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Abstract: Wireless power transfer (WPT) is greatly affected when the transmission channel is
surrounded by non-ferromagnetic metallic objects and the alternating magnetic field interacts with
the metal conductor, which is more of an issue in wirelessly charged electric vehicle (EV) applications.
This paper analyses the performances of a WPT system in an environment with a non-ferromagnetic
metal plate. The impedance model of the WPT system in the metal environment is established.
Moreover the variation law of a coil’s equivalent inductance and resistance is deduced when the coil
is surrounded by the non-ferromagnetic metal plate. Meanwhile, simulations, theory and experiments
all confirm that the model is correct. Finally, since the system performance of a wireless charging
system is influenced by non-ferromagnetic metals, this paper puts forward a method to improve the
performance, that is, to place ferrite cores between the receiving coil and a metal plate. Experiments
are carried out to verify the method, and the desired results are achieved.

Keywords: wireless power transfer; resonator; metal; impedance model; ferrite cores

1. Introduction

By using resonance and the coupling of magnetic fields and electric fields to transmit power,
WPT technology has many advantages over cable transmission. Currently it is widely used in
consumer electronics such as mobile phones, tablets, laptops, electric toothbrushes, hutch cables, TVs,
electric cars, electric buses and so on for charging devices and supplying power [1–8].

In terms of different application environments and fields, researchers at home and abroad have
conducted in-depth research and analysis [9–11]. Research shows that, in a certain transmission space,
a magnetic coupling resonant WPT system can achieve high power transfer efficiency (PTE) in the air
when the transmission channel is not surrounded by metal objects. The transmission channel actually
is not an ideal air transmission medium; there is more or less interference from different types of metal
objects. Some of these metal objects are interferences from external obstacles, while some are required
for improving system robustness. For example, in a wireless charging system for EVs (as shown in
Figure 1), a transmitting coil is generally placed in a parking space on the ground and a receiving coil
is installed in electric vehicle chassis that is composed of a metal plate of high strength. The existence
of the metal material changes the distribution of the magnetic field in the power transfer space,
and affects the wireless charging system. This effect includes two aspects: (1) the performance of the
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WPT system is reduced or weakened, leading to lowered transferred power or PTE; (2) the model
using air as a medium is no longer accurate.
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At present, few researches have been conducted on the characteristics of magnetic coupling
resonance WPT systems under the influence of metal objects. To address the problem caused by the
existence of metal objects, an experimental analysis method is the one most frequently used to study
the influences of external metal objects [12,13]. However, this method has great limitations, that is,
it doesn’t effectively play a guiding role in system design and is only used as an auxiliary means to
analyze the performance.

Toshiba has proposed that measuring the reflection coefficient can decide whether a metal barrier
exists between a transmitter and a receiver or not [14]. Reference [15] studies the influence of the
application of an aluminum sheet in a WPT system, and analyses the influence on system performance
when external metal objects exist in the system. In that paper, the reduction in PTE is observed when a
small-size aluminum sheet is near the transmitting coil.

In addition, KAIST scientists have reported that the amount of electromagnetic radiation of EVs’
wireless charging systems can be reduced by a reverse magnetic field produced through using a
LC resonant coil, and the reduction can reach 64%, while additional power input is not needed [16].
It is further studied and pointed out [17] that the use of double LC resonant coil shielding can improve
the shielding effectiveness (SE), and the resonance frequency is changed due to environmental changes
and subsequently the PTE is lowered. By comparing the PTE of two-coil structures with aluminum
plates and that of two-coil structures without aluminum plates, it is concluded that aluminum’s
effect on reflection coefficient is the main reason for the lowered PTE; by comparing the PTE of
a four-coil structure with aluminum plate and that of a four-coil structure without aluminum plate,
it is evident that aluminum’s effect on conductor loss is the main factor causing the decrease in PTE,
while, aluminum exerts relatively little effects on the PTE of a four-coil system [18]. A study done
by Osaka Industrial University [19] used ferrite cores and a metal plate conductor simultaneously to
improve the electromagnetic field of a WPT system which is calculated by the Ampere’s Law, but this
paper does not analyze the modeling of WPT systems with metal plates. By defining a SE formula,
a University of L’Aquila in Italy work analyses absorption loss, reflection loss and additional effects of
multiple reflections and transmissions, and finally draws the conclusion that the magnetic material
helps to improve the coupling. The conclusion is verified by experiments and simulation in a 20 kHz
system [12,20]. Based on the TEM wave theory, Lawson and others [21] analyzed how the PTE of a
WPT system varies with the frequency when a ferrite material exists in the system.

