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Abstract: In this paper, the problem of minimizing electricity cost and the peak system load in smart
grids with distributed renewable energy resources is studied. Unlike prior research works that either
assume all of the jobs are interruptible or power-shiftable, this paper focuses on more challenging
scenarios in which jobs are non-interruptible and non-power-shiftable. In addition, as more and
more newly-built homes have rooftop solar arrays, it is assumed that all users are equipped with
a solar-plus-battery system in this paper. Thus, power can be drawn from the battery as needed to
reduce the cost of electricity or to lower the overall system load. With a quadratic load-dependent
cost function, this paper first shows that the electricity cost minimization problem in such a setting is
NP-hard and presents a distributed demand-side management algorithm, called DDSM, to solve this.
Experimental results show that the proposed DDSM algorithm is effective, scalable and converges to
a Nash equilibrium in finite rounds.
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1. Introduction

The cost of electricity generation in a power grid can vary hour by hour depending on
numerous factors, including the type of fuels used, power plants, transmission and distribution
lines, weather conditions, regulations and demands. For many decades, economists have argued that
retail electricity prices should thus fluctuate to help cut power costs for users with flexible power
consumption schedules and to reduce the peak system load [1]. Figure 1 shows examples of hourly
electricity prices for Hudson Valley, Long Island and New York City on 1 December 2011 [2]. Under the
dynamic pricing scheme, electric utility companies provide consumers with information about the
actual cost of electricity at any given time via text messages, emails, telephones or smart meters.
Consumers, in turn, adjust their electricity usage to coincide with the times that prices are lower.
However, they need to closely monitor the price changes in order to take advantage of the lower
prices, which is not very practical. Therefore, the first goal of this paper is to design an autonomous
scheduling algorithm that can simultaneously minimize electricity costs for all users and the peak
system load.

In addition to shifting loads to non-peak hours, energy costs and the peak system demand
can be lowered by utilizing ambient energy. In the past few years, there has been an increasing
number of grid-connected solar-plus-battery systems installed in the residential market. The City of
Lancaster, California, for example, has required newly-built homes to feature solar power systems
since 1 January 2014 [3]. Although these distributed renewable power sources are not as reliable as
traditional power plants fueled by coal or natural gas, they can be used to further reduce energy costs
for users. Hence, the second goal of this paper is to develop a power management algorithm for
maximizing the utility of such renewable power systems.
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Figure 1. Hourly electricity prices for Hudson Valley, Long Island and New York City on
1 December 2011 [2].

There have been some research studies in the literature addressing similar problems under
various settings, such as single-user scenarios [4–6], interruptible or power-shiftable appliances
(i.e., appliances that are allowed to consume power in an intermittent fashion) [7–9], load-independent
electricity pricing (i.e., the electricity price does not depend on the overall demand on the entire
grid) [5,6,10,11] and centralized renewable power generation [12]. Among the aforementioned studies,
References [6,11] are probably the ones that are most similar to ours. However, the authors in [6,11]
assume that the electricity prices are independent of the overall system load and are known to the
consumers beforehand.

In summary, this paper studies the problem of demand-side management for smart grids with
distributed renewable power generation and storage. The focus is on scenarios in which appliances
are non-interruptible and non-power-shiftable. Here, non-interruptible means that once an appliance
is started, it cannot be interrupted until its task is finished; while non-power-shiftable means that
the power consumption pattern of an appliance cannot be arbitrarily adjusted depending on the
optimization methods. An example of a non-interruptible device is washing machines. A washing
machine is also non-power-shiftable because its power consumption cannot be arbitrarily adjusted
and must be strictly followed [13]. Although this paper focuses on the scheduling of non-interruptible
appliances, the proposed model and algorithms can be easily extended to handle interruptible
appliances, as well. Throughout the paper, it is assumed that each appliance has an associated
deadline and that all users are equipped with a renewable power generation and storage system. There
is a single electric utility company in the grid. To provide reliable energy, the utility company uses
generators that burn fossil fuels. Thus, similar to [8,12,14], the power generation cost is assumed to be
a quadratic function of the system load and can vary in real time. Under such a setting, the goals of this
paper are reducing the peak system demand, as well as minimizing energy costs for all users. To solve
this problem, a bottom-up approach is adopted. First, the complexity of the problem is analyzed. Then,
an algorithm inspired by the local search concept is proposed to solve the job scheduling problem.
Based on the resulting job schedules, a power management algorithm is developed to reduce the
cost of electricity further by drawing power from the battery at time intervals when the electricity
prices are high and charging the battery for future use when the electricity prices are low. Lastly,
combining the aforementioned job scheduling and power management algorithms, a multi-user
distributed algorithm, called DDSM, is proposed to minimize the overall energy costs for all users in
the grid. Experimental results show that the DDSM algorithm is effective, scalable and converges in
finite rounds.

The rest of this paper is organized as follows. Section 2 reviews related works. Section 3 introduces
the system model and the problem formulation. Section 4 presents the proposed algorithms for solving



Energies 2016, 9, 654 3 of 20

the electricity cost minimization problem. Section 5 analyzes and discusses the experimental results.
In the end, Section 6 concludes the paper.

