within the considered horizon, a prediction of
the total energy flow through the asset, before use of an EESS, is given. Furthermore, within the model,
bounds on these energy flow values through the asset are specified. The EESS now has to ensure that
the remaining flow, after using the EESS, is between the given bounds for the time intervals.

The mathematical formulation of the optimization problem associated with the model sketched
above is as follows. We consider a discrete time horizon given by a set of time intervals T = {1, . . . , T}.
For each time interval t ∈ T , we are given the flow value Ft, which we want to increase or decrease
by using the EESS. For each time interval t ∈ T , we are also given a lower bound LBt and an upper
bound UBt on the resulting flow in time interval t. Furthermore, we consider the EESS as a set of
storage devices, which are indexed by the set U = {1, . . . , I}. For each device i ∈ U , three parameters
are given: the (maximum) power Pi of the device, the initial state of charge SoCi,0 and the maximum
storage capacity Ci. The decision variables that control the use of the devices are given by the variables
si,t denoting the amount of energy that flows into or out of device i in time interval t. Note that
negative values of si,t mean that the device is discharging and extra energy is fed into the considered
system. For each storage device, the total amount of energy stored inside the device at the end of
time interval t ∈ T can be calculated by SoCi,t := SoCi,0 + ∑t

j=1 si,j. Note that we assume a perfect
storage device, i.e., we assume the device has an efficiency of 100% when charging/discharging, to
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improve the readability of the work. The results in this work can be adapted in a straightforward
manner to include lower efficiency levels. The choices for the decision variables are limited by the
following constraints:

LBt ≤ Ft − ∑
i∈U

si,t ≤ UBt ∀t ∈ T (1)

− Pi ≤ si,t ≤ Pi ∀t ∈ T ∀i ∈ U (2)

0 ≤ SoCi,t ≤ Ci ∀t ∈ T ∀i ∈ U (3)

Constraints (1) ensure that the remaining flow after usage of the EESS is between the given
bounds. These constraints can be rewritten to:

Ft −UBt ≤ ∑
i∈U

si,t ≤ Ft − LBt ∀t ∈ T ∀i ∈ U (4)

which is somewhat easier to use later on. The second set of constraints (2) limits the (dis)charging done
by each device by its given power. Finally, constraints (3) ensure that the energy stored in each device
is always between zero and the capacity Ci of the device. We note that further, linearized constraints
imposed by the grid can be incorporated in the formulation.

To complete the formulation of the optimization model, it remains to define the optimization
objective. Since the goal is to minimize device wear, this wearing needs to be expressed in terms of the
variables in the model. The most straightforward option is to consider the total usage of the devices.
This is given by the total amount of energy flowing in and out of each device over all time intervals,
which is given by ∑t∈T |si,t|. As a result, we obtain the following optimization problem, which we call
the minThroughput problem:

min ∑
i∈U

∑
t∈T
|si,t|

s.t. (1)− (3)
(5)

However, for many storage devices, specifically batteries, the lifetime is generally expressed in
charging cycles. A charging cycle is a time period in which the device switches once from charging to
discharging and back to charging again, ignoring idle periods in between. The time before a storage
device is assumed to have degraded too much is generally given by the manufacturer in full cycles,
i.e., cycles in which the device goes from the full state of charge to complete empty and back to
full at a constant (dis)charge rate (see, e.g., [27,28]). However, in real-time operation, most charging
cycles do not fully discharge the storage device during every cycle. To take this into account, the
notion of counting equivalent full cycles is sometimes used. An equivalent full cycle occurs over a
set of time intervals if an amount of energy equal to the capacity has been both charged into and
discharged from the device. We note that this is equivalent to considering the total throughput as
an energy flow through the battery of twice the capacity to be then equivalent to one full cycle [25].
In contrast, in this work, we explicitly consider the minimization of the (partial) charging cycles, similar
to Nykamp et al. [15]. By doing this, we enforce the considered devices in the EESS to prefer (near) full
charging cycles over frequent charging cycles with small total throughput. This allows an effective
estimation of the degradation and remaining life time of the considered devices by comparison with
the given life time in full cycles as specified by the manufacturer. Furthermore, it prevents several
forms of behavior that are considered damaging for several types of storage devices, such as frequent
cycling at a low state of charge (see, e.g., [17,26]).

To integrate charging cycles into the model, we introduce two more sets of variables:
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Xi,t =


1 if si,t > 0

1 if si,t = 0 and Xi,t−1 = 1

0 if si,t < 0

0 if si,t = 0 and Xi,t−1 = 0

∀t ∈ T ∀i ∈ U (6)

Yi,t = |Xi,t − Xi,t−1| ∀t ∈ T ∀i ∈ U (7)

Note that Xi,t indicates if device i is charging or discharging during time interval t, whereby the
previous state is used in case the device is idle. Furthermore, Xi,0 is an input parameter indicating if
device i had been charging or discharging before the start of the time horizon. The resulting binary
variables Yi,t indicate if a switch between charging and discharging or vice versa occurred for device
i between time intervals t− 1 and t. An example of a flow of energy into and from a device with
Xi,0 = 0 and with corresponding values of Xi,t and Yi,t is given in Figure 1. Note that a charging cycle
is defined as exactly two such switches, thus minimizing the number of charging cycles is equivalent
to minimizing the number of switches. The resulting optimization problem, which we term minCC, is
thus given by:

min ∑
i∈U

∑
t∈T

Yi,t

s.t. (1)− (3), (6) and (7)
(8)

0 1 2 3 4 5 6 7 8 9 10
−2
−1

0
1
2

s i
,t

a)

0 1 2 3 4 5 6 7 8 9 10
0
1

X
i,t

b)

0 1 2 3 4 5 6 7 8 9 10
0
1

Time

Y i
,t

c)

Figure 1. An example of the flow si,t into and from a storage device i with Xi,0 = 0 for 10 time intervals
in (a), with corresponding values of Xi,t and Yi,t in (b) and (c), respectively.

