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Abstract: Motivated by the potential ability of air conditioning (A/C) units in demand response, this
paper explores how to utilize A/C units to increase the profit of a smart community. A coalitional game
between the households and the load serving entity (LSE) in a smart community is studied, where the
LSE joins by selling renewable energy to householders and providing an energy saving service to them
through an A/C controller. The A/C controller is designed to reduce the amount of electricity purchased
from the main grid by controlling A/C units. An online A/C energy management algorithm is developed,
based on Lyapunov optimization, that considers both the A/C energy consumption and the thermal
comfort level of consumers. In order to quantify the contribution of A/C units, the Shapley value is
adopted for distribution of the reward among the participating householders and the LSE, based on their
contribution. The simulation result verifies the effectiveness of the proposed coalitional game for a smart
community and the algorithm for A/C.
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1. Introduction

With more electricity-consuming products coming into our daily lives, such as electrical vehicles and
air conditioning (A/C) systems, load demand increases dramatically and imposes significant burdens on
the existing power grid [1,2]. Along with developments in smart grid technologies—such as two-way
communication networks and advanced metering infrastructure [3,4]—the control and monitoring of
end use loads at the appliance level in smart households is realized [5,6]. The new information and
communication technology infrastructures allow faster and more efficient communications, which offers
numerous technical benefits and flexibilities and makes cooperation between utility providers and
consumers possible [7,8].

The end users are indeed becoming aware of taking part in the sustainable operation of the energy
system within an overall smart community strategy [9,10], rationalizing the amount of energy required by
controllable loads [11], or by wisely scheduling run times of smart appliances that are likely to be shifted
in time [12,13], and also turning themselves into potential carbon-free generators of energy, through the
use of renewable resources [14,15]. Among the smart appliances in households, A/C has traditionally
drawn more attention than other end use loads because of its ability to shift energy consumption within
a certain time period by storing electricity as thermal energy [16,17]. On the other hand, A/C is
one of the major consumers of energy and has a significant influence on the overall energy usage of
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households. Controlling the energy consumption of A/C can lead to significant energy savings for smart
households [18]. The potential of A/C units for load balancing/regulation service has been evaluated
in [19]. However, the load control of A/Cs adversely impacts the thermal comfort of customers. Reducing
the discomfort of consumers is a top priority in the energy management of A/C units. To this end, studying
the energy consumption behavior of A/C units and developing algorithms for effective control without
compromising users’ comfort have become an important part of energy management research [20].

In the last few years, some studies have been devoted to the intelligent and interactive management
of A/C units. Some papers need to be based on the forecast value of system variables to solve the
optimization issues for A/C energy management. For example, [21] developed an innovative event-based
approach to minimize the A/C’s day-ahead energy cost, which is based on the forecast information of
the system. In [22], a novel intelligent residential A/C system controller is set forth to provide optimal
comfort/cost trade-offs for the residents. However, the controller needs to use weather forecast information.
Hong et al. [23] aimed to obtain the optimal temperature scheduling for A/Cs according to the
day-ahead electricity prices and the forecasted outdoor temperature. In the load control strategy
of [24] A/C temperatures were set according to the forecasted prices and outdoor temperatures 24 h
in advance. Meanwhile, some other papers formulate the A/C control problem as an optimization
problem with complex constraints and need to analyze a large number of historical data or adopt complex
traditional algorithms, including model predictive control [25], genetic algorithms [26], and dynamic
programming [27], which is of high computational complexity. For instance, a centralized optimal
control algorithm with comfortable room temperature consideration is proposed in [28] by controlling the
operational set-point of A/C units. However, the control algorithm relies on the population information of
the room temperature, which makes it vulnerable to implementation online. Sun et al. [29] developed
a methodology which combines stochastic programming and rollout techniques for controlling A/Cs in
order to minimize the electricity cost. In [30], a mixed integer multi-scale stochastic optimization problem
was formulated, and an algorithm based on model predictive control was proposed for the scheduling
A/Cs for a home energy management system.

From the above, the existing studies on A/C energy management have fully reflected the potential
ability of A/C units on the demand side. However, most of them are based on forecasting models or
complex computation, which is not suitable for practical application. As for the forecasting model, due to
the time-dependent uncertainties in weather condition, the unpredictable behavior of customers, and the
intermittent nature of renewable energy resources [31], the forecasting error of these sources of information
is relatively large [32], making the energy management of A/C much more challenging. On the other hand,
the contribution of A/C in the demand response is not quantified in these researches. The householders
cannot get the corresponding reward, which is disadvantageous for the long-term cooperation between
householders and the load serving entity (LSE). In brief, there is a need for a cooperative strategy with a
fair reward allocation scheme and a control algorithm for A/C units with low computational complexity.
In this paper, motivated by A/C units’ potential in demand response, a coalitional game for a smart
community and an online energy management algorithm for A/C units are proposed. In the algorithm,
we tackle the A/C energy management problem with a Lyapunov optimization approach [33], which is a
useful technique for solving stochastic network optimization and does not rely on any future information.