When metal objects exist, there is always a deviation between the theoretical analysis based on
current models and experimental results. The alternating magnetic field from the transmitting coil
and the receiving coil, and the metal conductor produce electromagnetic induction coupling and
eddy current occurs in metal objects. The eddy current in metal objects creates an induced magnetic
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field which affects the original magnetic field, thus changing coil impedance and the resonant circuit.
Therefore, the existence of metal objects breaks down system’s original “electric resonance” state, so
that WPT system may not work properly or its system performance may be deteriorated substantially.
In addition, since the existence of eddy current increases eddy current losses when power is transmitted,
it further aggravates the deterioration of system performance. The impacts of metal objects on systems
are more complex, since these are influenced collectively by permeability, conductivity, geometry of
the metal objects, geometric parameters of resonator coils, working frequency and other parameters.

In sum, previous research has failed to build a resonance power transfer model under the
influences of metal objects. It has also failed to discuss the influences of metal objects on transmission
parameters such as system power, efficiency and resonant frequency. Both the theoretical and
experimental aspects of this problem need further study. This paper mainly deals with two problems:
how to cope with the influences of metal plates on the system and how to build an accurate model of it.

2. The Influence of a Single-Side Metal Plate on Coil Parameters

2.1. Influence of a Single-Side Metal Plate on a Single-Turn Coil

In order to analyze the effect of a metal plate on coils, we firstly analyze the influence of the metal
plate on a single turn coil, and on this basis, and we work out the influence of the metal plate on a
multi-turn coil with the help of the superposition method. The coil radius is a. The angular frequency
of the current is ω. The line crossing the central point of the coil and vertical to the coil surface is
defined as the z axis. The metal plate is placed at z = 0 and the relative position of the coil is z = d,
which is displayed in Figure 2. The thickness of the metal plate is h. If τ is the volume resistivity of the
sheet, then the area resistivity ζ can be described by τ/h.
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Figure 2. Position distributions of single turn coil and metal plate.

According to the vector symmetry, in a cylindrical coordinate system, the magnetic vector potential
A generated by the coil current and A1 generated by eddy current are only in the direction of φ, so this
is in z axis symmetrical. Since the electromagnetic field is independent of φ, in cylindrical coordinates,
if Bρ is used to indicate the direction of magnetic induction intensity ρ generated by the coil carrying
current, so:

Aφ `A1φ “
8
ÿ

n“1

p´
2jζ
µω

q

n
BnAφ

Bzn « j
2ζ
µω

Bρ (1)

Because the magnetic vector potential of eddy current is symmetrical around a metal plate, then:

A1φpρ, zq “ ´Aφpρ,´zq ` j
2ζ
µω

Bρpρ,´zq (2)
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Equation (2) shows that the eddy currents induced by the metal plate are approximately equivalent
to a mirror electromagnetic field generated by the coil at the far side. This field has two components.
One component is the magnetic flux density of the image coil with equal and opposite current. The
other component is B field produced by the image coil with a quadrature current of amplitude
proportional to 2ζ{ωµ.

The coil voltage ∆V induced by the electromagnetic field generated by the eddy current of the
metal plate can be expressed as:

∆
.

V “ ´jωp2πaqA1φpa, dq (3)

According to the Equation (2), Aφ and Bρ represent the magnetic vector potential and magnetic
induction intensity generated by current per unit running through coil respectively. Through further
simplification, it can be obtained that:

∆Z “ ∆
.