3. Complexity Results

In this section, we investigate the complexity state of the problems introduced in the previous
section. We begin by noting that we can split the variables si,t into their positive and negative parts
(i.e., si,t = s+i,t− s−i,t with s+i,t, s−i,t ≥ 0). After this reformulation, the minThroughput problem (5) becomes
an LP. Thus, this problem can be solved in polynomial time and is therefore in general easy to solve.
The complexity state of problem minCC is not as straightforward, as the use of the binary variables
Xi,t and Yi,t suggest that the problem might be difficult to solve. In fact, this problem is hard.

Theorem 1. Problem minCC is NP-hard for multiple devices (I ≥ 2) and NP-hard in the strong sense if the
number of devices I is part of the input. This result also holds when all devices are assumed to be equal.
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Proof. We use reductions from the classical NP-complete problems three-partition and partition
(see, e.g., [29]). We begin by reformulating minCC into a decision problem by replacing the
minimization objective with the question if there exists a feasible solution with ∑i∈U ∑t∈T Yi,t ≤ K for
some parameter K. Note that the reformulation is in NP because it is straightforward to compute the
number of switches for any given schedule for each device in time linear in the length of the scheduling
horizon T. Then we reduce the three-partition problem to our decision problem, and as three-partition
is NP-complete in the strong sense, so our problem is.

Consider an instance of the three-partition problem. Given is a (multi)set X = {x1, x2, . . . , x3m}
of positive integers with ∑3m

i=1 xi = mB and B/4 < xi < B/2, i = 1, . . . , 3m. The three-partition
problem asks if there exist sets X1, X2, . . . , Xm partitioning X, such that ∑xi∈Xk

xi = B, k = 1, . . . , m.
A corresponding instance of minCC is then constructed by taking:

• T = 6m + 1
• I = m
• Pi = B, ∀i ∈ U
• Ci = 3mB, ∀i ∈ U
• SoCi,0 = 0 ∀i ∈ U
• UBt = B and LBt = −∞ ∀t ∈ T
• Ft = (m + 1)B for t = 1, 3, 5, . . . , 6m + 1 and Ft = B− xt/2 for t = 2, 4, 6, . . . , 6m
• K = 6m

An example of the constructed instance of minCC for m = 3 and the multiset of integers given
by {1, 2, 3, 4, 4, 5, 5, 6, 6} is given in Figure 2. For this instance, we get that B = 12, (m + 1)B = 48
and Ci = 108 for i = 1, 2, 3. The light grey areas for the even time intervals indicate the potential to
discharge some energy by the devices in those time intervals.

0 2 4 6 8 10 12 14 16 18

12

48

Time

F t

Figure 2. An example of the corresponding minCC instance to the three-partition instance with multiset
{1, 2, 3, 4, 4, 5, 5, 6, 6}. The dashed line gives the upper bound on the flow, which is given by the dark
grey area. The light grey area is the amount that can be discharged during the even time intervals,
corresponding to 1, 2, 3, . . . , 6, 6.

Assume the constructed instance of the decision variant of minCC is a yes-instance. Note that
Ft = (m + 1)B and UBt = B for the odd time intervals and furthermore Pi = B for all i ∈ U . Thus,
every device needs to charge B units of energy on every odd time interval, resulting in a total of
B(3m + 1) units charged into every device over the whole time horizon. Thus, since Ci = 3mB, every
device needs to discharge at least B units of energy on the even time intervals. Since UBt = B and
Ft = B − xt/2, t = 2, 4, . . . , 6m, the maximum amount that can be discharged on these even time
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intervals is ∑3m
t=1 xt = mB. From this, it follows that each device discharges exactly B over the whole

time horizon. It also follows that the devices together discharge xt/2 units of energy on every even time
interval t, meaning that at least one device is discharging on every even time interval. Furthermore,
whenever a device is discharging on any of the even time intervals, this induces two switches. Thus,
since K = 6m and T = 6m + 1, there has to be exactly one device discharging on each of the even time
intervals. Thus, each device discharges the amount needed for a subset Xi of the even time intervals
with a total load of B. Together, these sets Xi form the partition of X.

Now, assume that the instance of the three-partition is a yes-instance. Then, taking si,t = B for
t odd, si,t = −xt/2 for t even whenever xt/2 ∈ Xi and si,t = 0 otherwise is a solution to the decision
variant of minCC.

Note that the number of devices in the given reduction is taken as an input parameter, while in
many applications, the number of devices is fixed. For the case of only two devices, a reduction from
the partition problem to minCC can be done in a similar way as above. Hereby, both devices are forced
to charge B units more than their capacity. This gives a freedom of si units to discharge on the even
numbered time intervals. Limiting the number of switches again ensures only one device discharges
on each of the even numbered time intervals. This results in a partition of the si’s over two sets.

In conclusion, we have that minCC is NP-hard in the strong sense when the number of devices is
an input parameter and NP-hard in the weak sense when the number of devices is fixed and larger
than or equal to two.

4. Minimization of Charging Cycles for a Single Device

As we have seen in the previous section, the problem of minimizing the number of charging
cycles when multiple devices are considered is difficult, even if all of the devices are equal and we do
not incorporate any grid constraints beyond (1). However, finding a feasible solution and minimizing
the throughput is easy, as it can be formulated as an LP. The question remains what happens when we
consider minimizing charging cycles for a single device, i.e., when we consider the minCC problem
with I = 1. We note that we omit further grid constraints beyond (1), since we can assume the storage
device to be positioned reasonably close to the asset for which it is used to ensure the energy flow is
between pre-specified bounds.