The main contributions of this paper are summarized as follows:

• A coalitional game framework is established between smart households and the LSE to improve the
revenue of the community. The LSE sells renewable energy to the householders and provides energy
saving service for A/C units in the household through an A/C controller. A suitable utility function
is proposed to capture the benefit to the coalition. The game is economically beneficial to both the
households and the LSE, with the improvement of the self-consumption for renewable energy.
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• In the A/C controller provided by the LSE, an online energy management algorithm based on
Lyapunov optimization is developed for A/C units to reduce the amount of electricity purchased
from the main grid and further increase the revenue of the coalition. It does not rely on any future
information, and could quickly make decisions under the fluctuation of weather conditions, renewable
generation, load demands, and prices. The decision at each slot can be made by only using the current
observations, which has high efficiency and requires small computational resources.

• The Shapley value is adopted to allocate the reward of each member in the coalition, which provides a
fair and unique solution for the coalitional game. The contribution of each participating householder
is quantified, which is beneficial for the long-term operation of the coalition. The simulation result
verifies that a householder with a greater contribution would get more benefits.

The rest of this paper is organized as follows. In Section 2, we begin with the introduction of the
system model and the description of the operation mode of the smart community considered in this study.
To improve the revenue of the smart community, we propose a coalitional game and the corresponding
reward allocation scheme for the participating households and LSE in Section 3. In the A/C controller of
each participating household—which is provided by LSE in the game—we develop an online algorithm for
A/C to solve the cost minimization problem of each household in Section 4. Simulation results based on
real-world data are presented and analysed in Section 5. Finally, some concluding remarks are presented
in Section 6.

2. System Model and Operation Mode

2.1. System Model

A graphical representation of the smart community is shown in Figure 1. It consists of N households
that are served by an LSE. Each household is equipped with rooftop photovoltaic (PV) panels and an
A/C controller which are installed and owned by the LSE. The A/C controller can execute the energy
management algorithm to control the operation of the A/C unit.
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Figure 1. Structure of the smart community. A/C: air conditioning; PV: photovoltaic.

The rooftop PV system consists of PV panels, inverters, and relevant filters. The output of the PV
system is dynamic and difficult to predict, because it depends on the weather conditions. The household
load is classified into two groups: A/C and baseline load. A/C is the single controllable appliance in
this paper. The control is conducted in terms of switching A/C unit on/off states with a guarantee of
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thermal comfort levels that are experienced by the householders. For each household i, denote by Si(t)
the output of the PV system (in units of kWh) and by Li,b the baseline load (in units of kWh) at time t.
Define Ni(t) = max(Si(t)− Li,b, 0) as the surplus PV energy after meeting the baseline load. The surplus
PV energy Ni(t) will be consumed by A/C or be sold to the main grid.

The thermal dynamic behavior of household A/C is modelled based on the equivalent thermal
parameters approach [19]. As for household i, when A/C is on over the period [tk, tk+1], the indoor
temperature at time tk+1 increases to Tk+1, which is given by:

Tk+1 = T0 + QR− (T0 + QR− Tk) exp(− tk+1 − tk
RC

) (1)

When A/C is off over the period [tk, tk+1], the indoor temperature at time tk+1 drops to Tk+1, which
is given by:

Tk+1 = T0 − (T0 − Tk) exp(− tk+1 − tk
RC

) (2)

where Tk is the indoor temperature at time tk. T0 is the temperature of the surrounding air. Q is the
equivalent operational heat rates (W). R is the equivalent thermal resistances (◦C/W). C is the equivalent
heat capacities (J/◦C) [19,34]. These thermal coefficients can be estimated with statistical and regression
techniques by fitting the observed performance data to the equations [35].

2.2. Operation Mode

The LSE installs the PV panels for each householder in the smart community and makes profit by
cooperating with householders or selling PV energy to the main grid. When a householder cooperates
with the LSE to form a coalition, the householder could utilize its rooftop PV system to satisfy its load
demand. The selling price of PV power by the LSE is the same as the price by the main grid. However,
the householder will get certain rewards from the LSE, according to their contribution in the coalition.
Furthermore, the LSE will help the householder reduce the electricity bill through the A/C controller.
If the householder does not cooperate with the LSE, their rooftop PV energy will be totally sold to the
main grid and their A/C will operate on its own.

