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Abstract:



In this paper, the problem of minimizing electricity cost and the peak system load in smart grids with distributed renewable energy resources is studied. Unlike prior research works that either assume all of the jobs are interruptible or power-shiftable, this paper focuses on more challenging scenarios in which jobs are non-interruptible and non-power-shiftable. In addition, as more and more newly-built homes have rooftop solar arrays, it is assumed that all users are equipped with a solar-plus-battery system in this paper. Thus, power can be drawn from the battery as needed to reduce the cost of electricity or to lower the overall system load. With a quadratic load-dependent cost function, this paper first shows that the electricity cost minimization problem in such a setting is NP-hard and presents a distributed demand-side management algorithm, called DDSM, to solve this. Experimental results show that the proposed DDSM algorithm is effective, scalable and converges to a Nash equilibrium in finite rounds.
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1. Introduction


The cost of electricity generation in a power grid can vary hour by hour depending on numerous factors, including the type of fuels used, power plants, transmission and distribution lines, weather conditions, regulations and demands. For many decades, economists have argued that retail electricity prices should thus fluctuate to help cut power costs for users with flexible power consumption schedules and to reduce the peak system load [1]. Figure 1 shows examples of hourly electricity prices for Hudson Valley, Long Island and New York City on 1 December 2011 [2]. Under the dynamic pricing scheme, electric utility companies provide consumers with information about the actual cost of electricity at any given time via text messages, emails, telephones or smart meters. Consumers, in turn, adjust their electricity usage to coincide with the times that prices are lower. However, they need to closely monitor the price changes in order to take advantage of the lower prices, which is not very practical. Therefore, the first goal of this paper is to design an autonomous scheduling algorithm that can simultaneously minimize electricity costs for all users and the peak system load.


Figure 1. Hourly electricity prices for Hudson Valley, Long Island and New York City on 1 December 2011 [2].
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In addition to shifting loads to non-peak hours, energy costs and the peak system demand can be lowered by utilizing ambient energy. In the past few years, there has been an increasing number of grid-connected solar-plus-battery systems installed in the residential market. The City of Lancaster, California, for example, has required newly-built homes to feature solar power systems since 1 January 2014 [3]. Although these distributed renewable power sources are not as reliable as traditional power plants fueled by coal or natural gas, they can be used to further reduce energy costs for users. Hence, the second goal of this paper is to develop a power management algorithm for maximizing the utility of such renewable power systems.



There have been some research studies in the literature addressing similar problems under various settings, such as single-user scenarios [4,5,6], interruptible or power-shiftable appliances (i.e., appliances that are allowed to consume power in an intermittent fashion) [7,8,9], load-independent electricity pricing (i.e., the electricity price does not depend on the overall demand on the entire grid) [5,6,10,11] and centralized renewable power generation [12]. Among the aforementioned studies, References [6,11] are probably the ones that are most similar to ours. However, the authors in [6,11] assume that the electricity prices are independent of the overall system load and are known to the consumers beforehand.



In summary, this paper studies the problem of demand-side management for smart grids with distributed renewable power generation and storage. The focus is on scenarios in which appliances are non-interruptible and non-power-shiftable. Here, non-interruptible means that once an appliance is started, it cannot be interrupted until its task is finished; while non-power-shiftable means that the power consumption pattern of an appliance cannot be arbitrarily adjusted depending on the optimization methods. An example of a non-interruptible device is washing machines. A washing machine is also non-power-shiftable because its power consumption cannot be arbitrarily adjusted and must be strictly followed [13]. Although this paper focuses on the scheduling of non-interruptible appliances, the proposed model and algorithms can be easily extended to handle interruptible appliances, as well. Throughout the paper, it is assumed that each appliance has an associated deadline and that all users are equipped with a renewable power generation and storage system. There is a single electric utility company in the grid. To provide reliable energy, the utility company uses generators that burn fossil fuels. Thus, similar to [8,12,14], the power generation cost is assumed to be a quadratic function of the system load and can vary in real time. Under such a setting, the goals of this paper are reducing the peak system demand, as well as minimizing energy costs for all users. To solve this problem, a bottom-up approach is adopted. First, the complexity of the problem is analyzed. Then, an algorithm inspired by the local search concept is proposed to solve the job scheduling problem. Based on the resulting job schedules, a power management algorithm is developed to reduce the cost of electricity further by drawing power from the battery at time intervals when the electricity prices are high and charging the battery for future use when the electricity prices are low. Lastly, combining the aforementioned job scheduling and power management algorithms, a multi-user distributed algorithm, called DDSM, is proposed to minimize the overall energy costs for all users in the grid. Experimental results show that the DDSM algorithm is effective, scalable and converges in finite rounds.



The rest of this paper is organized as follows. Section 2 reviews related works. Section 3 introduces the system model and the problem formulation. Section 4 presents the proposed algorithms for solving the electricity cost minimization problem. Section 5 analyzes and discusses the experimental results. In the end, Section 6 concludes the paper.




2. Related Works


There have been some research studies that have addressed the problems of minimizing the peak-to-average ratio (PAR) in load demand or electricity costs in smart grids under various settings. Mohsenian-Rad et al. [7] considered the PAR minimization problem in an autonomous power grid in which the utility company can adopt adequate pricing tariffs that differentiate energy usage in terms of both time and level. The price information and the current total load of the system can be exchanged via a communication system between the utility company and the end users. The authors showed that under a common scenario, with a single utility company serving multiple customers, the globally optimal performance can be achieved using an algorithmic game approach. Nguyen et al. [8] extended this earlier work [7] by allowing end users to store purchased electricity in a battery when the system load is low and then draw on the saved energy when the system load is high. The work in [9] extended the idea further by considering the possibility of injecting stored energy back to the grid, although the goal was minimizing the electricity cost rather than minimizing the PAR. Note that all of the aforementioned works adopt a simplified model in which the operations of all household appliances are assumed to be interruptible. In other words, appliances can alternate between active and inactive states as long as they finish their jobs before the given deadlines. In this regard, [15] adopted a more realistic model in which appliances are non-interruptible. The authors proposed a centralized approximation algorithm to solve the PAR minimization problem from the perspective of the utility company. Goudarzi et al. [10] also adopted the non-interruptible load model. However, rather than minimizing the PAR, the authors studied a single-user electricity cost minimization problem. A branch-and-bound-based approach was applied to solve the problem under the time-of-use (time-based pricing is a pricing strategy where the electricity price for any given time is pre-established and known to consumers in advance) pricing model. Samadi et al. [16] considered both interruptible and non-interruptible appliances. The objective was to minimize PAR with real-time pricing. Nonetheless, unlike our models, which allow non-interruptible appliances to be delayed, the authors of [16] assumed that non-interruptible appliances became active right at the earliest time slot in which they could be scheduled. Li et al. [17] considered both interruptible and non-interruptible appliances. Unlike the aforementioned works that directly minimize either the PAR or the electricity cost, the authors modeled demand-side management as a utility maximization game between the utility company and the end users. Similar to [16], there are also a few differences in the way non-interruptible appliances were modeled in [17]. For some non-interruptible appliances, the authors assumed that their working times were given and fixed (e.g., air conditioner), while others were modeled as power-shiftable devices (e.g., hybrid electric vehicles).