2. Related Works

There have been some research studies that have addressed the problems of minimizing the
peak-to-average ratio (PAR) in load demand or electricity costs in smart grids under various settings.
Mohsenian-Rad et al. [7] considered the PAR minimization problem in an autonomous power grid
in which the utility company can adopt adequate pricing tariffs that differentiate energy usage in
terms of both time and level. The price information and the current total load of the system can be
exchanged via a communication system between the utility company and the end users. The authors
showed that under a common scenario, with a single utility company serving multiple customers,
the globally optimal performance can be achieved using an algorithmic game approach. Nguyen
et al. [8] extended this earlier work [7] by allowing end users to store purchased electricity in a
battery when the system load is low and then draw on the saved energy when the system load is high.
The work in [9] extended the idea further by considering the possibility of injecting stored energy
back to the grid, although the goal was minimizing the electricity cost rather than minimizing the
PAR. Note that all of the aforementioned works adopt a simplified model in which the operations of
all household appliances are assumed to be interruptible. In other words, appliances can alternate
between active and inactive states as long as they finish their jobs before the given deadlines. In this
regard, [15] adopted a more realistic model in which appliances are non-interruptible. The authors
proposed a centralized approximation algorithm to solve the PAR minimization problem from the
perspective of the utility company. Goudarzi et al. [10] also adopted the non-interruptible load
model. However, rather than minimizing the PAR, the authors studied a single-user electricity cost
minimization problem. A branch-and-bound-based approach was applied to solve the problem under
the time-of-use (time-based pricing is a pricing strategy where the electricity price for any given
time is pre-established and known to consumers in advance) pricing model. Samadi et al. [16]
considered both interruptible and non-interruptible appliances. The objective was to minimize PAR
with real-time pricing. Nonetheless, unlike our models, which allow non-interruptible appliances to
be delayed, the authors of [16] assumed that non-interruptible appliances became active right at the
earliest time slot in which they could be scheduled. Li et al. [17] considered both interruptible and
non-interruptible appliances. Unlike the aforementioned works that directly minimize either the PAR
or the electricity cost, the authors modeled demand-side management as a utility maximization game
between the utility company and the end users. Similar to [16], there are also a few differences in the
way non-interruptible appliances were modeled in [17]. For some non-interruptible appliances, the
authors assumed that their working times were given and fixed (e.g., air conditioner), while others
were modeled as power-shiftable devices (e.g., hybrid electric vehicles).

As one of the key features of a smart grid is the ability to accommodate all generation and storage
options, more and more research studies have started to introduce various types of distributed power
generation sources, including renewables. Moon et al. [4] studied a job-shop scheduling problem with
time- and machine-dependent electricity costs by considering distributed energy resources (mainly fuel
cells) and energy storage. The goal was to minimize the overall electricity cost, as well as the sum of
maximal-completion-time related costs for a single production facility. The work in [6] considered the
problem of minimizing residential electricity bills under the time-of-use pricing tariff. Each residential
house was assumed to have a photovoltaic system and an energy storage system. To prevent all of
the appliances from converging to time slots with low electricity prices, Yu et al. [6] introduced a
constraint to limit the peak system load. Under the assumption that the hourly energy generation of
the photovoltaic system is known, Yu et al. [6] utilized some optimization software package to solve
the problem. The work in [12] focused on minimizing the electricity cost for an isolated micro-grid with
one wind turbine, one fast responding conventional generator and several users. The authors used a
Markov chain with six states to model the stochastic wind power generation process and proposed an
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optimal consumption strategy based on the backward induction technique. The problem setting in [6]
is probably the most similar to that considered here. However, this paper focuses on non-interruptible
and non-power-shiftable loads with real-time pricing, which makes the problem more challenging.

Apart from job scheduling, some research studies have also considered the possibility of reducing
energy costs by carefully scheduling conventional power generators, such as [11,18]. The authors
of [18] studied an electricity generation cost minimization problem for micro-grids equipped with
both unstable renewable sources and conventional power generators. The goal was to determine
a robust schedule for the appliances and the conventional generators under uncertain renewable
sources. To deal with the uncertainty of renewable sources, the authors developed a novel uncertainty
model to capture the randomnesses of renewable energy generation. In general, the authors assumed
that the distribution of renewable energy generation is shifting around a known distribution that can
be obtained either by prediction or long-term field measurements. Then, based on the aforementioned
assumption, a robust optimization problem was formulated. To allow an easier solution, the authors
decomposed the prime problem into a main problem and a subproblem. The subproblem was solved
first to estimate the renewable power generation. Then, the result was fed to the main problem to
determine the optimal schedule for the appliances and the conventional generators. The authors
of [11] extended [18] to deal with cases in which the electricity price is also uncertain. Since the
solution approach is similar to that of [18], we refer the reader to [11] for details. In this paper,
although it is assumed that the distribution of uncertain renewable energy is known for the sake of
clarity, our proposed method can be combined with robust optimization techniques, such as the primal
cut algorithm in [19], to solve the electricity cost minimization problem when the real distribution of
uncertain renewable is not available. More details on this are discussed in Section 4.5.

3. System Model

In this paper, a slotted time system is adopted. The time during a day is partitioned into T slots.
Each user i has a set of appliances Ai, and each appliance aij ∈ Ai has an energy consumption profile
(eij, dij), where eij and dij are the per-time slot power consumption and the time-to-completion of aij,
respectively. Moreover, every appliance aij has a deadline βij specified by the user. For example, a user
can set the deadline of her washer-dryer to 8 a.m. to make sure clean clothes are readily available
before leaving for work. Let sij(t) denote a binary variable indicating whether appliance aij starts at
time slot t. Then, the deadline constraint can be formulated as:

βij−dij+1

∑
t=1

sij(t) = 1 (1)

Equation (1) implies that an appliance aij must start at a time slot that is sufficiently ahead of its
deadline, so that its task can be completed in time. During each active time slot, an appliance aij must
consume eij amount of energy. This can be expressed as:

Eij(t) = eij · Iij(t) (2)

where:

Iij(t) =
t

∑
k=max{1,t−dij+1}

sij(k) (3)

is an indicator function that is equal to one if aij is active at time t and is equal to zero otherwise.
As shown in Figure 2, it is assumed that each user has an ambient energy-harvesting device and

a side battery in our model. The ambient energy harvested at a specific time slot ri(t) can be either used
to fulfill the user’s demands, saved into the battery for later use, or injected back into the grid to lower
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the aggregate system load. Let rd
i (t), rb

i (t) and rg
i (t) denote these three portions of ri(t), respectively.

Then, the following equality must hold:

ri(t) = rd
i (t) + rb

i (t) + rg
i (t) (4)Version August 6, 2016 submitted to Energies 4 of 19

Figure 2. An illustraton of the system model
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Figure 2. An illustration of the system model.