To tackle this problem, we first introduce some key observations in the next subsection followed
by an optimal polynomial time algorithm in Subsection 4.2. As from here on we only consider a single
storage device, the index i in the various variables and constraints will be omitted for readability.

4.1. Key Observations

When considering a single device, it is possible to combine the flow and power constraints (2)
and (4). From (2), it follows that st ∈ [−P, P], and from (4), it follows that st ∈ [Ft −UBt, Ft − LBt].
This gives us that st must lie in the intersection of the two intervals for every t. If we define
At = max [Ft −UBt,−P] and Bt = min [Ft − LBt, P], then the power and flow constraints (2) and (4)
are equivalent to:

At ≤ st ≤ Bt ∀t ∈ T (9)

Note that it is possible that At > Bt for some time interval if for example Ft −UBt > P. However,
this implies that the storage device cannot charge enough energy in a single time interval to get the
resulting flow between the desired bounds. Since these instances are infeasible, we assume that this is
never the case, i.e., we assume that At ≤ Bt for all t ∈ T .

Let us now consider the set T of time intervals. We can characterize these time interval based
on their intervals [At, Bt] specifying the domain of st. We consider three possible options: (A) the
device is not forced to do anything by the flow bounds (9); (B) the device is forced to charge by the
flow bounds (9) and (C) the device is forced to discharge by the flow bounds (9). In the first case, we
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have that 0 ∈ [At, Bt]; in the second case, we have At > 0; and in the last case, we have that Bt < 0.
If two consecutive time intervals t and t + 1 both belong to Case (B), then in any feasible schedule, we
have st, st+1 > 0. Furthermore, if t and t− 1 belong to Case (C) then in any feasible schedule, we have
st, st−1 < 0.

Now, assume that t and t− 1 both belong to Case (A), and we have a feasible schedule with st < 0
and st+1 > 0 or vice versa. Taking the smallest, in absolute value, of the two values and adding it to
the other results in a feasible schedule that has either st, st+1 ≥ 0 or st, st+1 ≤ 0. Note that this new
schedule potentially has one switch less, but never more switches than the former schedule. Thus, we
can restrict without loss of generality to schedules for which consecutive intervals that belong to the
same case, as specified above, either both charge or both discharge. Hereby, we assume that doing
nothing (i.e., st = 0) can be seen as either charging or discharging.

The above property gives rise to a different way of approaching the set T . Instead of considering
the time intervals in T individually, it is possible to group them into blocks of consecutive time
intervals with the same characteristic. These blocks form a partition of T and should be taken
maximally with respect to the union, i.e., no two consecutive blocks should contain time intervals
of the same characteristic. Let T1, T2, . . . , TN be the resulting partition of T into blocks of the same
characteristic. We say Tm < Tn to indicate that m < n, which means that all time intervals in Tm lie
before the time intervals in Tn. An example of the partition of the time intervals into blocks is given in
Figure 3.

T1T2 T3 T4 T5 T6 T7 T8 T9

LB

UB

Time

F t

Figure 3. An example of the partition of the time intervals into blocks T1, T2, . . . , T9 for the given values
of Ft. The upper and lower bound are marked by the horizontal lines. Light grey areas indicate how
much the storage device has to charge or discharge to obtain a feasible flow. A light grey area above
the upper bound indicates charging required, while a light grey area below the lower bound indicates
discharging required. The vertical dashed lines indicate where a new block begins.

It is now possible to reformulate minCC in terms of blocks instead of time intervals. For readability,
the variables and parameters corresponding to block Tn will be denoted by index n. First, we consider
the combined flow and power constraint (9). Defining An := ∑t∈Tn At and Bn := ∑t∈Tn Bt allows us to
rewrite (9) as:

An ≤ sn ≤ Bn for n = 1, 2, . . . , N (10)
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Furthermore, the state of charge (SoC) of the device at the end of block Tn is given by
SoCn := SoC0 + ∑n

n′=1 sn′ . The SoC constraints (3) can then be rewritten as:

0 ≤ SoCn ≤ C for n = 1, 2, . . . , N (11)

A reformulation of (6) and (7) leads to:

Xn =


1 if sn > 0

1 if sn = 0 and Xn−1 = 1

0 if sn < 0

0 if sn = 0 and Xn−1 = 0

for n = 1, 2, . . . , N (12)

Yn = |Xn − Xn−1| for n = 1, 2, . . . , N (13)

Again, X0 is an input parameter indicating if the device was charging or discharging at the
beginning of the time horizon. The reformulation of minCC then becomes:

min
N

∑
n=1

Yn

s.t. (10)− (13)

(14)

By construction, we have that a feasible solution for this reformulation of minCC can easily be
transformed into a feasible solution of the original formulation of minCC with the same objective value.

For solving minCC, the following simple, but specific schedule, which may be infeasible, plays an
important role.

Definition 2. The naive local schedule Sna is defined by:

sna
n =


0 if 0 ∈ [An, Bn]

An if An > 0

Bn if Bn < 0

(15)

Note that Sna uses the device as little as possible while satisfying the flow and power
constraints (10). However, it is possible that it violates the SoC constraints (11) at some point.
Nevertheless, it can be used as a basis to construct a feasible (and optimal) schedule, as is shown below.