As one of the key features of a smart grid is the ability to accommodate all generation and storage options, more and more research studies have started to introduce various types of distributed power generation sources, including renewables. Moon et al. [4] studied a job-shop scheduling problem with time- and machine-dependent electricity costs by considering distributed energy resources (mainly fuel cells) and energy storage. The goal was to minimize the overall electricity cost, as well as the sum of maximal-completion-time related costs for a single production facility. The work in [6] considered the problem of minimizing residential electricity bills under the time-of-use pricing tariff. Each residential house was assumed to have a photovoltaic system and an energy storage system. To prevent all of the appliances from converging to time slots with low electricity prices, Yu et al. [6] introduced a constraint to limit the peak system load. Under the assumption that the hourly energy generation of the photovoltaic system is known, Yu et al. [6] utilized some optimization software package to solve the problem. The work in [12] focused on minimizing the electricity cost for an isolated micro-grid with one wind turbine, one fast responding conventional generator and several users. The authors used a Markov chain with six states to model the stochastic wind power generation process and proposed an optimal consumption strategy based on the backward induction technique. The problem setting in [6] is probably the most similar to that considered here. However, this paper focuses on non-interruptible and non-power-shiftable loads with real-time pricing, which makes the problem more challenging.



Apart from job scheduling, some research studies have also considered the possibility of reducing energy costs by carefully scheduling conventional power generators, such as [11,18]. The authors of [18] studied an electricity generation cost minimization problem for micro-grids equipped with both unstable renewable sources and conventional power generators. The goal was to determine a robust schedule for the appliances and the conventional generators under uncertain renewable sources. To deal with the uncertainty of renewable sources, the authors developed a novel uncertainty model to capture the randomnesses of renewable energy generation. In general, the authors assumed that the distribution of renewable energy generation is shifting around a known distribution that can be obtained either by prediction or long-term field measurements. Then, based on the aforementioned assumption, a robust optimization problem was formulated. To allow an easier solution, the authors decomposed the prime problem into a main problem and a subproblem. The subproblem was solved first to estimate the renewable power generation. Then, the result was fed to the main problem to determine the optimal schedule for the appliances and the conventional generators. The authors of [11] extended [18] to deal with cases in which the electricity price is also uncertain. Since the solution approach is similar to that of [18], we refer the reader to [11] for details. In this paper, although it is assumed that the distribution of uncertain renewable energy is known for the sake of clarity, our proposed method can be combined with robust optimization techniques, such as the primal cut algorithm in [19], to solve the electricity cost minimization problem when the real distribution of uncertain renewable is not available. More details on this are discussed in Section 4.5.




3. System Model


In this paper, a slotted time system is adopted. The time during a day is partitioned into T slots. Each user i has a set of appliances [image: there is no content], and each appliance [image: there is no content] has an energy consumption profile [image: there is no content], where [image: there is no content] and [image: there is no content] are the per-time slot power consumption and the time-to-completion of [image: there is no content], respectively. Moreover, every appliance [image: there is no content] has a deadline [image: there is no content] specified by the user. For example, a user can set the deadline of her washer-dryer to 8 a.m. to make sure clean clothes are readily available before leaving for work. Let [image: there is no content] denote a binary variable indicating whether appliance [image: there is no content] starts at time slot t. Then, the deadline constraint can be formulated as:


[image: there is no content]



(1)







Equation (1) implies that an appliance [image: there is no content] must start at a time slot that is sufficiently ahead of its deadline, so that its task can be completed in time. During each active time slot, an appliance [image: there is no content] must consume [image: there is no content] amount of energy. This can be expressed as:


[image: there is no content]



(2)




where:


[image: there is no content]



(3)




is an indicator function that is equal to one if [image: there is no content] is active at time t and is equal to zero otherwise.



As shown in Figure 2, it is assumed that each user has an ambient energy-harvesting device and a side battery in our model. The ambient energy harvested at a specific time slot [image: there is no content] can be either used to fulfill the user’s demands, saved into the battery for later use, or injected back into the grid to lower the aggregate system load. Let [image: there is no content], [image: there is no content] and [image: there is no content] denote these three portions of [image: there is no content], respectively. Then, the following equality must hold:


[image: there is no content]



(4)






Figure 2. An illustration of the system model.
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In addition to renewable energy, a user can also draw power from the grid and the battery to fulfill his or her demands. Thus, the following energy balance constraint must be satisfied at all times:


[image: there is no content]



(5)







In Equation (5), [image: there is no content] and [image: there is no content] denote the amount of energy drawn from the grid and the battery to support the operations of user i’s appliances, respectively; and [image: there is no content] is the battery discharge efficiency. Regarding charge and discharge, a user’s battery level [image: there is no content] varies over time as follows:


[image: there is no content]



(6)




where [image: there is no content] denotes the amount of energy drawn from the battery that is injected back into the grid and [image: there is no content] is the battery charge efficiency. As a battery cannot be in charging and discharging states simultaneously, the following constraints are introduced to prevent that from happening [20]:


[image: there is no content]



(7)






[image: there is no content]



(8)




where [image: there is no content] is a binary variable indicating whether user i’s battery is in the charging state at time t and M is a constant big number. Next, to ensure that there is always backup power for emergency use, the battery levels of all users are required to be maintained at or above their initial levels at the end of the scheduling horizon:


[image: there is no content]



(9)




where [image: there is no content] is the initial battery level. Lastly, a battery’s level can never go beyond the maximum capacity or drop below zero. Therefore:


[image: there is no content]



(10)







Define [image: there is no content] to be the load imposed on the power grid by user i at time t. The total conventional power [image: there is no content] that needs to be generated at each time slot is therefore:


[image: there is no content]



(11)







Similar to [8,12,14], the total power generation cost [image: there is no content] is assumed to be quadratic and non-decreasing. In algebra, a quadratic function is a polynomial of degree two, such as:


[image: there is no content]



(12)







Similar to [8], an average cost-based pricing scheme is considered in this paper. Given the aggregate load of the system [image: there is no content] at time slot t, the energy provider sets the retail electricity price for time slot t as:


[image: there is no content]



(13)







Users share the power generation cost based on their load proportions. In other words, the electricity cost [image: there is no content] for each user i at a specific time slot t is:


[image: there is no content]



(14)







In this setting, our goal is to minimize the overall expected electricity cost for all users:


mins,r,b,gE∑t=1T∑i∈NCi(t)



(15)







Note, in Equation (15), [image: there is no content] denotes the set of appliance scheduling decision variables; [image: there is no content] denotes the set of renewable power management decision variables; [image: there is no content] denotes the set of battery management decision variables; and [image: there is no content] denotes the set of grid power management decision variables for all users. The key notations used in the paper are summarized in Table 1, Table 2 and Table 3 for reference.