V.
I

“ jω∆L` ∆R
“ jωr2πaAφpa,´dqs ` 4πaζ

µ Bρpa,´dq

(4)

∆L represents the self-inductance variation and ∆R represents the effective series resistance variation
changed by the presence of the metal plate. Also, the magnetic vector potential Aφ(ρ,´z) is:

Aφpρ,´zq “
µ

2π

c

a
ρ

Gpkq (5)

in which:
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Gpkq “ p 2
k ´ kqKpkq ´ 2

k Epkq

k “
c

4aρ
pa`ρq2`pz´dq2

K “
şπ{2

0
dψ?

1´k2sin2ψ

E “
şπ{2

0

a

1´ k2sin2ψdψ

(6)

from Equations (4)–(6), we can conclude that:
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%

∆L “ aµGp a?
a2`d2 q

∆R “ 2ζd?
a2`d2 r´Kpkq ` a2`2d2

?
a2`d2 Epkqs

k “ a?
a2`d2

(7)

2.2. Influence of a Single-Side Metal Plate on Multi-Turn Coil

In practical applications, a coil with several turns wound with Litz wire is commonly used to
increase the inductance. On the basis of the analysis in Section 2.1, superposition method can be
applied to calculate the variations of both ∆L and ∆R of a coil with N turns:

$

’

’

’

&

’

’

’

%

∆L “
N
ř

i“1
∆Li ` 2

N
ř

i‰j
∆Mij

∆R «
N
ř

i“1
∆Ri

(8)
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The proximity effect and the skin effect are ignored for the calculation of ∆R as long as the
constraints shown in Equation (9) [22,23] and Equation (10) [24] are satisfied:

$

’

&

’

%

D ď h
3

h “
b

2
2π fµ0µrγ

(9)

$

&

%

e “ k
sinhpkDqcoshp d

2 `D´ xq

k2 “ j2π fµ0µrγ
(10)

where D represents the diameter of every inner flexible stranded wire, h denotes the skin depth of
the wire. F stands for the current frequency. µ0 is the magnetic permeability of free space and equals
to 4π ˆ 10´7 H/m. µr is the relative magnetic permeability. γ is used to represent the conductivity.
E is used to denote current density factor. d is the space between any two inner flexible stranded wires.
x shows the exact position of the wire.

In this paper, the relative magnetic permeability of the Litz wire is µr = 1 and the electric
conductivity is γ = 5.8 ˆ 107 S/m. The diameter of each inner flexible stranded wire is D = 0.05
mm. The calculated frequency ranges from 0 to 200 kHz according to Equation (9). Furthermore,
according to Equation (10) when current frequency ranges from 0 to 200 kHz, the variation of
current density can be neglected when the spacing between each two inner flexible stranded wires is
0–0.05 mm. Thus the proximity effect can be ignored.

3. Modeling and Experimental Research of WPT Systems with a Single-Side Metal Plate

3.1. Modeling and Parameter Idetification of Systems with a Single-Side Metal Plate

A magnetic resonant WPT system includes a transmitting coil and a receiving coil, which are
placed coaxially, as shown in Figure 3. The transmitting coil has N1 turns wound in a circle of radius a.
The receiving coil has N2 turns wound in a circle of radius b. The metal plate is parallel to the coils
and the distance from the metal plate to the transmitter and that from the plate to the receiver are
c and d, respectively.
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The impact of the metal plate on inductance L, mutual inductance M and resistance R can be
calculated according to Equation (8). If there is no metal plate, the mutual inductance between the
transmitting coil and the receiving coil can be described by:

M0 “ µN1N2
?

abGp

d

4ab
pa` bq2 ` pc´ dq2

q (11)
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If there is a metal plate, the mutual inductance can be described as:

M “

N1
ÿ

i“1

N2
ÿ

j“1

∆Mij “M0 ´ µ
?

abGp

d

4ab
pa` bq2 ` pc´ dq2

q (12)