To deal with SoC-constraint violations, we make the following observation. Assume we have
an infeasible schedule S with SoCn < 0 for some block Tn. Furthermore assume that for some block
Tm < Tn we have SoCm = C. Updating S to become feasible requires that some extra energy is charged
into the device before Tn. However, any extra energy charged before Tm does not help, since it causes
an overflow at Tm. Thus, any attempt to make S feasible has to charge an extra amount of |SoCn|
between blocks Tm and Tn. This gives rise to the following definition:

Definition 3. For a given infeasible schedule S and block Tn with either SoCn < 0 or SoCn > C in
schedule S, the decoupling point is the last block Tm before Tn with SoCm = C or SoCm = 0, respectively.

These decoupling points indicate which blocks can be ignored when attempting to change an
infeasible schedule to a feasible one. In the next subsection, structural properties are considered using
the above observations, which lead to a polynomial time algorithm to solve the problem.



Energies 2016, 9, 465 10 of 19

4.2. Algorithm

In this subsection, we consider the structure of the problem of minimizing the number of charging
cycles of a single device. To tackle this problem, we first restrict ourselves to instances in which the
naive local schedule Sna drops below the zero state of charge only on the last block TN and never gets
above the capacity C. The derived results for these specific instances form the base to solve the general
case. Note, that in the restricted instances, Sna satisfies the SoC constraints (11) for all blocks, but the
last, by having SoCN < 0. Furthermore, no feasible schedule can have fewer switches than Sna, since
within Sna, the device is used as little as possible while satisfying (10). We first observe that feasible
schedules that discharge differently than Sna do not need to be considered.

Lemma 4. Any optimal schedule S for a restricted instance can be changed to a schedule with exactly the same
discharging as Sna while remaining optimal.

Proof. First, note that S cannot do less discharging on any block than Sna, since Sna does the minimal
discharging required to satisfy the flow and power constraints (10). Thus, assume S does some extra
discharging over Sna. Let Tn be the first block on which S does extra discharging, and let ∆1 be the
difference between the discharging done by S and Sna on Tn. Since S is feasible and SoCN < 0 in
Sna, this extra discharging must be compensated somewhere with extra charging. Let Tm be the first
block on which some extra charging is done compared to Sna, and let ∆2 be the difference between
the amount of charging done by S and S′ on Tm. Furthermore, let S′ be the schedule obtained by
canceling an amount of ∆ := min {∆1, ∆2} extra discharging on Tn and canceling an amount of ∆ extra
charging on Tm. Note that sn < s′n ≤ sna

n and sm > s′m ≥ sna
m , which implies that S′ still satisfies the

flow constraints (10). Furthermore, note that only the SoC of the blocks between Tn and Tm changes
when obtaining schedule S′ from S.

If Tm < Tn, then the SoC of each the blocks in between Tm and Tn decreases by ∆. However, the
SoC of each of these blocks is bounded from below by their SoC in Sna due to the minimality of n.
Thus, it cannot drop below zero by the feasibility of Sna for all blocks besides TN . If on the other hand,
Tn < Tm, the SoC of each block between Tn and Tm increases by ∆, but the SoC of each of these blocks
is bounded from above by their SoC in S due to the minimality of m. Thus, it cannot rise above C by
the feasibility of S.

The above argument can be repeated while there is at least one block on which more discharging
is done by S than by Sna. Note that each update of S only cancels out some charging and discharging,
which implies that the number of switches cannot increase while updating S. Thus, S remains
optimal after the update. Finally, note that after each update in at least one extra block, the
charging/discharging of S and Sna coincide, which concludes the proof.

As a consequence of Lemma 4, for the considered restricted instances, we can take the naive local
schedule Sna as a basis and only add extra charging on some of the blocks. Since Sna only discharges
on blocks where it is required to do so by the flow and power constraints (10), the extra charging can
only be done on blocks that are not used to discharge in Sna. However, not all of these blocks have the
same potential for charging extra without violating either the flow and power constraints (10) or the
SoC constraints (11). From the flow and power constraints (10), it follows that block Tn cannot be used
for more than Bn − sn extra charging. Furthermore, from the SoC constraints (11), it follows that the
potential for extra charging of block Tn is also limited by C− SoCm for n ≤ m ≤ N. This leads to the
following definition:

Definition 5. Given a schedule S and a block Tn, the potential for extra charging on Tn in S, denoted
by MCn(S), is given by min{Bn − sn, C− SoCn, C− SoCn+1, . . . , C− SoCN}.

Clearly, only the blocks with MCn(S) > 0 are of interest for updating a given schedule S. Thus,
the optimal schedule may be obtained from Sna by iteratively doing an extra charging of at most
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MCn(S) units on block Tn. This is done until the SoC at block TN is exactly zero, to ensure optimality
in a more general setting later on.

Let us consider the blocks on which extra charging is possible within a schedule S, i.e., those
blocks with positive potential for extra charging. As by Lemma 4, we only have to consider schedules
that do exactly the same discharging as Sna, this implies that any block in S that is used for discharging
cannot have any potential for extra charging. This means that a block Tn can only be used for extra
charging in S if it is currently not used to discharge, i.e., if sn ≥ 0 in S. If a block is already used for
charging, any extra charging done on this block does not increase the number of switches. Furthermore,
any block Tn that is unused in a schedule S (i.e., sn = 0) must also be unused in Sna, since by Lemma 4,
for these blocks, we can only consider extra charging. By maximality of the blocks with respect to
inclusion, it follows that both neighboring blocks Tn−1 and Tn+1 of an unused block Tn must be used
for either charging or discharging in Sna. Again, by Lemma 4, this implies that both Tn−1 and Tn+1

must be used for charging or discharging in S. Doing extra charging on Tn in S now only causes two
extra switches when both Tn−1 and Tn+1 are used for discharging. Note that in this case, any feasible
schedule is discharging on both of these blocks.