Table 1. Parameters.







	
Symbol

	
Definition






	
[image: there is no content]

	
The capacity of user i’s battery




	
M

	
A constant big number




	
T

	
The total number of time slots




	
[image: there is no content]

	
The number of time slots required by appliance [image: there is no content] to complete its task




	
[image: there is no content]

	
Per-time slot power consumption of appliance [image: there is no content]




	
[image: there is no content]

	
The amount of ambient energy harvested by user i at time t




	
[image: there is no content]

	
Battery charge efficiency




	
[image: there is no content]

	
Battery discharge efficiency










Table 2. Variables.







	
Symbol

	
Definition






	
[image: there is no content]

	
The power consumption of appliance [image: there is no content] at time t




	
[image: there is no content]

	
A binary variable indicating whether user i’s battery is in the charging state at time t




	
[image: there is no content]

	
The load imposed on the power grid by user i at time t




	
[image: there is no content]

	
The total conventional power that needs generating (also known as the aggregate system load) at time t




	
[image: there is no content]

	
The battery level of user i at time t




	
[image: there is no content]

	
A binary variable indicating if appliance [image: there is no content] starts at time slot t




	
[image: there is no content]

	
The amount of energy drawn from the battery that is used to fulfill the demand of user i at time t




	
[image: there is no content]

	
The amount of energy drawn from the battery that is injected back into the grid by user i at time t




	
[image: there is no content]

	
The amount of power drawn from the grid that is saved to the battery for later use by user i at time t




	
[image: there is no content]

	
The amount of power drawn from the grid that is used to fulfill the demand of user i at time t




	
[image: there is no content]

	
The portion of harvested ambient energy that is used to fulfill the demand of user i at time t




	
[image: there is no content]

	
The portion of harvested ambient energy that is saved to the battery for later use for user i at time t




	
[image: there is no content]

	
The portion of harvested ambient energy that is injected back into the grid by user i at time t










Table 3. Sets.







	
Symbol

	
Definition






	
N

	
The set of users




	
[image: there is no content]

	
[image: there is no content] is the set of appliances of user i




	
[image: there is no content]

	
[image: there is no content] is the set of appliance scheduling variables of user i




	
[image: there is no content]

	
[image: there is no content] denotes the set renewable power management decision variables for user i




	
[image: there is no content]

	
[image: there is no content] denotes the set battery management decision variables for user i




	
[image: there is no content]

	
[image: there is no content] denotes the set of grid power management decision variables for user i




	
[image: there is no content]

	
[image: there is no content] is the set of appliance scheduling decision variables for all users




	
[image: there is no content]

	
[image: there is no content] is the set of renewable power management decision variables for all users




	
[image: there is no content]

	
[image: there is no content] is the set of battery management decision variables for all users




	
[image: there is no content]

	
[image: there is no content] is the set of grid power management decision variables for all users




	
[image: there is no content]

	
[image: there is no content] denotes the union of all power management decision variables for all users











4. Distributed Demand-Side Management


If the [image: there is no content] term in Equation (14) is expanded, it becomes:


[image: there is no content]



(16)







It can be clearly seen that the electricity cost of a user not only depends on his or her own power consumption profile, but also on those of other users. Let [image: there is no content] denote the union of all power management decision variables for all users. Our goal is to find an appliance scheduling strategy, as well as a power management strategy for each user such that the following social cost function is minimized:


[image: there is no content]



(17)







This naturally leads to the following non-cooperative game:

	Players: 

	
A set of players N




	Strategies: 

	
Each user selects his or her appliance scheduling strategy [image: there is no content] and power management strategy [image: there is no content] to minimize his or her own electricity cost, where [image: there is no content] denotes the set renewable power management decision variables; [image: there is no content] denotes the set battery management decision variables; and [image: there is no content] denotes the set of grid power management decision variables for user i, respectively.




	Payoff: 

	
Negative of the private electricity cost for each user [image: there is no content]:


[image: there is no content]



(18)




where [image: there is no content] and [image: there is no content] are sets containing the appliance scheduling and the power management strategies of all users, excluding user i, respectively.









Note that such a selfish game strategy may not produce a good solution with respect to the social cost and may not even converge. This is because, given the strategies of the others, a user may choose to schedule his or her appliances at time slots with low electricity prices and/or draw power from the battery at time slots with high electricity prices. If multiple users update their strategies simultaneously, it can results in new peak(s) in the overall system load. However, it will be shown in the following sections that, with carefully designed scheduling and power management algorithms, selfish and greedy strategies can still converge in finite rounds to an equilibrium that is satisfactory to all users.



4.1. Analysis of Computational Complexity


Before presenting the solution, the computational complexity of the problem is analyzed, and the result is given in the following theorem.



Theorem 1. 

Under non-decreasing quadratic cost functions, the electricity cost minimization problem (i.e., Equation (15)) is NP-hard even without considering appliances’ deadlines, renewable energy resources and battery capacity-related constraints.





Proof. 

The NP-hardness can be proven by reducing the well-known NP-hard partition problem to a special instance of the electricity cost minimization problem under the aforementioned dynamic pricing model. Given a set of positive integers [image: there is no content], the partition problem is to divide the set S into two subsets, such that the difference between the sum of the elements in the two subsets is minimal [21]. The reduction works as follows. For each integer [image: there is no content], an appliance is created and its per-time slot power consumption is set to [image: there is no content]. The durations of all of the appliances are set to one, and there are only two time slots in the scheduling horizon. In addition, there are no deadline constraints on the appliances. Because the electricity price function is quadratic and non-decreasing, the optimal solution to this electricity cost minimization problem must partition the appliances into two subsets, such that the difference between their total energy demands is minimal. Obviously, this solution is also the optimal solution of the original partition problem. Thus, if there exists an algorithm that can solve the electricity cost minimization problem in polynomial time, it can also solve the partition problem in polynomial time, which is a contradiction to the fact that the partition problem is NP-hard. This completes the proof. ☐