In conclusion, the equivalent circuit model of systems with metal plates can be obtained,
as displayed in Figure 4. Apart from the equivalent model of systems without metal plates, Figure 4
also shows the equivalent circuit model of systems using air as a medium. To simplify the analysis,
the mutual inductance between the metal plate and the transmitting coil is neglected. The mutual
inductance between the metal plate and the closer coil and the mutual inductance between the two
coils are taken into consideration.
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In Figure 4, R3 represents the loss of metal plates caused by magnetic field. L3 denotes the
equivalent inductance of the metal plate. Circuit matrix equation is then expressed by:

Z ¨
.
I

T
“

.
V

T
(13)

where Z =

»

—

–

R1 ` jX1 jωM12 jωM13

jωM12 R2 ` RL ` jX2 jωM23

jωM13 jωM23 R3 ` jX3

fi

ffi

fl

,
.
I

T
“

” .
I1

.
I2

.
I3

ıT
,

.
V

T
“

” .
Vs 0 0

ıT
,

X1 =ωL1 ´ 1/(ωC1), X2 =ωL2 ´ 1/(ωC2), X3 =ωL3.
Since the mutual inductance between the metal plate and the transmitting coil is neglected,

M13 « 0. The currents in each circuit loop can be calculated by solving Equation (13) and thus, can be
described by:

$

’

’

’

’

&

’

’

’

’

%

.
I1 “

`

Z22Z33 ´ Z2
23
˘

ξ´1
.

Vs

.
I2 “ ´Z12Z33ξ

´1
.

Vs

.
I3 “ Z12Z13ξ

´1
.

Vs

(14)

where ξ´1 “ Z11Z22Z33 ´ Z11Z2
23 ´ Z2

12Z13; impedance of the transmitting coil Z11 “ R1 ` jX1;
impedance of the receiving coil Z22 “ R2 ` RL ` jX2; impedance of the metal plate Z33 “ R3 ` jX3;
mutual impedance between the transmitting coil and the receiving coil Z12 “ Z21 “ jωM12;
mutual impedance between the transmitting coil and the metal plate Z13 “ Z31 “ jωM13; mutual
impedance between the receiving coil and the metal plate Z23 “ Z32 “ jωM23.
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According to Equations (8) and (13), the influence of the metal plate on the receiving coil can be
represented by:

$
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3.2. Simulation and Experimental Research of a Coil with a Single-Side Metal Plate

On the basis of theoretical analysis, simulation aided by COMSOL is carried out to analyze the
parameter variations of the receiving coil working in an environment with metal plates, as shown in
Figure 5a. Circular plate spiral coils are employed in this research. Coils are tightly wound so that the
turn-to-turn distance is negligible. Coil parameters are specifically tabulated in Table 1.
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Table 1. Coil parameters.

Parameter Value

External radius 20 cm
Inner radius 16 cm
Coil turns N 10

Wire diameter 2 mm
Frequency f 73 kHz

Inner resistance R 0.05 Ω

A 3 mm thick and 30 cm long square plate made of aluminum is used in the simulation.
The electric conductivity is set at 3.5 ˆ 107 S/m and the relative dielectric constant as well as the
relative magnetic permeability is 1. The system is driven by a source working at 73 kHz so that a
compensated capacitor of 120 nF is chosen.
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To validate the theoretical and simulating results, experimental prototype using the receiving coil
and the metal plate introduced above is designed and displayed in Figure 5b. The values of receiving
coil inductance measured by theoretical calculations according to Equation (8), and by COMSOL,
by experimental calculations are 40.67, 39.938, and 40.68 µH, respectively. The deviation between the
simulation value and the theoretical value is 0.03% while the deviation between the measured value
and the theoretical value is 1.8%, and both deviations demonstrate acceptable precision.

Theoretical calculation, simulation and experimental measurement are employed to quantify
the influence of the metal plate on the receiving coil inductance is specifically displayed in Figure 6.
The metal plate is placed at different distances from the receiving coil. Both the simulation and the
experimental results validate the correctness of theoretical analysis. It also indicates that the farther
the metal plate is moved away from the receiving coil, the less influence it brings about.
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Figure 6. Effect of different distances between the receiving coil and the metal plate on the
coil inductance.