Based on the above, we may partition the set of blocks that can be used for extra charging into
two sets P(S) and N (S), those that cause extra switches when used for extra charging and those that
do not:

P(S) = {Tn| MCn(S) > 0, sn = 0, Xn−1 = 0, Xn+1 = 0}
N (S) = {Tn| MCn(S) > 0, Tn /∈ P(S)}.

Note that for any block Tn used for discharging on schedule S, it holds that MCn(S) = 0, since by
Lemma 4, we only consider extra charging over Sna. Thus, any block in N (S) must either be used for
charging or has a neighboring block that is used for charging. In either case, any extra charging done
on S cannot change this. Thus, any update to S by doing extra charging cannot cause a block in N (S)
to become an element of P(S) instead. On the other hand, a block in P(S) can only become an element
of N (S), if it is used for extra charging (without completely depleting its potential for extra charging).

As a consequence, the blocks inN (Sna) are preferred to be used over the blocks in P(Sna). In fact,
it is always optimal to first use the blocks of N (Sna) to their maximal potential, as shown in the
following lemma.

Lemma 6. Let S be a feasible schedule for a restricted instance, obtained from Sna by doing some extra charging,
and let ZN and ZP be the collections of blocks, from N (Sna) and P(Sna), respectively, which are used for extra
charging. Furthermore, let S′ be the schedule that is obtained from Sna by only doing the extra charging of S
on the blocks in ZN . Furthermore, assume N (S′) 6= ∅, and let Tn be in N (S′). Finally, let Tm be the first
block in ZP and ∆ > 0 the amount of extra charging done on Tm. Then, the schedule S? obtained from S by
shifting ∆′ := min {∆, MCn(S′)} extra charging from Tm to Tn is also a feasible schedule with at most the
same number of switches as S.

Proof. Let S? be the schedule obtained by the shift. First note that the shift of the extra charging
between Tm and Tn cannot introduce a violation of the flow and power constraints (10). Furthermore,
in S?, the SoC is only changed for the blocks between Tm and Tn compared to S. First, assume that
Tm < Tn. Then, the SoC of these blocks between Tm and Tn is decreased by ∆′. Since S and, thus, S?

only does extra charging over Sna, it follows that the SoC of the blocks in between Tm and Tn in S? is
bounded from below by the SoC of these blocks in Sna. Thus, the decrease in SoC cannot cause a drop
of the SoC below zero. Next, assume that Tn < Tm. Then, the SoC of the blocks between Tm and Tn

rises by ∆′. However, by construction, ∆′ ≤ MCn(S′), and all other blocks in ZP lie after Tm. From
this, it follows that the SoC of the blocks between Tm and Tn cannot increase above C. Finally, note
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that at most one extra block is used for extra charging in S? compared to S, but this block belongs to
N (Sna); thus, no switches are introduced by the shift of charging from Tm to Tn.

Lemma 6 shows that, while updating Sna into a feasible schedule by extra charging on certain
blocks, the blocks of N (Sna) can be preferred. However, as extra charging on some block can decrease
the potential of other blocks, the question remains in what order the blocks from N (Sna) should be
used for extra charging.

Lemma 7. Consider a restricted instance with a naive local schedule Sna. Then, exactly one of the following
two cases holds: let S be any schedule obtained from Sna by (only) extra charging on the blocks of N (Sna) for
which N (S) = ∅.

• There is a unique block Tn, such that it is the last block with SoCn = C in any schedule S, that (only) does
extra charging on blocks of N (Sna) and for which N (S) = ∅. Furthermore, for any such schedule, all
blocks Tm ∈ N (Sna) after Tn have sm = Bm.

• In any schedule S that (only) does extra charging on blocks of N (Sna) and for which N (S) = ∅, all blocks
Tm ∈ N (Sna) have sm = Bm.

Proof. Let S be an arbitrary schedule that is obtained from Sna by charging extra only on the blocks
from N (Sna), such that N (S) = ∅. Furthermore, assume that SoCn < C for all blocks Tn in schedule
S. By assumption, it holds that sn = Bn for every block Tn in S. Since Bn is an upper bound for any
block in any schedule, it follows that no block can reach an SoC of C for any schedule. Thus, if there is
a single schedule for which the SoC never reaches C, then no schedule can reach an SoC of C.

It remains to show that, for schedules that reach an SoC of C for some block, the last block for
which this occurs is the same. Let S and S′ be two such schedules, and let Tn? and Tn′ be the last block
for which S, respectively S′, reaches an SoC of C. Without loss of generality, let Tn? ≤ Tn′ , and assume
Tn? < Tn′ . Since SoCn? = C on schedule S, S′ cannot do more extra charging before Tn? than S does.
Furthermore, note that sm = Bm for all blocks Tm ∈ N (Sna) with Tm > Tn? , since N (S) = ∅. Thus,
for any block Tm with Tn? ≤ Tm ≤ Tn′ , it must hold that s′m ≤ sm. From this, it follows that the total
amount of extra charging done by S′ before Tn′ is bounded from above by the total amount of extra
charging done by S before Tn′ . Thus, SoCn′ is at least as high in S as it is in S′. From this, it follows that
SoCn′ = C in S, which is a contradiction with the assumed maximality of Tn? . Thus, it follows that
Tn? = Tn′ .

From Lemma 7, it follows that the blocks from N (Sna) that are used for extra charging can be
picked in arbitrary order. The blocks in P(Sna), however, require some more consideration, since extra
charging on one of those blocks adds two switches to the objective value. Thus, intuitively, it makes
sense to consider the blocks that have the highest potential, which is in fact optimal, as shown in the
following lemma.