In addition to renewable energy, a user can also draw power from the grid and the battery to
fulfill his or her demands. Thus, the following energy balance constraint must be satisfied at all times:

∑
j∈Ai

Eij(t) ≤ gd
i (t) + ηd · bd

i (t) + rd
i (t) (5)

In Equation (5), gd
i (t) and bd

i (t) denote the amount of energy drawn from the grid and the battery
to support the operations of user i’s appliances, respectively; and ηd is the battery discharge efficiency.
Regarding charge and discharge, a user’s battery level bi(t) varies over time as follows:

bi(t + 1) = bi(t)− bd
i (t)− bg

i (t) + ηc · (rb
i (t) + gb

i (t)) (6)

where bg
i (t) denotes the amount of energy drawn from the battery that is injected back into the grid

and ηc is the battery charge efficiency. As a battery cannot be in charging and discharging states
simultaneously, the following constraints are introduced to prevent that from happening [20]:

rb
i (t) + gb

i (t) ≤ M · Ib
i (t) (7)

bd
i (t) + bg

i (t) ≤ M · (1− Ib
i (t)) (8)

where Ib
i (t) is a binary variable indicating whether user i’s battery is in the charging state at time t and

M is a constant big number. Next, to ensure that there is always backup power for emergency use, the
battery levels of all users are required to be maintained at or above their initial levels at the end of the
scheduling horizon:

bi(0) ≤ bi(T) (9)

where bi(0) is the initial battery level. Lastly, a battery’s level can never go beyond the maximum
capacity or drop below zero. Therefore:

0 ≤ bi(t) ≤ Bi (10)
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Define Li(t) = gd
i (t) + gb

i (t)− ηd · bg
i (t)− rg

i (t) to be the load imposed on the power grid by user
i at time t. The total conventional power L(t) that needs to be generated at each time slot is therefore:

L(t) = ∑
i∈N

Li(t) = ∑
i∈N

{
gd

i (t) + gb
i (t)− ηd · bg

i (t)− rg
i (t)

}
(11)

Similar to [8,12,14], the total power generation cost C(x) is assumed to be quadratic and
non-decreasing. In algebra, a quadratic function is a polynomial of degree two, such as:

C(x) = ax2 + b (12)

Similar to [8], an average cost-based pricing scheme is considered in this paper. Given the
aggregate load of the system L(t) at time slot t, the energy provider sets the retail electricity price for
time slot t as:

P(t) =
C(L(t))

L(t)
(13)

Users share the power generation cost based on their load proportions. In other words,
the electricity cost Ci(t) for each user i at a specific time slot t is:

Ci(t) = Li(t)× P(t) =
Li(t)
L(t)

C(L(t)) (14)

In this setting, our goal is to minimize the overall expected electricity cost for all users:

min
s,r,b,g

E
( T

∑
t=1

∑
i∈N

Ci(t)
)

(15)

Note, in Equation (15), s = {sij(t)|∀i ∈ N ∧ aij ∈ Ai ∧ 1 ≤ t ≤ T} denotes the set of appliance
scheduling decision variables; r = {rd

i (t)|∀i ∈ N ∧ 1 ≤ t ≤ T} ∪ {rb
i (t)|∀i ∈ N ∧ 1 ≤ t ≤ T} ∪

{rg
i (t)|∀i ∈ N ∧ 1 ≤ t ≤ T} denotes the set of renewable power management decision variables;

b = {bd
i (t)|∀i ∈ N ∧ 1 ≤ t ≤ T} ∪ {bg

i (t)|∀i ∈ N ∧ 1 ≤ t ≤ T} denotes the set of battery management
decision variables; and g = {gd

i (t)|∀i ∈ N ∧ 1 ≤ t ≤ T} ∪ {gb
i (t)|∀i ∈ N ∧ 1 ≤ t ≤ T} denotes the set

of grid power management decision variables for all users. The key notations used in the paper are
summarized in Tables 1–3 for reference.

Table 1. Parameters.

Symbol Definition

Bi The capacity of user i’s battery
M A constant big number
T The total number of time slots
dij The number of time slots required by appliance aij to complete its task
eij Per-time slot power consumption of appliance aij

ri(t) The amount of ambient energy harvested by user i at time t
ηc Battery charge efficiency
ηd Battery discharge efficiency
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Table 2. Variables.

Symbol Definition

Eij(t) The power consumption of appliance aij at time t
Ib
i (t) A binary variable indicating whether user i’s battery is in the charging state at time t

Li(t) The load imposed on the power grid by user i at time t
L(t) The total conventional power that needs generating (also known as the aggregate system load) at time t
bi(t) The battery level of user i at time t
sij(t) A binary variable indicating if appliance aij starts at time slot t
bd

i (t) The amount of energy drawn from the battery that is used to fulfill the demand of user i at time t
bg

i (t) The amount of energy drawn from the battery that is injected back into the grid by user i at time t
gb

i (t) The amount of power drawn from the grid that is saved to the battery for later use by user i at time t
gd

i (t) The amount of power drawn from the grid that is used to fulfill the demand of user i at time t
rd

i (t) The portion of harvested ambient energy that is used to fulfill the demand of user i at time t
rb

i (t) The portion of harvested ambient energy that is saved to the battery for later use for user i at time t
rg

i (t) The portion of harvested ambient energy that is injected back into the grid by user i at time t

Table 3. Sets.

Symbol Definition

N The set of users

Ai Ai = {ai1, ai2, · · · } is the set of appliances of user i

si si = {sij(t)|aij ∈ Ai ∧ 1 ≤ t ≤ T} is the set of appliance scheduling variables of user i

ri ri = {rd
i (t)|1 ≤ t ≤ T} ∪ {rb

i (t)|1 ≤ t ≤ T} ∪ {rg
i (t)|1 ≤ t ≤ T} denotes the set renewable power management

decision variables for user i

bi bi = {bd
i (t)|1 ≤ t ≤ T} ∪ {bg

i (t)|1 ≤ t ≤ T} denotes the set battery management decision variables for user i

gi gi = {gd
i (t)|1 ≤ t ≤ T} ∪ {gb

i (t)|1 ≤ t ≤ T} denotes the set of grid power management decision variables for
user i

s s =
⋃

i∈N
si is the set of appliance scheduling decision variables for all users

r r =
⋃

i∈N
ri is the set of renewable power management decision variables for all users

b b =
⋃

i∈N
bi is the set of battery management decision variables for all users

g g =
⋃

i∈N
gi is the set of grid power management decision variables for all users

q q = r ∪ b ∪ g denotes the union of all power management decision variables for all users

4. Distributed Demand-Side Management

If the L(t) term in Equation (14) is expanded, it becomes:

Ci(t) =
Li(t)

∑
j∈N

Lj(t)
C( ∑

k∈N
Lk(t)) (16)