In this paper, the metal plate is placed near the receiving coil. Considering the distance between
the metal plate and the transmitting coil is large enough (d ě 6 cm), the influence of the metal
plate on the transmitting coil can be ignored on the basis of the above analysis. It shows that
neglecting M13 is reasonable. If we replace the aluminum plate with a copper one, we can get
the same results. Consequently, non-ferromagnetic materials with different electric conductivities have
the same influences on coil parameters.

Based on the prototype shown in Figure 5b, the effect of frequency on the inductance
of the receiving coil is analyzed and illustrated in Figure 7, which shows the changing cure
of the receiving coil’s inductance vs. frequency measured by a Vector Network Analyzer
(Rohde & Schwarz Technology Co, Munich, Germany). It can be seen that when the distance between
the metal plate and the receiving coil is fixed, receiving coil’s inductance remains almost unchanged
regardless of frequency variation. The influence is inversely proportional to the distance between
the metal plate and the receiving coil, which can be clarified by the fact that a smaller d leads to a
larger ∆L.
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3.3. Simulation and Experimental Research of WPT System with a Single-Side Metal Plate

On the basis of the analysis above, our experimental prototype with a single-side metal plate
is constructed as shown in Figure 8. In this prototype, the parameters of the transmitting coil and
those of the receiving coil are as shown in Table 1. The metal plate introduced in Section 3.2 is used.
According to the simulation result and the experimental measurement results shown in Figure 8 as
well as Equation (12), the relationship between the mutual inductance and the metal plate distance is
calculated and displayed in Figure 9.
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The distance of 0 cm in Figure 9 indicates that the metal plate does not exist. The experimental
measurements are also included here, presenting a consistent result. A larger distance contributes
to a larger mutual inductance between the transmitting coil and the receiving coil, which indicates a
smaller influence of the metal plate on the system. This is why an air gap is usually set between the
receiving coil and the EVs chassis to enhance PTE for charging EVs.
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The changes of transferred power and PTE in accordance to distance variations can be measured
on the basis of Figure 8b. In the experiment, the distance between the transmitting coil and the
receiving coil remains at 6 cm. A system with no ferrite cores or metal materials is used to power a load
of 2 Ω, and the transferred power and the PTE are 10 W and 80% respectively, which are taken as the
reference values to normalize the performance of a system with a metal plate, as displayed in Figure 10.
Similar to Figure 9, the metal plate is not used when the distance is 0 cm. It can be concluded that
there is a continuous increase in both transferred power and PTE when the distance increases. In other
words, the effect of the metal plate is declining. When the metal plate is placed at a distance of 1.5 cm
away from the receiving coil (quite close to the receiving coil), transferred power is extremely low
due to the influences of the metal plate, while, the PTE is approximately 3.2%, which can be mainly
caused by the fact that the existence of the metal plate leads to the detuning of the receiving coil.
This would definitely have an adverse influence on system operations and exacerbate system
performance. Therefore, in order to address this problem, WPT systems with a single-side metal
plate should be improved and optimized.
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4. Performance Improvement of WPT System with a Single-Side Metal Plate

4.1. Application of Ferrite Cores and Its Effect on the Receiving Coil

The metal plate is supposed to absorb the magnetic field so the coil inductance decreases
accordingly. As a result, it is necessary to reduce the effect of the metal plate on coils by limiting the
electromagnetic field intensity. Several ferrite cores are placed between the receiving coil and the metal
plate, through which the electromagnetic field in a close region can be enhanced. As a result, the
leakage field is reduced and both self-inductance and mutual inductance are increased. Nevertheless,
the use of ferrite cores produces power loss due to eddy current. The power loss is proportional to
electric conductivity σ and frequency f2. Consequently, materials with small conductivity are preferred
to improve PTE. The ferrite cores used in the paper are a DMR95 Mn-Zn with specific dimensions
of 7 cm ˆ 2 cm ˆ 0.5 cm. The standard power loss is 300 mW/cm3@100 kHz, 200 mT, much smaller
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than that of metal materials whose conductivity is 3500–4500@(80–120 kHz). As a result, power loss
caused by the eddy current is extremely low.