Lemma 8. Let S be the schedule that is obtained from Sna by iteratively doing extra charging on the blocks
in N (Sna) until N (S) = ∅. We define S0 = S and iteratively construct a schedule Sk for k = 1, 2, . . . , K
as follows:

• Pick block T from P(Sk−1) with maximal MC(Sk−1), and let n(k) denote the index of this block.
• Construct Sk from Sk−1 by doing an extra charging on Tn(k) of min {−SoCN , MCn(k)(Sk−1)}.

Repeat this process until SoCN = 0 or P(SK) = ∅. Then, in the first case, the obtained solution minimizes the
number of switches made, and in the second case, no feasible solution exists.

Proof. Let S′ be an optimal schedule with SoCN = 0 that is obtained from Sna by doing extra charging
on some blocks. By Lemmas 6 and 7, we can assume that S′ and S (and thus, S1, S2, . . . , SK) do exactly
the same extra charging on the blocks in N (Sna). Furthermore, let k′ be the smallest index for which
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the extra charging done by S′ is different to that of Sk′ on Tn(k′). Since for Sk′ an extra charging of
min {−SoCN , MCn(k′)(Sk′−1)} is done on Tn(k′), it cannot happen that S′ does more extra charging on
Tn(k′) than Sk′ does. Let ∆1 > 0 be the difference between the amount of extra charging that is done by
Sk′ and S′ on Tn(k′). As SoCN = 0 for schedule S′, there must also be a block on which S′ does more
extra charging than Sk′ . Let Tm be the first of these blocks, and let ∆2 > 0 be the difference between the
charging done by S′ and Sk′ on Tm

We change schedule S′ to a schedule S? by shifting an amount of extra charging equal to
∆ := min{∆1, ∆2} from Tm to Tn(k′). This clearly does not violate the flow and power constraints (10).
Furthermore, it only changes the SoC of the blocks between Tn(k′) and Tm. If Tn(k′) > Tm, then the
SoC is reduced by ∆ for these blocks. Since S′ and, thus, S?, only does extra charging compared to
Sna, it follows that the SoC of the blocks between Tm and Tn(k′) cannot drop below zero after the shift.
Furthermore, if Tn(k′) < Tm, the SoC of the blocks in between Tn(k′) and Tm is increased by ∆. However,
by the minimality of Tm, S? does no more extra charging on any block between Tn(k′) and Tm than Sk′ .
Thus, by the feasibility of Sk′ , the SoC cannot rise above C for these blocks in S?.

It remains to consider the objective value of the two schedules. If S′ also uses Tn(k′) for extra
charging, no more switches are introduced. Thus, let us now assume that S′ did not use Tn(k′) at
all, meaning that in S?, two switches are introduced around Tn(k′). However, by the maximality of
MCn(k′)(Sk′), S′ cannot do more extra charging on Tm than Sk′ does on Tn(k′). This implies that ∆ = ∆2,
and therefore, two switches around Tm in S′ disappear in S?, meaning that the total number of switches
does not increase by the shift.

The above argument can be repeated while there is a difference between Sk′ and S′ for some k′.
Eventually, S′ will be the same as SK, without having increased the number of switches, which proves
the optimality of SK.

In case the above procedure concludes that the given (restricted) instance is infeasible, it means
that all blocks no longer have any potential for charging extra energy. This implies that for any block
Tn either sn = Bn or there is a block Tm > Tn with SoCm = C, while SoCN remains less than zero. Since
no schedule can do more extra charging than is done by the infeasible schedule above, it follows that
the instance is indeed infeasible.

From the above Lemmas 4–8, we obtain an algorithm to solve the restricted instance of minCC in
a straightforward way. This algorithm is given as Algorithm 1.

Algorithm 1 Updating Sna for a single SoC violation at the end.

1: An instance of minCC for which the only infeasibility of Sna occurs on block TN , having SoCN < 0.
2: Set S = Sna

3: while S is infeasible do
4: if N (S) 6= ∅ then
5: Let Tm be the first block in N (S).
6: Update S by extra charging as much as possible on Tm while keeping SoCN ≤ 0.
7: else if P(S) 6= ∅ then
8: Let Tm be such that it has the highest potential for extra charging among the blocks in P(S).
9: Update S by extra charging as much as possible on Tm while keeping SoCN ≤ 0.

10: else
11: Return: infeasible.
12: end if
13: end while
14: Return: Schedule S.

Using the results obtained until now, we can solve instances with a dip below zero SoC at
the very end. Furthermore, note that an instance with an overflow of the state of charge for the
last block is somehow symmetric and can be solved in the same manner. Now, extra discharging
needs to be done before TN . The available potential for extra discharging on block Tn is given by
min{sn − An, SoCn, SoCn+1, . . . , SoCN}. Furthermore, a block now only causes extra switches if used
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for extra discharging when it is currently not used for discharging and its neighboring blocks are used
for charging. Thus, P(S) and N (S) should be adapted to reflect this. It should be clear that analogues
of Lemmas 4–8 hold, and modifying Algorithm 1 by changing P(S) and N (S) accordingly solves this
case to optimality.

With the results till now, fixing a single violation of the SoC constraints (11) at the very end
of the schedule is possible. By this, also a single violation anywhere in the schedule can be fixed
by considering the instance up to the block on which the violation occurs. If the resulting schedule
introduces no further violations, the instance is solved to optimality by Algorithm 1. However, the case
when there are more violations or the application of Algorithm 1 introduces another violation remains.
This case can be solved by iterative applications of Algorithm 1, as shown in the following theorem.