Since the LSE offers rewards and energy saving services to the participating households in the
coalition, it is reasonable to assume that the households will be interested in participating in the coalition.
On the other hand, as the feed-in tariff of PV power is considerably smaller than the selling price by the
main grid, the LSE will also benefit greatly from cooperation with the householders, as the coalition will
promote the self-consumption of PV energy.

3. Coalitional Game for the Smart Community

Coalitional game is a branch of game theory that studies whether a group of players—i.e.,
the households and the LSE in this paper—can be better off if they decide to join in a coalition [36].
A coalitional game is defined by (N , v), where N is the set of participating players and v : 2N → R is a
function that assigns every coalitionM⊆ N a real number which represents the rewards achieved byM.

3.1. Proposed Coalitional Game

In this paper, the smart households and LSE in N form a coalition M. The reward that the
coalition of M can obtain is the increased profit under the coalitional game compared with that of
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the independent mode, under which the participating households do not cooperate with each other and
operate independently. The value function v(M) for the coalitionM can be defined as:

v(M) = Fa(M)− Fc(M), ∀M ⊆ N (3)

where Fa(M) is the total cost of all players when they do not cooperate with each other. Fc(M) is the
overall cost of the coalition under the coalitional game. Since Equation (3) represents the revenue of the
coalitionM, it can be divided in any arbitrary manner between the members. Therefore, the proposed
coalitional game v(M) is a game with transferrable utility [37].

Theorem 1. Consider N = {1, 2, · · · , N} as the set of N households in the community where the LSE provides
PV panels for every householder. The reward will increase for the households as more of them agree to form a coalition
M⊆ N with the LSE.

Proof. Given the fact that the feed-in-tariff of PV power is lower than the purchasing price from the main
grid, the self-consumption of PV power would be beneficial for both the households and the LSE. As more
households from N form a coalition with the LSE to consume the PV power, the electricity purchased
from the main grid will reduce, and at the same time, the expected rewards of the coalition will increase.
Additionally, the participating householders will get certain rewards according to their contribution to the
coalition. Therefore, it would always be beneficial for each household to join the coalition in order to reap
greater payments.

According to Theorem 1, the proposed coalitional game will manifest itself in increased profit that
can be shared among the participating households and the LSE in the coalition.

3.2. Reward Allocation Scheme

It has been demonstrated in Theorem 1 that the proposed coalition could result in increased profits
for the whole group of players. In this section, we will clearly show how the cultivated rewards from the
coalition should be shared among the participating players. The Shapley value is adopted to allocate the
increased profits among the participating players.

The Shapley value is a solution concept that provides a unique expected payoff allocation for a
given coalitional game (N , v). It describes an effective approach to the fair allocation of gains obtained
by cooperation among the players of a coalitional game. The concept of the Shapley value (which was
developed axiomatically by Shapley [38]) considers the relative importance of each player to the game in
deciding the payoff to be allocated to the players. φi(v) denotes the payoff to each player i ∈ N . Fairness
is defined as satisfying the following four axioms, which a payoff allocation scheme would reasonably be
expected to satisfy.

(1) (Efficiency) The entire payoff is divided among the participating players without excess remains,
which can be described as ∑i∈N φi(v) = v(N ).

(2) (Symmetry) Two participants that contribute equally are rewarded equally. Let S ∩ {i, j} = ∅,
if v(S) ∪ {i} = v(S) ∪ {j} then φi(v) = φj(v).

(3) (Null player) Participants that do not contribute receive no payoff. Let S ∩ {i} = ∅,
if v(S) ∪ {i} = v(S) then φi(v) = 0.

(4) (Linearity) The total payoff rewarded for contributing to two games is the sum of the payoffs that
would be awarded for contributing to each of the two games individually. If v1 and v2 are two value
functions then φi(v1 + v2) = φi(v1) + φi(v2).
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The Shapley value can be shown to be the only payment distribution method that satisfies these four
axioms, with the added benefit that the solution is unique. Mathematically, the Shapley value φi(v) of a
player i is given by:

φi(v) = ∑
S⊂N\{i}

|S|!(N − |S| − 1)!
N!