According to Figure 5a, the COMSOL simulation model of a system consisting of a receiving coil,
a metal plate and ferrite cores placed between them is shown in Figure 11. The magnetic field intensity
at the center of the coil is displayed. The distance between the metal plate and the receiving coil
is 1.5 cm and the excitation current is 1 A.
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Figure 11. System model with ferrite cores: (a) 2D model; (b) 3D simulation model.

When ferrite cores are not used, the magnetic field intensity is around 25 µT as shown in Figure 12.
With the increase in the number of ferrite cores, the magnetic field intensity increases obviously, to
about 39 µT by 56% when six ferrite cores are used. Since self-inductance of the coil is proportional
to the magnetic field intensity, so the application of the ferrite cores is a feasible way to enhance
the self-inductance.
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Figure 12. (a) Magnetic field distribution; (b) Magnetic changing curve vs. numbers of ferrite cores.

According to the analytical results above, the simulation and experimental results of the
relationship between the coil’s self-inductance and the number of ferrite cores when the metal plate is
not used are illustrated in Figure 13, which shows that more ferrite cores contribute to a larger coil
inductance. Six ferrite cores, whose sequence numbers represent different locations, are used as shown
in Figure 11a, and the inductance is increased to 46 µH by 15%. It should be noted that there is only
one ferrite core in each location, for example, sequence 5© represents that a ferrite core is placed at the
position 5©.

If the power loss is ignored, the results in Figures 6 and 13 demonstrate that proper distribution of
ferrite cores can increase the inductance while the metal plate has an adverse impact on it. According
to the resonant frequency determined by f = 1/2π(LC)0.5, the use of ferrite cores which leads to the
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increase in inductance also results in a decrease of the resonant frequency. On the contrary, the metal
plate which results in the decrease in inductance increases the resonant frequency. As a consequence,
the proper distribution of a number of ferrite cores is able to eliminate the influence brought by the
metal plate completely, which is vital to system stability. The metal plate is placed at a distance of
1.5 cm apart from the receiving coil, and the ferrite cores are added one by one in the sequence as
illustrated by Figure 11, the simulation results and the measured results are tabulated in Table 2.Energies 2016, 9, 576  12 of 16 
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Table 2. Receiving coil’s parameter variation. 

Ferrite Cores 

Coil Inductance (μH) Resonant Frequency (kHz) 

Simulation 

Values 

Measured 

Values 

Simulation 

Values 

Measured 

Values 

None 23.401 23.42 94.98 94.75 

① 28.48 28.56 86.09 85.97 

①② 30.57 30.59 83.08 83.01 

①②③④ 34.25 34.17 78.51 78.39 

①②③④⑤ 35.76 35.20 76.83 76.82 
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Table 2. Receiving coil’s parameter variation.

Ferrite Cores
Coil Inductance (µH) Resonant Frequency (kHz)

Simulation Values Measured Values Simulation Values Measured Values

None 23.401 23.42 94.98 94.75
1© 28.48 28.56 86.09 85.97

1© 2© 30.57 30.59 83.08 83.01
1© 2© 3© 4© 34.25 34.17 78.51 78.39

1© 2© 3© 4© 5© 35.76 35.20 76.83 76.82
1© 2© 3© 4© 5© 6© 39.65 40.04 72.96 72.95

The results in Table 2 further validate the feasibility of offsetting the influence of a metal plate by
using ferrite cores. It should be noted that the needed number of ferrite cores changes in accordance
with the distance variations between the metal plate and the receiving coil.