4.2. Appliance Scheduling Algorithm


Without considering renewable energy and side batteries, Problem (15) is a pure job scheduling problem, which generally can be solved using the branch-and-bound algorithm. However, in cases where the number of users or appliances is large, branch-and-bound-based methods may not be efficient. Thus, an alternative approach is adopted. Our proposed job scheduling algorithm is inspired by the local search algorithm proposed in [22]. As shown in Algorithm 1, the proposed scheduling algorithm begins with generating an arbitrary feasible scheduling strategy (Line 1). Next, it seeks to reduce the electricity cost by performing a local search. Suppose that an appliance [image: there is no content] is currently scheduled to start at some time slot t and that the corresponding electricity cost is [image: there is no content]. The algorithm repeatedly tries to shift its starting time to a later neighboring time slot (i.e., [image: there is no content]) as long as it does not violate [image: there is no content]’s deadline constraint, and its associated electricity cost remains non-increasing (Line 6). When this process stops, it records the time slot [image: there is no content] when the search stopped and the corresponding electricity cost [image: there is no content] as if [image: there is no content] were to be rescheduled to start at time [image: there is no content] (Line 7). The algorithm then searches in the opposite direction. In other words, starting from time slot t, it continuously shifts [image: there is no content]’s starting time to the preceding time slot (i.e., [image: there is no content]) as long as the starting time stays greater than or equal to the current time slot and the electricity cost remains non-increasing (Line 8). When this search process stops, it also records the time slot [image: there is no content] when it stopped and the corresponding electricity cost [image: there is no content] as if [image: there is no content] were to be rescheduled to start at time [image: there is no content] (Line 9). The algorithm then compares α, [image: there is no content], [image: there is no content] and reschedules [image: there is no content] to the time slot with the minimum cost while closest to time slot t (Lines 10–12). This local search process is repeated for each appliance until the scheduling strategy stops changing. In Section 4.4, the reason why this strategy is convergent and how the convergence property can be utilized to develop a distributed demand-side management algorithm will be discussed.



	Algorithm 1: Appliance scheduling algorithm (executed by each individual user i).



	 [image: Energies 09 00654 i001]









4.3. Power Management


Once the schedule of a user’s appliances is determined (i.e., the values of [image: there is no content] are set), the next question is how to further reduce electricity costs for all users by utilizing renewable resources. This problem is stochastic because the amount of available renewable energy at each time slot is dynamic in nature. Similar to [14] and for the ease of explanation and clarity, it is assumed that the joint probability distribution of renewable energy over the whole sequence of future time periods (i.e., [image: there is no content]) is known, and the problem is modeled as a [image: there is no content]-stage dynamic program. Cases in which the distribution of renewable energy resources is unknown are discussed later in Section 4.5.



At each time slot, the battery level [image: there is no content] is used as the system state, and [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are used as the control variables. The system dynamic is, therefore, linear and time-varying, as specified in Equation (6). Using the backward induction technique, the optimal-value function at each time slot can be defined as:


υt(bi(t))=minri,bi,giECi(t)+υt+1(bi(t+1))s.t.(2), (3), (4), (5), (6), (7), (8), (10), (11), (14)



(19)




where [image: there is no content] is the electricity cost of user i at time t as defined in Equation (14). The objective of the dynamic program is to find the optimal solution for [image: there is no content]. To initiate the recursive calculation, the optimal-value function at time slot T (the final stage) must be defined. Recall that one of our goals is to maintain the battery at or above its initial level at the end of the scheduling horizon. Thus, [image: there is no content] is defined as:


υT(bi(T))=0ifbi(T)≥bi(0)∞otherwise



(20)







Solving the dynamic program is of very high complexity because, at every stage, all possible values of the system state, renewable energy levels and their corresponding probabilities must be considered. However, since the joint distribution of [image: there is no content] is known, one can compute the unconditional expected values of the renewable energy and behave as if they are the (unknown) certain values of the renewable energy for future time periods. This strategy is also adopted by many research studies, such as [14,23]. This transforms the problem into one of dynamic programming under certainty and greatly reduces the computational complexity. Nevertheless, it is important to note that, once the true value of [image: there is no content] is observed at time [image: there is no content], the expected values of [image: there is no content] will change given the new “initial” condition and the new joint probability distribution. Thus, the dynamic program must be re-evaluated at the beginning of each time slot, and a user only implements the action for the first time period that is indicated as optimal.



The detailed algorithm for solving the dynamic program is presented in Algorithm 2. To begin with, the algorithm works backward in time starting from stage T and calculates all [image: there is no content] so that the optimal control at each stage can be determined. When calculating the value of [image: there is no content], the values of [image: there is no content] for all [image: there is no content] must be evaluated. For each possible value of [image: there is no content], there are three cases to consider. First, if [image: there is no content], this implies that the battery must be discharged at time t. Therefore, [image: there is no content], [image: there is no content] and [image: there is no content] must be zeros. In addition, since the goal is to minimize the electricity cost, the renewable energy should be used to fulfill the user’s demand first and should only be injected back to the grid when there is any leftover. Thus, [image: there is no content] and [image: there is no content], where [image: there is no content] is the expected value of available renewable energy at time t and [image: there is no content] is the total power demand of user i at time t. The same principle applies to the energy drawn from the battery. Define [image: there is no content]; then it is clear that [image: there is no content] and [image: there is no content]. Now, if the renewable energy together with the power drawn from the battery cannot completely fulfill the user’s demand, power must be drawn from the grid. Thus, [image: there is no content]. The second case where [image: there is no content] and the third case where [image: there is no content] are very similar; therefore, we refer the readers to Algorithm 2 for details. Once all of the possible values of [image: there is no content] are obtained, the action that results in the minimum [image: there is no content] is taken as the optimal control for state [image: there is no content]. This process is repeated until state [image: there is no content] is reached. Not until then does the algorithm backtrack, and the optimal control actions along the path are taken as the power management strategy for the user.



	Algorithm 2: Power management algorithm (executed by each individual user i).



	 [image: Energies 09 00654 i002]









4.4. Distributed Demand-Side Management


Based on the results presented in the previous sections, a distributed demand-side management algorithm called DDSM is proposed for the purpose of minimizing social and private electricity costs. The algorithm is run at the beginning of each time slot. As shown in Algorithm 3, given the current aggregate system load vector L=[L(t),1≤t≤T], a user runs Algorithm 1 to determine a new schedule for the appliances that have not been activated (Line 3). Then, based on the observed renewable energy at the current time slot and the expectations of renewable energy for future time periods, the user applies Algorithm 2 to calculate a new power management strategy (Line 4). After that, the user updates the aggregate system load vector according to his or her new appliance scheduling and power management strategies and sends it to the next user in the grid network (Line 5). This process repeats until convergence. Then, all users apply the actions (activating appliances, drawing power from the grid or batteries, etc.) for the current time slot, as specified in their final convergent strategies (Line 7). It is important to note that all users must take turns executing the DDSM algorithm in order to avoid load synchronization and to ensure convergence. As the DDSM algorithm is run at every time slot, the equilibrium point changes over time. This offers opportunities for all users to adjust their appliance scheduling and power management strategies according to the dynamics of renewable energy. The proof of DDSM’s convergence property is detailed below in Theorem 2.