Theorem 9. The optimization problem minCC for a single device can be solved in polynomial time by iteratively
applying Algorithm 1.

Proof. From the Lemmas 4–8, it follows that a single violation of the SoC bounds in Sna can be solved
by a single application of Algorithm 1. Let Tn be the block on which the first violation occurs in Sna

and assume without loss of generality that SoCTn < 0 in Sna. To fix this violation, the only options
are to charge extra before Tn. Thus, an application of Algorithm 1 up to Tn fixes this with a minimal
increase of the number of switches. Let Tm be the block on which the next violation occurs after the
application of Algorithm 1. Note that Tm > Tn. We distinguish two cases:

Case 1 SoCTm > C: After the application of Algorithm 1, we have that SoCTn = 0 and SoCTm > C.
Thus, this schedule has a decoupling point Tk (see Definition 3) with Tk ≥ Tn. This means that only the
blocks between Tk and Tm can be used to overcome the infeasibility in Tm, and therefore, an application
of Algorithm 1 to the blocks between Tk and Tm gives an optimal schedule for the blocks between Tk
and Tm. This optimal schedule can be combined with the schedule obtained for blocks up to Tn to an
optimal schedule up to Tm.

Case 2 SoCTm < 0: Let S be the schedule obtained by applying Algorithm 1 up to block Tn.
Furthermore, let S? be an optimal schedule for the instance up to block Tm. Because S? is feasible, at
least as much extra charging is done on S? before Tn as on S. Similarly, as in the proofs of the Lemmas 7
and 8, the extra charging that is done differently between S? and S can be shifted in S? to match the
extra charging done by S without increasing the number of switches.

Now, let S′ be the schedule obtained from S by applying Algorithm 1 up to block Tm. Furthermore,
let ∆ be the amount of extra charging done on S′ compared to S to fix this violation. Since S? is feasible,
at least ∆ units of extra charging must also be done extra on S? compared to S. Once more, the extra
charging that is done differently between S? and S′ can be shifted to match the extra charging done by
S without increasing the number of switches.

Thus, the result is that S? can be changed to S′ without increasing the number of switches, proving
the optimality of S′. Finally, the above procedure can be repeated iteratively until all of the violations
are fixed.

Theorem 9 proves that iterative applications of Algorithm 1 can be used to solve a general instance
of minCC to optimality. The result is summarized in Algorithm 2.

The worst case running time of Algorithm 2 is O(N3), with N the total number of blocks
considered. This follows from the fact that constructing Sna can be done in time O(N). Furthermore,
at most N calls of Algorithm 1 are done, with each taking time O(N2). Finally, keeping track of the last
decoupling point can be done in time O(N).

Note that N is not the number of time intervals, but the number of blocks. These blocks are
consecutive time intervals on which a feasible schedule either has to charge, has to discharge or does
not need to use the device to satisfy the flow constraints (4). In general, for practical applications, this
number N may be much smaller than the number of time intervals T.
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Algorithm 2 Minimizing charging cycles for a single device.
H

1: Input: An instance of minCC.
2: Take S = Sna.
3: while There are SoC violations in S do
4: Determine the first violation in S
5: Calculate the last decoupling point in S; if this does not exist, take 0 as the decoupling point.
6: Apply Algorithm 1 to the blocks between the decoupling point and the violation.
7: end while
8: Output: Schedule S.

5. Comparison of the Solutions for the Different Objectives

In this section, we compare the results obtained for minThroughput with those obtained for
minCC. As shown in Section 3, problem minThroughput can be formulated as an LP, implying that
it can be solved efficiently through various well-known techniques. Note that this holds for any
number of considered storage devices. On the other hand, Theorem 1 showed that problem minCC is
NP-hard whenever multiple storage devices are considered. Thus, when considering multiple devices,
either the minimization of throughput should be used as the objective or a solution method should be
considered through the use of an approximation or a heuristic. As the study of potential heuristics and
approximations is outside of the scope of this work, we leave it for future work.

In Section 4, we developed Algorithm 2, which efficiently solves problem minCC to optimality
in the case of a single device. Furthermore, we note that the solution produced by Algorithm 2 uses
the device as little as possible, resulting in a solution that also minimizes throughput. We formulate
this below.

Corollary 10. The solution to problem minCC produced by Algorithm 2 simultaneously minimizes the charging
cycles and the throughput of the device, i.e., the schedule produced by Algorithm 2 is also optimal for problem
minThroughput with the same constraints.

Proof. The proof follows immediately from the following two observations. First, the initial solution
Sna uses the device as little as possible to satisfy the flow and power constraints (10). Second, the
iterative calls to Algorithm 1 used by Algorithm 2 use the device as little as possible to solve violations
of the SoC constraints (11).

Corollary 10 implies that Algorithm 2 can be applied when minimizing either the throughput or
the charging cycles of a single device, as both objectives are minimized simultaneously.

Finally, we note that an optimal solution to problem minThroughput can perform arbitrarily
bad in terms of the number of charging cycles compared to the optimal solution to problem minCC
produced by Algorithm 2. We show this by means of an example.