It can be clearly seen that the electricity cost of a user not only depends on his or her own power
consumption profile, but also on those of other users. Let q = r ∪ b ∪ g denote the union of all power
management decision variables for all users. Our goal is to find an appliance scheduling strategy,
as well as a power management strategy for each user such that the following social cost function
is minimized:

α(s, q) = E
( T

∑
t=1

∑
i∈N

Ci(t)
)

(17)

This naturally leads to the following non-cooperative game:

Players: A set of players N
Strategies: Each user selects his or her appliance scheduling strategy si = {sij(t)|aij ∈ Ai ∧ 1 ≤ t ≤ T}

and power management strategy qi = ri ∪ bi ∪ gi to minimize his or her own electricity cost,
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where ri = {rd
i (t)|1 ≤ t ≤ T} ∪ {rb

i (t)|1 ≤ t ≤ T} ∪ {rg
i (t)|1 ≤ t ≤ T} denotes the set renewable

power management decision variables; bi = {bd
i (t)|1 ≤ t ≤ T} ∪ {bg

i (t)|1 ≤ t ≤ T} denotes the
set battery management decision variables; and gi = {gd

i (t)|1 ≤ t ≤ T} ∪ {gb
i (t)|1 ≤ t ≤ T}

denotes the set of grid power management decision variables for user i, respectively.
Payoff: Negative of the private electricity cost for each user i ∈ N:

−αi(si, qi; s−i, q−i) = −∑
t

Ci(t) (18)

where s−i =
⋃

j∈N\{i}
sj and q−i =

⋃
j∈N\{i}

qj are sets containing the appliance scheduling and the

power management strategies of all users, excluding user i, respectively.

Note that such a selfish game strategy may not produce a good solution with respect to the
social cost and may not even converge. This is because, given the strategies of the others, a user may
choose to schedule his or her appliances at time slots with low electricity prices and/or draw power
from the battery at time slots with high electricity prices. If multiple users update their strategies
simultaneously, it can results in new peak(s) in the overall system load. However, it will be shown in
the following sections that, with carefully designed scheduling and power management algorithms,
selfish and greedy strategies can still converge in finite rounds to an equilibrium that is satisfactory to
all users.

4.1. Analysis of Computational Complexity

Before presenting the solution, the computational complexity of the problem is analyzed, and the
result is given in the following theorem.

Theorem 1. Under non-decreasing quadratic cost functions, the electricity cost minimization problem
(i.e., Equation (15)) is NP-hard even without considering appliances’ deadlines, renewable energy resources and
battery capacity-related constraints.

Proof. The NP-hardness can be proven by reducing the well-known NP-hard partition problem to
a special instance of the electricity cost minimization problem under the aforementioned dynamic
pricing model. Given a set of positive integers S = n1, ..., nk, the partition problem is to divide the
set S into two subsets, such that the difference between the sum of the elements in the two subsets is
minimal [21]. The reduction works as follows. For each integer ni ∈ S, an appliance is created and its
per-time slot power consumption is set to ni. The durations of all of the appliances are set to one, and
there are only two time slots in the scheduling horizon. In addition, there are no deadline constraints
on the appliances. Because the electricity price function is quadratic and non-decreasing, the optimal
solution to this electricity cost minimization problem must partition the appliances into two subsets,
such that the difference between their total energy demands is minimal. Obviously, this solution is
also the optimal solution of the original partition problem. Thus, if there exists an algorithm that
can solve the electricity cost minimization problem in polynomial time, it can also solve the partition
problem in polynomial time, which is a contradiction to the fact that the partition problem is NP-hard.
This completes the proof.

4.2. Appliance Scheduling Algorithm

Without considering renewable energy and side batteries, Problem (15) is a pure job scheduling
problem, which generally can be solved using the branch-and-bound algorithm. However, in cases
where the number of users or appliances is large, branch-and-bound-based methods may not be
efficient. Thus, an alternative approach is adopted. Our proposed job scheduling algorithm is inspired
by the local search algorithm proposed in [22]. As shown in Algorithm 1, the proposed scheduling
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algorithm begins with generating an arbitrary feasible scheduling strategy (Line 1). Next, it seeks
to reduce the electricity cost by performing a local search. Suppose that an appliance aij is currently
scheduled to start at some time slot t and that the corresponding electricity cost is αij. The algorithm
repeatedly tries to shift its starting time to a later neighboring time slot (i.e., t+ 1, t+ 2, · · · ) as long as it
does not violate aij’s deadline constraint, and its associated electricity cost remains non-increasing (Line
6). When this process stops, it records the time slot t̂ when the search stopped and the corresponding
electricity cost α̂ij as if aij were to be rescheduled to start at time t̂ (Line 7). The algorithm then searches
in the opposite direction. In other words, starting from time slot t, it continuously shifts aij’s starting
time to the preceding time slot (i.e., t− 1, t− 2, · · · ) as long as the starting time stays greater than or
equal to the current time slot and the electricity cost remains non-increasing (Line 8). When this search
process stops, it also records the time slot t when it stopped and the corresponding electricity cost
αij as if aij were to be rescheduled to start at time t (Line 9). The algorithm then compares α, α̂ij, αij
and reschedules aij to the time slot with the minimum cost while closest to time slot t (Lines 10–12).
This local search process is repeated for each appliance until the scheduling strategy stops changing.
In Section 4.4, the reason why this strategy is convergent and how the convergence property can be
utilized to develop a distributed demand-side management algorithm will be discussed.