	Algorithm 3: Distributed demand-side management (DDSM) algorithm (executed at the beginning of each time slot).
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Theorem 2. 

If the users update their strategies asynchronously, i.e., no two users update their appliance scheduling and power management strategies at the same time, the DDSM algorithm converges in a finite number of rounds.





Proof. 

Recall that Algorithm 1 invoked at Line 3 only shifts the schedule of an appliance if and only if the electricity cost associated with that appliance is non-increasing after the shift. Since the electricity cost is a quadratic and non-decreasing function of the total power demand of the entire grid, this implies that if the total power demands of the entire grid at each time slot are sorted in non-increasing order and put in a vector, this vector will become lexicographically smaller after each shift (given two vectors [image: there is no content] and [image: there is no content], it is said [image: there is no content] if there exists some [image: there is no content], such that [image: there is no content], [image: there is no content] and [image: there is no content]). Following the same rationale, as the power management strategy generated by Algorithm 2 (invoked at Line 4) is optimal when the uncertain renewable energy at future time slots is replaced by their unconditional expectations, this means that there is no way to reduce the electricity cost at time slots with high electricity prices by drawing power from the battery or the energy-harvesting device. Thus, the power demand vector must also become lexicographically smaller after each run of Line 4. Since this vector of power demands must be lower bounded, as the vector keeps becoming lexicographically smaller and smaller, the DDSM algorithm will eventually converge. This completes the proof. ☐





Based on the arguments in the proof, it can be seen that our proposed appliance scheduling algorithm can still work in cases where an appliance has a non-constant power consumption pattern. However, after each shift of an appliance, not only its associated electricity cost must be non-increasing, the highest aggregate system load during the appliance’s active time slots must also decrease. If the highest aggregate system load does not change, then the second highest system load must decrease, and so on and so forth, in order to ensure convergence.




4.5. Dealing with Uncertain Renewable Energy Resources


In earlier discussions, the probability distribution of renewable energy is assumed to be known for the sake of clarity. However, our proposed algorithms can be combined with robust optimization techniques, such as the primal cut algorithm in [19], to tackle the uncertainty of renewable energy resources. The following paragraphs provide an outline for how to combine the primal cut algorithm with our proposed algorithms to solve the electricity cost minimization problem in cases where the distribution of renewable energy is unknown.



The first step for applying the primal cut algorithm is to formulate the electricity cost minimization problem as a two-stage robust optimization (RO) problem as:


mins maxu∈U minr,b,g∑t=1T∑i∈NCi(t)



(21)






s.t.ri(u)(t)=rid(t)+rib(t)+rig(t)∀i,t(1), (2), (3), (5), (6), (7), (8), (9), (10), (11), (14)∀i,t



(22)




where U denotes the uncertainty set and [image: there is no content] denotes the amount of renewable energy available at time t for scenario [image: there is no content]. Then, the two-stage RO problem is decomposed into a main problem and a subproblem. The subproblem is shown in Equations (23) and (24). The goal of the subproblem is to identify the worst case scenario that incurs the highest minimum electricity cost for a given appliance scheduling strategy for all users (i.e., [image: there is no content][image: there is no content] are given). Here, a scenario refers to some instance of uncertain renewable energy for the entire scheduling horizon.


maxu∈U minr,b,g∑t=1T∑i∈NCi(t)



(23)






s.t.ri(u)(t)=rid(t)+rib(t)+rig(t)∀i,t(2), (3), (5), (6), (7), (8), (9), (10), (11), (14)∀i,t



(24)







The subproblem may seem difficult to solve as there can be many scenarios to consider. However, as only bad scenarios matter, only a small portion of the uncertainty set needs considering. When examining a particular scenario, Algorithm 2 in Section 4.3 can be applied to compute the optimal power management strategy for all users. Note that, when applying Algorithm 2 to solve the subproblem, all users must take turns running the algorithm until convergence. Once all of the scenarios are examined, the worst case scenario can be identified, and its corresponding electricity cost becomes the lower bound of the original two-stage RO problem, as there might be another appliance scheduling strategy for which the worst-case electricity cost is higher.



For each worst-case scenario identified by the subproblem, the primal cut algorithm generates a set of constraints (i.e., Equations (1)–(14)) and adds these constraints to the main problem. The purpose of the main problem is to identify the appliance scheduling strategy for all users that incurs the maximum minimum electricity cost among those worst-case scenarios identified by the subproblem. Thus, the main problem is formulated as:


max ψ



(25)






s.t.∑t=1T∑i∈NCi(u)(t)≥ψ,∀u∈Uw(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (14)∀i,t,u∈Uw



(26)







In Equation (26), [image: there is no content] denotes the electricity cost of user i under scenario u at time slot t and [image: there is no content] denotes the set of worst-case scenarios identified by the subproblem. Solving the main problem can be time consuming because there are many binary variables. To speed up the computation, one can utilize Algorithm 3 in Section 4.4 to compute the optimal appliance scheduling and power management strategies for each scenario [image: there is no content]. In general, the main problem generates an appliance scheduling strategy for each scenario in [image: there is no content], and the appliance scheduling strategy that incurs the maximum minimum electricity cost is identified and fed to the subproblem for the next round of computation. The objective value of the main problem is an upper bound to the original two-stage RO problem, because the main problem does not consider all of the scenarios. Now, if the gap between the upper bound and the lower bound is smaller than a predefined threshold, the algorithm terminates. Otherwise, the aforementioned steps are repeated until convergence. Due to time and resource constraints, we refer the reader to [19] for more details on the primal cut algorithm and leave the performance analysis for future work. Nonetheless, the steps for the algorithm are summarized in Figure 3 for reference.