Example 1. We consider an instance for which minimizing throughput can result in m cycles, while
minimizing cycles results in a single cycle, with m arbitrary. In this instance, there are T = 2m + 2 time
intervals, or blocks of time intervals, with a single device. Furthermore, the upper and lower bounds
on the flow are respectively m and zero for all time intervals. For the first m intervals, the flow to be
kept between the bounds has a value of m− 1 on the odd intervals and a value of m + 1 on the even
intervals. For the final two intervals, we have F2m+1 = 0 and F2m+2 = 2m. See Figure 4 for a depiction
of the flow and bounds. For the device specifics, we consider a single device with a capacity of at least
m + 1, a power of at least m, an initial state of charge of m units of energy, and we assume that the
device was discharging energy before the start of the optimization horizon. In other words, we take
I = 1, P = m, C = m + 1, SoC0 = m and X0 = 0.
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By construction, the device has to charge m units of energy before the last time interval. Note that
doing a single unit of charging on each of the odd time intervals except interval 2m + 1 is a feasible
solution with minimal throughput. However, it causes a total of m switches. Furthermore, the schedule
produced by Algorithm 2 charges the required m units of energy on interval 2m + 1, which gives only
a single switch.

0 1 2 3 4 5 6 2m− 1 2m 2m + 1 2m + 2
//

m

2m

Time

F t

Figure 4. The flow values and the bound for Example 1.

The above example illustrates that using Algorithm 2 should usually be preferred over an
LP implementation of problem minThroughput to ensure that charging cycles are minimized in
conjunction with throughput. Furthermore, due to the low complexity of Algorithm 2, we expect that
it compares favorably in computation time to an LP implementation of minThroughput. An actual
comparison is outside of the scope of this work, however, and is therefore left for future work.

6. Conclusions and Discussion

In this work, we discussed the complexity of scheduling an electrical energy storage system
to flatten a given energy profile. In the considered mathematical model, the required flattening is
given as a constraint, while the objective is minimizing either the total throughput or the number
of charging cycles of the system. We showed that minimizing the total throughput for an arbitrary
number of devices can be formulated as a linear program. This leads to a polynomially-solvable
problem, which is well understood. We formulated the minimization of the number of charging cycles
as a mixed-integer linear program, indicating that it is potentially more difficult. We showed that the
problem of minimizing the number of charging cycles is NP-hard for multiple devices. Furthermore,
we analyzed the structural properties of the problem for a single storage device and presented a
polynomial time algorithm for solving this problem based on these properties, which also minimizes
the throughput of the device.

The complexity of the presented algorithm will be low for practical instances, as it is O(N3)

with N the number of blocks of time intervals. These blocks of the considered time intervals contain
either a peak in production, a peak in consumption or a time period when neither a production
nor consumption peak occurs. Since peaks in production and consumption usually span multiple
time intervals, the number of blocks is in general much smaller than the number of considered time
intervals (and hardly increases with a finer granularity of the time intervals). This means that the
given algorithm can be considered efficient for practical instances. This makes the algorithm suitable
for implementation in a general framework for applications such as demand-side management where
the algorithm has to run on a low-cost controller and/or is used very frequently in subroutines.

The considered model does not deal with characteristics specific to the various techniques
for electrical energy storage. This choice was made to ensure that the model applies to general
storage devices, independent of their storage technique. The problem structure changes when further
constraints specific to a storage technique are considered. Furthermore, different storage techniques
age differently depending on the usage conditions. Nevertheless, the minimization of throughput
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and charging cycles is a very important aging criterion for nearly all storage techniques, specifically
batteries. We believe the results presented herein form a suitable basis that can be expanded upon
when considering more complex models. As future work, we intend to study a more sophisticated
aging model of a battery and compare the results of these models to the results found herein.

While setting up the model, we assumed 100% efficiency of the devices, which is too optimistic
in practice. However, a constant input and/or output loss can easily be introduced into the model
by reducing the state of charge with a loss factor for every unit of energy charged into a device. The
resulting problem is still of a similar nature to that described in this work. The incorporation of
time-independent losses can thus be addressed by our algorithm after some pre-processing of the
considered instances. On the other hand, time-dependent losses impose a time dependency on the
energy charged into the devices. This results in a more complex problem than the problem considered
in this work.

Finally, the considered model assumes perfect knowledge of the future when constructing the
schedule. In practice, the energy demand/supply for a future time period can only be estimated,
resulting in prediction errors when the schedule is put into practice. An investigation of the effects of
these prediction errors and the creation of opportunities to schedule around them is outside the scope
of this work. Nevertheless, we believe the results found herein can serve as a basis when tackling
prediction errors in the described problems.
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Abbreviations

The following abbreviations are used in this manuscript:
EESS: Electrical energy storage system
LP: Linear program
MILP: Mixed-integer linear program
SoC: State of charge
NP: Non-deterministic polynomial time

Nomenclature

N (S) The set of blocks for schedule S with potential for extra charging that do not cause
extra switches when used

P(S) The set of blocks for schedule S with potential for extra charging that cause extra
switches when used

T Set of time intervals
U Set of storage devices in the EESS
At Combined lower bound on the flow value from flow and power constraints for

time interval t
Bt Combined upper bound on the flow value from flow and power constraints for

time interval t
Ci Maximum storage capacity of device i
Ft Flow value in the considered grid for time interval t
LBt Lower bound on the flow value after use of the EESS
MCn(S) The potential for extra charging on block Tn by schedule S
minCC Mathematical program minimizing the total charging cycles of the devices in

the EESS
minThroughput Mathematical program minimizing the throughput of the devices in the EESS
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Pi Maximum charging power of device i
S Schedule for an instance of minCC
Sna The naive local schedule for an instance of minCC
si,t Energy flow into or from device i from time interval t
SoCi,0 SoC of devices i at the start of the optimization horizon
SoCi,t SoC of device i after interval t
Tn A (consecutive) block of time intervals in T indexed by n
UBt Upper bound on the flow value after use of the EESS
Xi,t Binary indicating if device i is charging or discharging on time interval t
Yi,t Binary indicating a switch between charging and discharging on time interval t

for device i
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