Algorithm 1: Appliance scheduling algorithm (executed by each individual user i).
Input :The current aggregate system load vector, i.e., L = [L(t), 1 ≤ t ≤ T]
Output :An updated appliance scheduling strategy si for user i, where

si = {sij(t)|aij ∈ Ai ∧ 1 ≤ t ≤ T}
1 Generate an arbitrary feasible scheduling strategy si for user i if it is her first time running this

algorithm
2 repeat
3 foreach aij ∈ Ai that has not been activated do
4 t← the current starting time of aij;
5 αij ← the current electricity cost of aij;
6 Repeatedly shift aij’s starting time to the next time slot (i.e., t + 1, t + 2, · · · ) as long as

the deadline constraint is not violated and its electricity cost remains non-increasing;
7 Let t̂ be the time slot when the search process of step 6 stops and let α̂ij denote aij’s

electricity cost if its starting time were to be changed to t̂;
8 Similar to step 6, starting from time slot t, repeatedly shift aij’s starting time to the

preceding time slot (i.e., t− 1, t− 2, · · · ) as long as the starting time stays greater than
or equal to the current time slot (i.e., when this algorithm is invoked) and the electricity
cost remains non-increasing;

9 Let t be the time slot when the search process of step 8 stops and let αij denote aij’s
electricity cost if its starting time were to be shifted to t;

10 if αij > min{α̂ij, αij} then
11 if α̂ij < αij then t′ ← t̂ else t′ ← t;
12 Update user i’s appliance scheduling strategy si so that aij starts at time slot t′;
13 until convergence;
14 return si;

4.3. Power Management

Once the schedule of a user’s appliances is determined (i.e., the values of sij(t), ∀t, aij ∈ Ai are
set), the next question is how to further reduce electricity costs for all users by utilizing renewable
resources. This problem is stochastic because the amount of available renewable energy at each time
slot is dynamic in nature. Similar to [14] and for the ease of explanation and clarity, it is assumed
that the joint probability distribution of renewable energy over the whole sequence of future time
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periods (i.e., {P(ri(t), t = 1, . . . , T)}) is known, and the problem is modeled as a (T + 1)-stage dynamic
program. Cases in which the distribution of renewable energy resources is unknown are discussed
later in Section 4.5.

At each time slot, the battery level bi(t) is used as the system state, and rd
i (t), rb

i (t), rg
i (t), bd

i (t),
bg

i (t), gd
i (t) and gb

i (t) are used as the control variables. The system dynamic is, therefore, linear and
time-varying, as specified in Equation (6). Using the backward induction technique, the optimal-value
function at each time slot can be defined as:

υt(bi(t)) = min
ri ,bi ,gi

E
(

Ci(t) + υt+1(bi(t + 1))
)

(19)

s.t. (2), (3), (4), (5), (6), (7), (8), (10), (11), (14)

where Ci(t) is the electricity cost of user i at time t as defined in Equation (14). The objective of the
dynamic program is to find the optimal solution for υ0(bi(0)). To initiate the recursive calculation,
the optimal-value function at time slot T (the final stage) must be defined. Recall that one of our
goals is to maintain the battery at or above its initial level at the end of the scheduling horizon. Thus,
υT(bi(T)) is defined as:

υT(bi(T)) =

{
0 if bi(T) ≥ bi(0)

∞ otherwise
(20)

Solving the dynamic program is of very high complexity because, at every stage, all possible
values of the system state, renewable energy levels and their corresponding probabilities must be
considered. However, since the joint distribution of {P(ri(t), t = 1, . . . , T)} is known, one can compute
the unconditional expected values of the renewable energy and behave as if they are the (unknown)
certain values of the renewable energy for future time periods. This strategy is also adopted by many
research studies, such as [14,23]. This transforms the problem into one of dynamic programming under
certainty and greatly reduces the computational complexity. Nevertheless, it is important to note
that, once the true value of ri(t) is observed at time t−, the expected values of ri(t + 1), · · · , ri(T) will
change given the new “initial” condition and the new joint probability distribution. Thus, the dynamic
program must be re-evaluated at the beginning of each time slot, and a user only implements the
action for the first time period that is indicated as optimal.

The detailed algorithm for solving the dynamic program is presented in Algorithm 2. To begin
with, the algorithm works backward in time starting from stage T and calculates all υt(bi(t)) so
that the optimal control at each stage can be determined. When calculating the value of υt(bi(t)),
the values of Ci(t) + υt+1(bi(t + 1)) for all 0 ≤ bi(t + 1) ≤ Bi must be evaluated. For each possible
value of bi(t + 1), there are three cases to consider. First, if bi(t) > bi(t + 1), this implies that the
battery must be discharged at time t. Therefore, gb

i (t), rb
i (t) and Ib

i (t) must be zeros. In addition,
since the goal is to minimize the electricity cost, the renewable energy should be used to fulfill the
user’s demand first and should only be injected back to the grid when there is any leftover. Thus,
rd

i (t) = min{E(ri(t)), Ei(t)} and rg
i (t) = E(ri(t)) − rd

i (t), where E(ri(t)) is the expected value of
available renewable energy at time t and Ei(t) = ∑

j∈Ai

Eij(t) is the total power demand of user i at time t.

The same principle applies to the energy drawn from the battery. Define ∆ = bi(t)− bi(t + 1); then it

is clear that bd
i (t) = min{ Ei(t)−rd

i (t)
ηd

, ∆} and bg
i (t) = ∆− bd

i (t). Now, if the renewable energy together
with the power drawn from the battery cannot completely fulfill the user’s demand, power must be
drawn from the grid. Thus, gd

i (t) = Ei(t)− rd
i (t)− ηdbd

i (t). The second case where bi(t) < bi(t + 1)
and the third case where bi(t) = bi(t+ 1) are very similar; therefore, we refer the readers to Algorithm 2
for details. Once all of the possible values of Ci(t) + υt+1(bi(t + 1)) are obtained, the action that results
in the minimum υt(bi(t)) is taken as the optimal control for state bi(t). This process is repeated until
state bi(0) is reached. Not until then does the algorithm backtrack, and the optimal control actions
along the path are taken as the power management strategy for the user.



Energies 2016, 9, 654 11 of 20

Algorithm 2: Power management algorithm (executed by each individual user i).
Input :The current time slot tnow; the current appliance scheduling and power management

strategies of all users; the observed amount of renewable energy ri(tnow) for the current
time slot; the expectations of renewable energy for future time periods
{E(ri(t)); tnow < t < T}

Output :User i’s power management strategy qi.
/* Initialize υT(·) */

1 for b← 0 to Bi do
2 if b ≥ bi(0) then υT(b)← 0;
3 else υT(b)← ∞;
4 for t← T − 1 to tnow do
5 Ei(t)← ∑

j∈Ai

Eij(t)

6 for bi(t)← 0 to Bi do
7 υt(b(t))← ∞;
8 for bi(t + 1)← 0 to Bi do
9 ∆← bi(t)− bi(t + 1);

10 if ∆ > 0 then
/* Discharge the battery */

11 gb
i (t)← rb

i (t)← Ib
i (t)← 0;

12 rd
i (t)← min{E(ri(t)), Ei(t)};