[v(S ∪ {i})− v(S)] (4)

The Shapley value φi(v) can be interpreted as the expected marginal contribution that player i makes
to any coalition of N , assuming all orderings are equally likely. Thus, the Shapley value takes into account
all possible coalitional dynamics and negotiation scenarios among the players and comes up with a single
unique way of distributing the value v(N ) of the grand coalition among all the players [39]. In this paper,
we adopt the Shapley value as the reward allocation technique for the participating householders and
the LSE.

4. Online Energy Management Algorithm in the A/C (Air Conditioning) Controller

4.1. Queues of A/C

We assume that at any time t of the day, each household i ∈ M, whereM⊆ N , joins the coalition
and gets the energy saving service of the A/C controller. A/C is the main regulation object in the controller.
The set of electricity demand for A/Cs can be described as:

L(t) , [L1(t), L2(t), · · · , LM(t)], t ∈ [1, 2, · · · , T] (5)

where L(t) is the set of electricity demand for A/Cs in each participating household at time slot t. M is the
number of participating households in coalitionM. T is the number of time slots in the whole operation
cycle. The electricity demand of A/C in household i needs to satisfy:

0 ≤ Li(t) ≤ Li,max (6)

where Li,max is the maximum demand of the A/C in household i per time slot.
The demand of A/C is randomly given in real time based on indoor temperature variation. The

standard temperature of A/C is set by householders and can be denoted as Ti,set. The comfort level of
householders can be evaluated through the deviation degree of indoor temperature from Ti,set. The data in
the simulation is all gathered in winter and A/C is mainly for heating. When the indoor temperature is
lower than Ti,set, A/C is supposed to start running to raise the indoor temperature, which dynamically
generates the demand L(t). However, as the temperature variation in an acceptable range does not
influence the experience of occupants, the demand does not need to be satisfied immediately. It can be
deferred with a guarantee of comfort level for householders. The set of actual electricity consumption for
A/Cs can be described as:

X(t) , [X1(t), X2(t), · · · , XM(t)], t ∈ [1, 2, · · · , T] (7)

where X(t) is the set of actual electricity consumption for A/Cs in each participating household at time
slot t. The actual electricity consumption of the A/C in household i needs to satisfy:

Xi(t) ∈ [0, Ji] (8)

where Ji is the rated electricity consumption of the A/C in household i per time slot.
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The uncompleted electricity demands of A/C in household i are accumulated, and thus form the
A/C queue Hi(t). The queue length means the amount of electricity demand that is deferred. The set of
A/C queues can be described as:

H(t) , [H1(t), H2(t), · · · , HM(t)], t ∈ [1, 2, · · · , T] (9)

where H(t) is the set of A/C queues in each participating household at time slot t. The states of A/C
queues change with the random variation of indoor temperature and the execution results of the A/C
controller. Specifically, the future state of H(t) is driven by stochastic arrival L(t) and execution process
X(t), according to the following dynamic equation.

Hi(t + 1) = Hi(t)− Xi(t) + Li(t), i ∈ [1, 2, · · · , N] (10)

4.2. Problem Formulation

As the baseline load is fixed, the corresponding electricity cost is constant. The main objective of the
A/C controller is to minimize the cost generated by A/C. The electricity purchased from the main grid
can be calculated as:

Gi(t) = max[Xi(t)− Ni(t), 0] = Xi(t)[1− Ni(t)/Ji] (11)

where Gi(t) is the amount of electricity that needs to be purchased from the main grid for the A/C in
household i. As the value of Xi(t) is either 0 or Wi, the amount of electricity purchased from the main grid
at time slot t in Equation (11) can be further converted to Xi(t)[1− Ni(t)/Ji]. If Xi(t) = 0, the amount of
Gi(t) is 0; If Xi(t) = Ji, the corresponding amount is Xi(t)− Ni(t).

The electricity cost generated by A/C in household i at time slot t can be calculated as:

Fi(t) = c(t) · Gi(t) (12)

where c(t) is the electricity price of the main grid.
The A/C controller is designed to lower the cost as much as possible. The online A/C energy

management algorithm can be described as: at time slot t, the A/C controller receives information about
c(t), Ni(t), and Hi(t). On the premise of guaranteeing comfort level and stability of A/C queues H(t), the
A/C controller aims at minimizing the electricity cost generated by A/C by controlling the A/C operation
statuses. For household i, the problem can be expressed as:

min lim
t→∞

1
t

t−1

∑
τ=0

Fi(τ)

s.t. (8), A/C queues are mean rate stable ∀i, t.