Figure 3. The primal cut algorithm [19].
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5. Evaluation


In this section, the evaluation results of our proposed algorithms are presented and compared to the solutions generated by the DDSM algorithm with those computed by Gurobi [24], which is a commercial mathematical software that solves mixed-integer programming problems using a branch-and-bound-based algorithm. Unless stated otherwise, it is assumed that there are 100 users, each of which has 1–20 jobs with random durations, deadlines and instantaneous power consumption rates. In addition, each user is assumed to have a home photovoltaics system consisting of 20 solar panels of 1.5 m2 in size with [image: there is no content] power conversion efficiency. Such a system can approximately output 5 kW under the standard test conditions (STC) [25] (the standard test conditions are: normal irradiance of 1000 W/m2, cell temperature 25 °C (77 °F) and air mass = [image: there is no content]). The solar system is also assumed to feature a side battery with a capacity 48 V 200 Ah, which is equivalent to 9.6 kWh, for storing excessive energy. Under such assumptions, a renewable energy profile is created for each user using the radiation measurements on 1 June 2015 obtained from the public BMS dataset of the National Renewable Energy Laboratory (shown in Figure 4). The radiation measurements were recorded by a pyranometer mounted on a west-facing surface tilted 90 degrees from the horizontal. The length of the time slots is set to 1 h for convenience. Thus, the amount of available solar energy during a time slot can be easily calculated by taking the average (in kW/m2) of the solar irradiance for the corresponding hour and multiplying by five. The resulting recharging profile can be found at the bottom of Figure 4. It should be noted that although the length of the time slots is set to 1 h, it can be adjusted as needed. For example, the slot length can be set to 1 min or even 1 s, so as to make the execution time of all appliances a multiple of the slot length. The electricity cost of each time slot is assumed to be [image: there is no content], where [image: there is no content] denotes the total power demands at time t. Other detailed experimental parameters are listed in Table 4 for reference.


Figure 4. Solar irradiance measurements on 1 June 2015 from the public BMS dataset of the National Renewable Energy Laboratory [26].
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Table 4. Experimental Parameters.







	
Parameter

	
Value






	
Number of time slots

	
24




	
Time slot length

	
1 h




	
Number of jobs per user

	
1–20




	
Duration of jobs

	
1–8 slots




	
Per-time slot power demand of the jobs

	
1–50 kW




	
PV system size in kW

	
5 kW




	
Battery capacity

	
48 V 200 Ah




	
Battery charge/discharge efficiency

	
0.85 [27]










For evaluating our proposed DDSM algorithm, two programs are developed using C++. Given an instance of the electricity cost minimization problem, the first program solves the problem by using the proposed DDSM algorithm, and the other makes use of Gurobi’s API to generate constraints according to the problem specification and solves the optimization problem using a branch-and-bound-based algorithm. First, to show the convergence behavior of the proposed DDSM algorithm, an experiment is conducted to show the social electricity cost for each iteration when the DDSM algorithm is run at the first time slot. Only the result for the first time slot is shown because the rest of the time periods exhibit similar convergence behavior. As can be seen in Figure 5, the DDSM algorithm converges very quickly. The steady state is reached in just five iterations. The final social electricity cost is very close to the optimum computed by the Gurobi solver. It can also be observed in the figure that the planned total power demand of each time slot is smooth with no obvious peak demand periods. This implies that our proposed DDSM algorithm not only can reduce electricity costs for all users, but also can minimize the PAR for the entire grid, which is a win-win solution for both the energy provider and the users.


Figure 5. Convergence and peak load reduction properties of the distributed demand-side management algorithm (DDSM) algorithm.
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Recall that the DDSM algorithm uses imperfect information regarding the availability of renewable energy when making appliance scheduling and power management decisions for all users. The only piece of information that is available to the DDSM algorithm is the true value of renewable energy observed at the current time slot and the expected values of renewable energy for future time slots. To understand the impact of imperfect information over the performance of the DDSM algorithm, we randomly vary the previously created recharging profile (i.e., the true recharging profile) within the range of [image: there is no content] and use it as an estimation of the expected value for renewable energy at each time slot. The result is shown as a purple line on top of Figure 6. The solutions produced by the DDSM algorithm are compared to those computed by Gurobi. When running the DDSM algorithm, the first (true) recharging profile is used to get the value of renewable energy for the current time slot, and the second recharging profile is used to estimate the values of renewable energy for future time slots. In contrast, the Gurobi solver is given the true value of renewable energy for every time slot in the scheduling horizon. Thus, the solution produced by the Gurobi solver is the true optimum. As can be seen at the bottom of Figure 6, the social electricity cost per time slot is very close to the optimum. In the worst case, which happens at Time Slot 17, the electricity cost of the DDSM algorithm is only [image: there is no content] higher than the optimum. This shows that although the DDSM algorithm uses imperfect information of renewable energy when computing appliance scheduling and power management strategies and, thus, its solution may not be as robust as the primal cut algorithm introduced in Section 4.5, it can still achieve reasonable performance.


Figure 6. Evaluation of Algorithm 2 using imperfect information of renewable energy (note, renewable energy is abbreviated as R.E. in the figure).
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Next, to evaluate the performance of the DDSM algorithm in terms of optimality and efficiency, the exact information of renewable energy is fed to the DDSM algorithm, and the number of users is varied from 100–1000. Table 5 shows the solutions produced by the DDSM algorithm and the Gurobi solver and their corresponding computation time for each scenario. As can be seen in the table, the electricity costs incurred by the solutions computed by the DDSM algorithm are all higher than those of the Gurobi solver. However, they are very close, and the electricity costs of the DDSM algorithm are only [image: there is no content] higher than those of the Gurobi solver in the worst case. In addition, as the number of users grows, the amount of time required by the Gurobi solver increases dramatically from [image: there is no content] s–19 min, while the DDSM algorithm only takes less than 6 s in all scenarios on a PC with a [image: there is no content]-GHz Intel i7 CPU. Although transmission delays are not considered in our experiments and, thus, the time required by the DDSM algorithm may be actually higher in reality, it is still much better in terms of scalability because the number of variables required by the mathematical model will quickly become intractable as the number of users increases. This makes it extremely difficult to solve the problem using off-the-shelf solvers.



Table 5. Optimality and speed of the DDSM algorithm.







	
Scenario

	
Cost

	
Time (s)






	
# of Users

	
DDSM

	
Gurobi

	
DDSM

	
Gurobi




	
100

	
[image: there is no content]

	
[image: there is no content]

	
0.32

	
10.45




	
200

	
[image: there is no content]

	
[image: there is no content]

	
1.12

	
50.13




	
400

	
[image: there is no content]

	
[image: there is no content]

	
1.73

	
154




	
600

	
[image: there is no content]

	
[image: there is no content]

	
3.15

	
395




	
800

	
[image: there is no content]

	
[image: there is no content]

	
4.26

	
826




	
1000

	
[image: there is no content]

	
[image: there is no content]

	
5.57

	
1140










Another factor that may affect the performance of the DDSM algorithm is the order in which the users update their appliance scheduling and power management strategies. This is because the update sequence of the users is essentially the “path” taken by the DDSM algorithm during the optimization process. To see its effects on the performance of the algorithm, 50 random update sequences of users are generated, and the DDSM algorithm is run accordingly to solve the same test case with 100 users, each of which has 1–20 appliances, as described at the beginning of this section. All 50 runs converge, and their corresponding electricity costs are presented in Figure 7. As can be seen in the figure, the update sequence of the users does affect the final solution produced. However, they are all in the vicinity of the optimal solution obtained by Gurobi. This implies that the DDSM algorithm is insensitive to the update sequence of the users, which will allow more flexibility when implementing the DDSM algorithm in a real smart grid network.