13 rg
i (t)← E(ri(t))− rd

i (t);

14 bd
i (t)← min{ Ei(t)−rd

i (t)
ηd

, ∆};
15 bg

i (t)← ∆− bd
i (t);

16 gd
i (t)← Ei(t)− rd

i (t)− ηd · bd
i (t);

17 else if ∆ < 0 then
/* Charge the battery */

18 bd
i (t)← bg

i (t)← 0; Ib
i (t)← 1;

19 rb
i (t)← min{ ∆

ηc
,E(ri(t))};

20 rd
i (t)← min{E(ri(t))− rb

i (t), Ei(t)};
21 rg

i (t)← E(ri(t))− rb
i (t)− rd

i (t);

22 gb
i (t)←

∆−ηc ·rb
i (t)

ηc
; gd

i (t)← Ei(t)− rd
i (t);

23 else
24 bd

i (t)← bg
i (t)← rb

i (t)← gb
i (t)← Ib

i (t)← 0;
25 rd

i (t)← min{E(ri(t)), Ei(t)};
26 rg

i (t)← E(ri(t))− rd
i (t); gd

i (t)← Ei(t)− rd
i (t);

27 Based on the above newly calculated power management strategy for user i,
calculate υ← Ci(t) + υt+1(bi(t + 1));

28 if υ < υt(b(t)) then
29 υt(b(t))← υ; trace[t, b(t)]← b(t + 1);
30 Record the power management strategy corresponding to the current optimal

value of υt(b(t)) as: rd[t, b(t)]← rd
i (t); rb[t, b(t)]← rb

i (t); rg[t, b(t)]← rg
i (t);

bd[t, b(t)]← bd
i (t); bg[t, b(t)]← bg

i (t); gd[t, b(t)]← gd
i (t); gb[t, b(t)]← gb

i (t);
31 Backtrack from state bi(tnow) using the trace matrix and record the power management

strategy at each state along the path of optimal strategies until the final stage is reached, and let
qi denote the recorded strategies.

32 return qi;
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4.4. Distributed Demand-Side Management

Based on the results presented in the previous sections, a distributed demand-side management
algorithm called DDSM is proposed for the purpose of minimizing social and private electricity
costs. The algorithm is run at the beginning of each time slot. As shown in Algorithm 3, given the
current aggregate system load vector L = [L(t), 1 ≤ t ≤ T], a user runs Algorithm 1 to determine
a new schedule for the appliances that have not been activated (Line 3). Then, based on the observed
renewable energy at the current time slot and the expectations of renewable energy for future time
periods, the user applies Algorithm 2 to calculate a new power management strategy (Line 4). After that,
the user updates the aggregate system load vector according to his or her new appliance scheduling
and power management strategies and sends it to the next user in the grid network (Line 5). This
process repeats until convergence. Then, all users apply the actions (activating appliances, drawing
power from the grid or batteries, etc.) for the current time slot, as specified in their final convergent
strategies (Line 7). It is important to note that all users must take turns executing the DDSM algorithm
in order to avoid load synchronization and to ensure convergence. As the DDSM algorithm is run
at every time slot, the equilibrium point changes over time. This offers opportunities for all users
to adjust their appliance scheduling and power management strategies according to the dynamics
of renewable energy. The proof of DDSM’s convergence property is detailed below in Theorem 2.

Algorithm 3: Distributed demand-side management (DDSM) algorithm (executed at the
beginning of each time slot).

1 repeat
2 foreach user i ∈ N do
3 Run Algorithm 1 to determine a scheduling strategy (si) for the appliances that have

not been activated
4 Given the observed renewable energy of the current time slot and the expected values

of renewable energy for future time periods, run Algorithm 2 to calculate a power
management strategy (qi)

5 Update the aggregate system load vector according to the new appliance scheduling
and power management strategies and send it to the next users in the grid network.

6 until convergence;
7 All the users apply the actions for the current time slot as specified in their final convergent

strategies.

Theorem 2. If the users update their strategies asynchronously, i.e., no two users update their appliance
scheduling and power management strategies at the same time, the DDSM algorithm converges in a finite
number of rounds.

Proof. Recall that Algorithm 1 invoked at Line 3 only shifts the schedule of an appliance if and
only if the electricity cost associated with that appliance is non-increasing after the shift. Since the
electricity cost is a quadratic and non-decreasing function of the total power demand of the entire
grid, this implies that if the total power demands of the entire grid at each time slot are sorted in
non-increasing order and put in a vector, this vector will become lexicographically smaller after each
shift (given two vectors x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn], it is said x ≤LEX y if there exists
some 0 ≤ i ≤ n, such that ∀1 ≤ j < i, xj = yj and xi < yi). Following the same rationale, as the power
management strategy generated by Algorithm 2 (invoked at Line 4) is optimal when the uncertain
renewable energy at future time slots is replaced by their unconditional expectations, this means that
there is no way to reduce the electricity cost at time slots with high electricity prices by drawing power
from the battery or the energy-harvesting device. Thus, the power demand vector must also become
lexicographically smaller after each run of Line 4. Since this vector of power demands must be lower
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bounded, as the vector keeps becoming lexicographically smaller and smaller, the DDSM algorithm
will eventually converge. This completes the proof.

Based on the arguments in the proof, it can be seen that our proposed appliance scheduling
algorithm can still work in cases where an appliance has a non-constant power consumption pattern.
However, after each shift of an appliance, not only its associated electricity cost must be non-increasing,
the highest aggregate system load during the appliance’s active time slots must also decrease. If the
highest aggregate system load does not change, then the second highest system load must decrease,
and so on and so forth, in order to ensure convergence.

4.5. Dealing with Uncertain Renewable Energy Resources

In earlier discussions, the probability distribution of renewable energy is assumed to be known
for the sake of clarity. However, our proposed algorithms can be combined with robust optimization
techniques, such as the primal cut algorithm in [19], to tackle the uncertainty of renewable energy
resources. The following paragraphs provide an outline for how to combine the primal cut algorithm
with our proposed algorithms to solve the electricity cost minimization problem in cases where the
distribution of renewable energy is unknown.