4.2. Comparative Experiments on Performance of Systems with and without Ferrite Cores

System performance enhancement by using magnetic materials (ferrites) is further investigated.
If the transferred power and the PTE are set as benchmarks when the system has no metal or ferrite
material between two coils and in surrounding areas, by normalizing measured results for a second
time, we can get the variation curve of PTE and that of transferred power in accordance to the distance
between the metal plate and the receiving coil as shown in Figure 14.

According to Figure 14, with the increase of ferrite cores, the influence of metal plate on receiving
coils is weakened, and the optimum is achieved in a certain condition. When the optimal state is
reached, the enhancement effect of ferrite cores on the inductance of receiving coil and the weakening
effect of metal plate on receiving coils offset each other, and the system is in a resonance state again.
Such as Figure 14, when the distance is 1.5 cm, the number of cores is about 5–6; for a distance
of 3.5 cm, the number is about 4–5; for a distance of 6cm, the number is about 3–4. When the number
of cores is optimal, the influence of metal plate on receiving coils can be basically offset. At this time,
transferred power and PTE had returned to 90% in the presence of metal plate. Of course, it is difficult
to recover completely, because there are losses in both the metal plate and the ferrite cores, such as
eddy current loss or hysteresis loss, etc. With the increase in the number of ferrite cores, the effect of
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ferrite cores on a receiving coil plays a major role, which sets WPT systems in a state of disharmony,
so the transferred power and PTE of WPT systems are decreased again. When the transmission distance
is 6cm, the system input voltage, output voltage and current waveforms are shown in Figure 15.Energies 2016, 9, 576  13 of 16 
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In summary, the aforementioned results demonstrate that by using a strong magnetic conductive
material placed between metal objects and receiving coil reasonably, we can reduce the effect of metal
objects on WPT systems effectively and maximize PTE.

5. Discussion

Problems caused by metal materials have to be tackled to guarantee applications of WPT
technology in many fields, such as charging for EVs, smart-phones, intelligent household appliances,
other relevant industries and so on. The magnetic field caused by metals results in a decrease of system
performance. In addition, the modeling and analysis in such a complicated environment are hard
to implement since it includes coupling of magnetic field, electric field and heat field. Researches
addressing these issues are still at the beginning. The paper intends to improve PTE of WPT systems
working in the environment with metal materials and reduce the influence of these metal materials on
system performance.

To be more specific, a non-ferromagnetic metal plate is used in this paper to simulate the working
environment with metal materials. A basic analysis is completed and corresponding solutions to
improve PTE are proposed. High-frequency magnetic conductive materials are employed and the
system performance is obviously enhanced by their proper distribution, which provides a feasible way
to tackle problems in a WPT system with a single side metal plate. Meanwhile, quantitative analysis is
not carried out due to the complexity of the system working in the environment with metal materials,
so simulation combined with experimental verification is widely used in the paper, causing difficulties
in system design. Moreover, the use of magnetic materials increases the overall costs. The compromise
between reducing expenses and developing technology to improve system performance is what we
need to consider in future research. Anyway, the performance improvement of WPT systems working
in the environment with metal materials is of great significance to promote the wide applications of
WPT technology.

6. Conclusions

This paper studies the effect of non-ferromagnetic metal plates on resonant WPT systems, and
establishes an impedance model containing metal plates. Through comparing the model calculation
results, the simulation results and the experimental results, which are in accord with each other,
we verify the correctness of the model. When a non-ferromagnetic metal material exists around coils,
the intrinsic resonant frequency is lowered, and the effect caused by the metal material around the
coil produces eddy current loss, which is not conducive to the effective transmission of the energy
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system. Therefore this paper uses the magnetic characteristics of the magnetic material, and rebuilds
the circulation channel for magnetic field between the metal plate and coils, thus weakening its effect
on the coils. By means of theoretical analysis and experiment, this paper proves the correctness of
this approach.

The performance improvement of WPT systems with metal is not only a complicated math
problem, but also a key problem which needs to be solved urgently practical application. This paper
only investigates systems with non-ferromagnetic metal plates, but our research results provide
certain reference values in irregular metal system modeling, and a feasible solution to improve system
performance in the metal environment.
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