Figure 7. Evaluation of Algorithm 2 with different update sequences of users’ appliance scheduling and power management strategies.
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Lastly, to show that the proposed DDSM algorithm can work with any number and sizes of time slots, the length of the time slots is varied from 1 h down to 1 min, and the length of the scheduling horizon is kept unchanged at one day. As shown in Table 6, the DDSM algorithm is able to produce good solutions in all cases (note, the result of Gurobi for the slot size of 1 min is not included in the table because the solver was not able to give a solution in a reasonable amount of time (one day)). As the number of time slots increases, the computation time of the DDSM algorithm increases slightly, whereas the computation time of Gurobi grows dramatically. This shows the scalability and practicality of our proposed DDSM algorithm over traditional optimization methods.



Table 6. Performance comparison of different slot sizes.







	
Scenario

	
Cost

	
Time (s)






	
Slot Size (min)

	
DDSM

	
Gurobi

	
DDSM

	
Gurobi




	
60

	
[image: there is no content]

	
[image: there is no content]

	
0.107

	
11.01




	
30

	
[image: there is no content]

	
[image: there is no content]

	
0.218

	
93.28




	
10

	
[image: there is no content]

	
[image: there is no content]

	
0.325

	
684.12




	
1

	
[image: there is no content]

	
—

	
4.14

	
—











6. Conclusions


Demand-side management is an important issue for smart grids with distributed renewable power resources. This paper first proposes a single-user job scheduling algorithm and a power management algorithm. Combining the two algorithms, a distributed demand-side management algorithm for minimizing the global electricity cost is developed. Through rigorous analysis and simulations, it is shown that our proposed algorithms are not only efficient and scalable, but are also convergent and very close to the optimum.







Acknowledgments


This work was supported in part by the Ministry of Science and Technology, Taiwan, under grant NSC 102-2410-H-006-119.




Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Borenstein, S. Electricity Pricing that Reflects Its Real-Time Cost. Available online: http://www.nber.org/reporter/2009number1/borenstein.html (accessed on 15 April 2016).

	2. 
New York Independent System Operator Daily Report Archive. 2011. Available online: http://www.ferc.gov (accessed on 2 May 2016).

	3. 
Solar Power Required on Every New Home—Pioneering Requirement from Lancaster, California. 2013. Available online: http://cleantechnica.com/2013/03/04/ (accessed on 4 May 2016).

	4. 
Moon, J.Y.; Park, J. Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. Int. J. Prod. Res. 2014, 52, 3922–3939. [Google Scholar] [CrossRef]

	5. 
Moon, J.Y.; Shin, K.; Park, J. Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. Int. J. Adv. Manuf. Technol. 2013, 68, 523–535. [Google Scholar] [CrossRef]

	6. 
Yu, T.; Kim, D.S.; Son, S.Y. Optimization of scheduling for home appliances in conjunction with renewable and energy storage resources. Int. J. Smart Home 2013, 7, 261–272. [Google Scholar]

	7. 
Mohsenian-Rad, A.H.; Wong, V.; Jatskevich, J.; Schober, R.; Leon-Garcia, A. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 2010, 1, 320–331. [Google Scholar] [CrossRef]

	8. 
Nguyen, H.K.; Song, J.; Han, Z. Demand side management to reduce Peak-to-Average Ratio using game theory in smart grid. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Orlando, FL, USA, 25–30 March 2012; pp. 91–96.

	9. 
Dang, T.; Ringland, K. Optimal load scheduling for residential renewable energy integration. In Proceedings of the IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 516–521.

	10. 
Goudarzi, H.; Hatami, S.; Pedram, M. Demand-side load scheduling incentivized by dynamic energy prices. In Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 351–356.

	11. 
Wang, C.; Zhou, Y.; Jiao, B.; Wang, Y.; Liu, W.; Wang, D. Robust optimization for load scheduling of a smart home with photovoltaic system. Energy Convers. Manag. 2015, 102, 247–257. [Google Scholar] [CrossRef]

	12. 
Wu, C.; Mohsenian-Rad, A.H.; Huang, J.; Wang, A. Demand side management for Wind Power Integration in microgrid using dynamic potential game theory. In Proceedings of the IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 1199–1204.

	13. 
Mesarić, P.; Krajcar, S. Home demand-side management integrated with electric vehicles and renewable energy sources. Energy Build. 2015, 108, 1–9. [Google Scholar] [CrossRef]

	14. 
Jiang, L.; Low, S. Real-time demand response with uncertain renewable energy in smart grid. In Proceedings of the 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 28–30 September 2011; pp. 1334–1341.

	15. 
Tang, S.; Huang, Q.; Li, X.Y.; Wu, D. Smoothing the energy consumption: Peak demand reduction in smart grid. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Turin, Italy, 14–19 April 2013; pp. 1133–1141.

	16. 
Samadi, P.; Mohsenian-Rad, H.; Wong, V.W.S.; Schober, R. Real-time pricing for demand response based on stochastic approximation. IEEE Trans. Smart Grid 2014, 5, 789–798. [Google Scholar] [CrossRef]

	17. 
Li, N.; Chen, L.; Low, S.H. Optimal demand response based on utility maximization in power networks. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–8.

	18. 
Wang, R.; Wang, P.; Xiao, G.; Gong, S. Power demand and supply management in microgrids with uncertainties of renewable energies. Int. J. Electr. Power Energy Syst. 2014, 63, 260–269. [Google Scholar] [CrossRef]

	19. 
Zeng, B. Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 2013, 41, 457–461. [Google Scholar] [CrossRef]

	20. 
Li, T.; Dong, M. Real-time energy storage management: Finite-time horizon approach. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; pp. 115–120.

	21. 
Gary, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Macmillan Higher Education: New York, NY, USA, 1979; pp. 96–105. [Google Scholar]

	22. 
Filmus, Y.; Ward, J. A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In Proceedings of the IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), New Brunswick, NJ, USA, 20–23 October 2012; pp. 659–668.