The first step for applying the primal cut algorithm is to formulate the electricity cost minimization
problem as a two-stage robust optimization (RO) problem as:

min
s

max
u∈U

min
r,b,g

T

∑
t=1

∑
i∈N

Ci(t) (21)

s.t. r(u)i (t) = rd
i (t) + rb

i (t) + rg
i (t) ∀i, t (22)

(1), (2), (3), (5), (6), (7), (8), (9), (10), (11), (14) ∀i, t

where U denotes the uncertainty set and r(u)i (t) denotes the amount of renewable energy available at
time t for scenario u ∈ U. Then, the two-stage RO problem is decomposed into a main problem and a
subproblem. The subproblem is shown in Equations (23) and (24). The goal of the subproblem is to
identify the worst case scenario that incurs the highest minimum electricity cost for a given appliance
scheduling strategy for all users (i.e., sij(t) ∀aij, t are given). Here, a scenario refers to some instance of
uncertain renewable energy for the entire scheduling horizon.

max
u∈U

min
r,b,g

T

∑
t=1

∑
i∈N

Ci(t) (23)

s.t. r(u)i (t) = rd
i (t) + rb

i (t) + rg
i (t) ∀i, t (24)

(2), (3), (5), (6), (7), (8), (9), (10), (11), (14) ∀i, t

The subproblem may seem difficult to solve as there can be many scenarios to consider.
However, as only bad scenarios matter, only a small portion of the uncertainty set needs considering.
When examining a particular scenario, Algorithm 2 in Section 4.3 can be applied to compute the
optimal power management strategy for all users. Note that, when applying Algorithm 2 to solve
the subproblem, all users must take turns running the algorithm until convergence. Once all of the
scenarios are examined, the worst case scenario can be identified, and its corresponding electricity cost
becomes the lower bound of the original two-stage RO problem, as there might be another appliance
scheduling strategy for which the worst-case electricity cost is higher.

For each worst-case scenario identified by the subproblem, the primal cut algorithm generates a set
of constraints (i.e., Equations (1)–(14)) and adds these constraints to the main problem. The purpose of
the main problem is to identify the appliance scheduling strategy for all users that incurs the maximum



Energies 2016, 9, 654 14 of 20

minimum electricity cost among those worst-case scenarios identified by the subproblem. Thus, the
main problem is formulated as:

max ψ (25)

s.t.
T

∑
t=1

∑
i∈N

C(u)
i (t) ≥ ψ, ∀u ∈ Uw (26)

(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (14) ∀i, t, u ∈ Uw

In Equation (26), C(u)
i (t) denotes the electricity cost of user i under scenario u at time slot t and Uw

denotes the set of worst-case scenarios identified by the subproblem. Solving the main problem
can be time consuming because there are many binary variables. To speed up the computation,
one can utilize Algorithm 3 in Section 4.4 to compute the optimal appliance scheduling and power
management strategies for each scenario u ∈ Uw. In general, the main problem generates an appliance
scheduling strategy for each scenario in Uw, and the appliance scheduling strategy that incurs the
maximum minimum electricity cost is identified and fed to the subproblem for the next round of
computation. The objective value of the main problem is an upper bound to the original two-stage
RO problem, because the main problem does not consider all of the scenarios. Now, if the gap
between the upper bound and the lower bound is smaller than a predefined threshold, the algorithm
terminates. Otherwise, the aforementioned steps are repeated until convergence. Due to time and
resource constraints, we refer the reader to [19] for more details on the primal cut algorithm and leave
the performance analysis for future work. Nonetheless, the steps for the algorithm are summarized in
Figure 3 for reference.
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Figure 3. The primal cut algorithm [19].

5. Evaluation

In this section, the evaluation results of our proposed algorithms are presented and compared to
the solutions generated by the DDSM algorithm with those computed by Gurobi [24], which is
a commercial mathematical software that solves mixed-integer programming problems using
a branch-and-bound-based algorithm. Unless stated otherwise, it is assumed that there are 100
users, each of which has 1–20 jobs with random durations, deadlines and instantaneous power
consumption rates. In addition, each user is assumed to have a home photovoltaics system consisting
of 20 solar panels of 1.5 m2 in size with 16.5% power conversion efficiency. Such a system can
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approximately output 5 kW under the standard test conditions (STC) [25] (the standard test conditions
are: normal irradiance of 1000 W/m2, cell temperature 25 ◦C (77 ◦F) and air mass = 1.5). The solar
system is also assumed to feature a side battery with a capacity 48 V 200 Ah, which is equivalent to
9.6 kWh, for storing excessive energy. Under such assumptions, a renewable energy profile is created
for each user using the radiation measurements on 1 June 2015 obtained from the public BMS dataset
of the National Renewable Energy Laboratory (shown in Figure 4). The radiation measurements were
recorded by a pyranometer mounted on a west-facing surface tilted 90 degrees from the horizontal.
The length of the time slots is set to 1 h for convenience. Thus, the amount of available solar energy
during a time slot can be easily calculated by taking the average (in kW/m2) of the solar irradiance
for the corresponding hour and multiplying by five. The resulting recharging profile can be found
at the bottom of Figure 4. It should be noted that although the length of the time slots is set to 1 h,
it can be adjusted as needed. For example, the slot length can be set to 1 min or even 1 s, so as to
make the execution time of all appliances a multiple of the slot length. The electricity cost of each time
slot is assumed to be C(L(t)) = 5× L(t)2 + 2, where L(t) denotes the total power demands at time t.
Other detailed experimental parameters are listed in Table 4 for reference.
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Figure 4. Solar irradiance measurements on 1 June 2015 from the public BMS dataset of the National
Renewable Energy Laboratory [26].

Table 4. Experimental Parameters.