	23. 
Simon, H.A. Dynamic programming under uncertainty with a quadratic criterion function. Econometrica 1956, 24, 74–81. [Google Scholar] [CrossRef]

	24. 
Gurobi Optimizer Reference Manual. 2014. Available online: http://www.gurobi.com (accessed on 20 May 2016).

	25. 
Wholesale Solar Power Systems. Available online: https://www.wholesalesolar.com (accessed on 31 May 2016).

	26. 
National Renewable Energy Laboratory. Available online: http://www.nrel.gov/midc/srrl_bms/ (accessed on 26 June 2016).

	27. 
Valøen, L.O.; Shoesmith, M.I. The effect of PHEV and HEV duty cycles on battery and battery pack performance. In Proceedings of the Plug-in Highway Electric Vehicle Conference, Winnipeg, MB, Canada, 1–2 November 2007.

































© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).







media/file13.jpg
Cost (107)

5 T T T

4 | Expected =

3 eal w—

2

1
0 .

06: 20 18:00
Mountain Standard Time

18 T T T T T T T T T
ﬁ DDSM w/ Imperfect R.E. Info [
12 Gurobi w/ Perfect R.E. Info [
10

8

6

4

2

13 15 17 19 21 23
Time slot





media/file4.png
$/MWh

———
Hudson Valey

Long Island
New York City ———

PR PRI SR I T TR S R
04:00 08:00 12:00

Time

PR IS SR T B S St
16:00 20:00  00:00





nav.xhtml


  energies-09-00654


  
    		
      energies-09-00654
    


  




  





media/file1.png
Input :The current time slot £,,; the current appliance scheduling and power management
strategies of all users; the observed amount of renewable energy 7;(fo) for the current
t ime slot; the expectations of renewable energy for future time periods
E(i(1); tnow < t < T}
Output: User i’s power management strategy ;.
/% Initialize vr(-
1 forb « 0 to B; do

*
*

if b > b;(0) then vr(b) « 0;
3 | elsevr(b)
afort < T—1to tnm do
s | E()« LT Ej(t)
jA;
6 | forbi(t) < 0toB; do
4 0r(b(1)) = oo;
s for bj(t +1) ¢ 0 to B; do
5 A bi(t) — bi(t+1);
0 if A > 0 then
/* Dis scharge the bat tter */
n (1) (1) < 1)
2 A « mm(]E ri(1)), E; (r)),
B () « E(ri(t) — (1)
H
u B(6) = min{ 2010, A
5 B(t) « A— b" (t);
16 10+ E(t) — () — e B
i elseiif A <0then
/% Charge the btcry */
i B < B (1) < 0; 10(1)  1;
19 HORS mm{,h,lE(r, 1)))
2 (1) & min{E(ri(1)) = (1), Ei())};
n (1) < E(n(t) - (f) ro;
2 () e 21 (1) 4 Ey(e) — (1)
» else
u B(t) = B (1) = r2(t) = gh(t) < IX(t) - O;
= A minfE( (1), Ei());
] (1) E(ri(t) = rf (£); 8§ (1) & Ei(t) = rf(t);
z Based on the above newly calculated power management strategy for user i,
calculate v < Ci(t) + vp1 (bi(t +1));
» if v < v,(b(t)) then
2 0i(b(t)) < v; trace[t, b(t)] < b(t +1);
30 Record the power management strategy comspundmg to the current ophmal
value of v;(b(t)) as: r"[tbl)](—r £; [, b(1)]  2(); yx[rb ]ﬁrX

[t (1)) < b (1); B[t b(1)] = BF (1), Xd[lb(t]f—*{d ); 80[E,b(t Fg,)

31 Backtrack from state by(f,,) using «he trace matrix and record the power management
strategy at each state along the path of optimal strategies until the final stage is reached, and let
gi denote the recorded strategies.

32 return g;;





media/file16.png
Cost (108)

1.62
1.61

1.59
1.58
1.57
1.56
1.55

T T T T T
DDSM  +
GUrObi  m—
+ 4 L F + +
T R P +++ * ++++++ + T
™ + + + 4 * bt + + LI ++
1 1 1 1 1
0 10 20 30 40 50

Sequence No.





media/file2.png
Ndo
m 1 to determine a scheduling strategy (s;) for the appliances that have
not been activated

ppliances that hav
Given the observed renewable energy of the current time slot and the expected values
of renewable energy for future time periods, run Algorithm 2 to calculate a power
management strategy (¢;)
Update the aggregate system load vector according to the new appliance scheduling
and power management strategies and send it to the next users in the grid network.
s until convergence;
7 All the users apply the actions for the current tine slot as specified in their final convergent
strategies.





media/file5.jpg
Utility Company





media/file3.jpg
$/MWh

T T
r  Hudson Valey
L Long Island
New York City

L L
04:00  08:00

\ L .
12:00  16:00  20:00
Time





media/file7.jpg
Initialization

Solve the master
problem and update the
upper bound UB

Generate columns and
constrain

ts for the wors
case scenario ldent|Fed by
the

Solve the subproblem
and update the lower
bound LB

Compute
Gap=UB-LB

Yes

Terminate





media/file10.png
Irradiance (W/m2)

kWh

1 " "
07:00 13:00
Mountain Standard Time

O =N who
T

M " 1 " 1
06:00 12:00 18:00
Mountain Standard Time





media/file12.png
Cost (10%)

Demand (104)

' =
\‘ Optimum (Gurobi) =———— -

T T
DDSM ——

Time slot





media/file9.jpg
Irradiance (W/mz)

kWh

a
3
o 3
L e o e

Lo

f
07:00 13:00
Mountain Standard Time

19:00

o=mwao

06:00 12:00 18:00
Mountain Standard Time





media/file0.png
Input

Outpul

:The current aggregate system load vector, ie, L = [L(t), 1<t<T]
t: An updated appliance scheduling strategy s; for user i, where
si = {sij(t)laj € AiAL<t<T}

algorithm

2 rep
3
3

eat
foreach a;j € A; that has not been activated do
b n e current starting time of a;j;
ajj + the current electricity cost of a;j;
Repeatedly shift a;;'s starting time to the next time slot (i.e., t +1,£ +2, - ) as long as
the deadline constraint is not violated and its electricity cost remains non-increasing;
Let fbe the time slot when the search process of step 6 stops and let & denote a;/'s
electricity cost if its starting time were to be changed to f;
Similar to step 6, starti ng fmm time s]o( 1, repeatedly shift ;s starting time to the
preceding time slot (i.e., t —1,t —2, - --) as long as the starting time stays greater than
or equal to the current time slot (. e, | when this algorithm is invoked) and the electricity
cost remains non-increasing;
Let 7 be the time slot when the search process of step 8 stops and let @;; denote a;'s
electricity cost if its starting time were to be shifted to 7;
if aj; > min{;, @;;} then
if & < @; then '  Felse t'
Update user i’s appliance schedulmg trategy s; so that a;; starts at time slot t';
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