Parameter Value

Number of time slots 24
Time slot length 1 h

Number of jobs per user 1–20
Duration of jobs 1–8 slots

Per-time slot power demand of the jobs 1–50 kW
PV system size in kW 5 kW

Battery capacity 48 V 200 Ah
Battery charge/discharge efficiency 0.85 [27]

For evaluating our proposed DDSM algorithm, two programs are developed using C++.
Given an instance of the electricity cost minimization problem, the first program solves the problem
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by using the proposed DDSM algorithm, and the other makes use of Gurobi’s API to generate
constraints according to the problem specification and solves the optimization problem using
a branch-and-bound-based algorithm. First, to show the convergence behavior of the proposed
DDSM algorithm, an experiment is conducted to show the social electricity cost for each iteration
when the DDSM algorithm is run at the first time slot. Only the result for the first time slot is shown
because the rest of the time periods exhibit similar convergence behavior. As can be seen in Figure 5,
the DDSM algorithm converges very quickly. The steady state is reached in just five iterations. The
final social electricity cost is very close to the optimum computed by the Gurobi solver. It can also
be observed in the figure that the planned total power demand of each time slot is smooth with no
obvious peak demand periods. This implies that our proposed DDSM algorithm not only can reduce
electricity costs for all users, but also can minimize the PAR for the entire grid, which is a win-win
solution for both the energy provider and the users.
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Figure 5. Convergence and peak load reduction properties of the distributed demand-side management
algorithm (DDSM) algorithm.

Recall that the DDSM algorithm uses imperfect information regarding the availability of renewable
energy when making appliance scheduling and power management decisions for all users. The only
piece of information that is available to the DDSM algorithm is the true value of renewable energy
observed at the current time slot and the expected values of renewable energy for future time slots.
To understand the impact of imperfect information over the performance of the DDSM algorithm,
we randomly vary the previously created recharging profile (i.e., the true recharging profile) within
the range of ±15% and use it as an estimation of the expected value for renewable energy at each
time slot. The result is shown as a purple line on top of Figure 6. The solutions produced by the
DDSM algorithm are compared to those computed by Gurobi. When running the DDSM algorithm,
the first (true) recharging profile is used to get the value of renewable energy for the current time slot,
and the second recharging profile is used to estimate the values of renewable energy for future time
slots. In contrast, the Gurobi solver is given the true value of renewable energy for every time slot
in the scheduling horizon. Thus, the solution produced by the Gurobi solver is the true optimum.
As can be seen at the bottom of Figure 6, the social electricity cost per time slot is very close to the
optimum. In the worst case, which happens at Time Slot 17, the electricity cost of the DDSM algorithm
is only 5.7% higher than the optimum. This shows that although the DDSM algorithm uses imperfect
information of renewable energy when computing appliance scheduling and power management
strategies and, thus, its solution may not be as robust as the primal cut algorithm introduced in
Section 4.5, it can still achieve reasonable performance.
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Next, to evaluate the performance of the DDSM algorithm in terms of optimality and efficiency,
the exact information of renewable energy is fed to the DDSM algorithm, and the number of users
is varied from 100–1000. Table 5 shows the solutions produced by the DDSM algorithm and the
Gurobi solver and their corresponding computation time for each scenario. As can be seen in the
table, the electricity costs incurred by the solutions computed by the DDSM algorithm are all higher
than those of the Gurobi solver. However, they are very close, and the electricity costs of the DDSM
algorithm are only 0.8% higher than those of the Gurobi solver in the worst case. In addition, as
the number of users grows, the amount of time required by the Gurobi solver increases dramatically
from 10.45 s–19 min, while the DDSM algorithm only takes less than 6 s in all scenarios on a PC with
a 3.4-GHz Intel i7 CPU. Although transmission delays are not considered in our experiments and, thus,
the time required by the DDSM algorithm may be actually higher in reality, it is still much better in
terms of scalability because the number of variables required by the mathematical model will quickly
become intractable as the number of users increases. This makes it extremely difficult to solve the
problem using off-the-shelf solvers.
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Figure 6. Evaluation of Algorithm 2 using imperfect information of renewable energy
(note, renewable energy is abbreviated as R.E. in the figure).

Table 5. Optimality and speed of the DDSM algorithm.

Scenario Cost Time (s)

# of Users DDSM Gurobi DDSM Gurobi

100 2.50× 108 2.49× 108 0.32 10.45
200 7.48× 1010 7.42× 1010 1.12 50.13
400 3.34× 1011 3.32× 1011 1.73 154
600 7.89× 1011 7.87× 1011 3.15 395
800 1.30× 1012 1.29× 1012 4.26 826

1000 2.03× 1012 2.01× 1012 5.57 1140

Another factor that may affect the performance of the DDSM algorithm is the order in which the
users update their appliance scheduling and power management strategies. This is because the update
sequence of the users is essentially the “path” taken by the DDSM algorithm during the optimization
process. To see its effects on the performance of the algorithm, 50 random update sequences of users
are generated, and the DDSM algorithm is run accordingly to solve the same test case with 100 users,
each of which has 1–20 appliances, as described at the beginning of this section. All 50 runs converge,
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and their corresponding electricity costs are presented in Figure 7. As can be seen in the figure,
the update sequence of the users does affect the final solution produced. However, they are all in
the vicinity of the optimal solution obtained by Gurobi. This implies that the DDSM algorithm is
insensitive to the update sequence of the users, which will allow more flexibility when implementing
the DDSM algorithm in a real smart grid network.

Lastly, to show that the proposed DDSM algorithm can work with any number and sizes of time
slots, the length of the time slots is varied from 1 h down to 1 min, and the length of the scheduling
horizon is kept unchanged at one day. As shown in Table 6, the DDSM algorithm is able to produce
good solutions in all cases (note, the result of Gurobi for the slot size of 1 min is not included in the
table because the solver was not able to give a solution in a reasonable amount of time (one day)). As
the number of time slots increases, the computation time of the DDSM algorithm increases slightly,
whereas the computation time of Gurobi grows dramatically. This shows the scalability and practicality
of our proposed DDSM algorithm over traditional optimization methods.
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Figure 7. Evaluation of Algorithm 2 with different update sequences of users’ appliance scheduling
and power management strategies.

Table 6. Performance comparison of different slot sizes.

Scenario Cost Time (s)

Slot Size (min) DDSM Gurobi DDSM Gurobi

60 2.02× 108 1.99× 108 0.107 11.01
30 3.52× 108 3.46× 108 0.218 93.28
10 1.29× 109 1.27× 109 0.325 684.12
1 9.49× 108 — 4.14 —

6. Conclusions

Demand-side management is an important issue for smart grids with distributed renewable power
resources. This paper first proposes a single-user job scheduling algorithm and a power management
algorithm. Combining the two algorithms, a distributed demand-side management algorithm for
minimizing the global electricity cost is developed. Through rigorous analysis and simulations, it is
shown that our proposed algorithms are not only efficient and scalable, but are also convergent and
very close to the optimum.
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