(13)

The A/C queue Hi(t) is called mean rate stable [40] if

lim
t→∞

E{|Hi(t)|}
t

= 0 (14)

The algorithm in the A/C controller is supposed to guarantee the stability of A/C queues, in addition
to minimizing the electricity cost. The thermal comfort level of householders should be ensured, which
means that the A/C demands will not be put off infinitely. The stability of A/C queues can be interpreted
as the principle that the A/C load demand cannot be unlimitedly accumulated, and should be responded
to in a reasonable delay range.
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4.3. Lyapunov Optimization

For household i, Lyapunov function L(Hi(t)) , Hi(t)2/2 is defined as a scalar measure of the
congestion in the A/C queue. The Lyapunov drift for slot t is defined as:

∆(Hi(t)) , E{L(Hi(t + 1))− L(Hi(t))} (15)

where ∆(Hi(t)) is the variation of the Lyapunov function over a time slot, which represents the stability of
the A/C queue. The variation depends on the random arrival of demands for A/C and the decisions of
A/C controller.

Based on the drift-plus-penalty method [40], an online A/C energy management algorithm is
designed. At every time slot, based on the information acquired by the A/C controller, the value of X(t) is
decided to minimize the drift-plus-penalty expression as follows

∆(Hi(t)) + Wi ·E{Fi(t)} (16)

where Wi is the weight parameter, which illustrates how much importance the householder attaches to
the cost minimization. If Wi = 0, it corresponds to the pure system stability problem by minimizing the
Lyapunov drift. Minimizing ∆(Hi(t)) alone would push the A/C towards lower backlog, but would incur
a large penalty on the cost. Therefore, the algorithm is designed to minimize the weighted sum of drift
and penalty. Wi represents the tradeoff between stabilizing A/C queues and minimizing the cost. It is set
based on the A/C power level and the user preference between cost and delay.

Lemma 2. For any control policy that satisfies the constraints in (13), the drift-plus-penalty expression satisfies

∆(Hi(t)) + Wi ·E{Fi(t)} ≤ Bi + Wi ·E{c(t)Xi(t)[1− Ni(t)/Ji]}+E[Hi(t)(Li(t)− Xi(t))] (17)

where the constant Bi is defined as

Bi ,
Li,max

2 + Ji
2

2
(18)

Proof. A bound can be computed on the Lyapunov drift as follows:

∆(Hi(t)) = E{L(Hi(t + 1))− L(Hi(t))} =
1
2
E[Hi(t + 1)2 − Hi(t)2]

=
1
2
E[(Hi(t)− Xi(t) + Li(t))2 − Hi(t)2]

≤ 1
2
E[Li(t)2 + Xi(t)2 + 2Hi(t)(Li(t)− Xi(t))]

=
1
2
E[Li(t)2 + Xi(t)2] +E[Hi(t)(Li(t)− Xi(t))]

(19)

and thus Bi can be defined as Equation (18). Using Equations (6) and (8), we have

∆(Hi(t)) ≤ Bi +E[Qi(t)(Li(t)− Xi(t))] (20)

adding the cost to both sides, we thus have Equation (17).

The original problem Equation (13) is transformed into the following problem by minimizing the
right-hand-side of Equation (17).
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min Xi(t){Wi · c(t)[1− Ni(t)/Ji]− Hi(t)}
s.t. (8), ∀i, t.

(21)

The above problem can be further reduced to the following simple threshold rule:

Xi(t) =

{
0, Wi · c(t)[1− Ni(t)/Ji]− Hi(t) > 0
Ji, Wi · c(t)[1− Ni(t)/Ji]− Hi(t) < 0

(22)

It can be seen from (22) that the implementation of Lyapunov optimization is relatively simple,
compared to traditional optimization algorithms. It does not need a priori statistical knowledge, and
only relies on the instant information about system states at a given moment. The original complex A/C
energy management problem is transformed into a linear programming problem, which largely reduces
the computational complexity. Furthermore, it has no curse of dimensionality, and hence can be easily
applied in extended formulations with multiple households and multiple A/C queues.

According to Equation (16), the weight parameter Wi (which is set by the householder) is closely
related to the deferrable degree of the A/C. With large Wi, householders can achieve a lower electricity
bill, but will suffer from the excessive reduction of indoor temperature. With small Wi, the comfort level of
householders is guaranteed, but the electricity cost would be relatively higher. According to the setting
of Wi, the participating households in the community are classified into two groups: the group with
higher deferrable degree A/Ch, and the group with lower deferrable degree A/Cl . A/Ch and A/Cl both
cooperate with the load serving entity (LSE) to form a coalition. Thus, the set of participants in the coalition
can be represented asM={A/Ch, A/Cl , LSE}. The reward of A/Cl , A/Ch, and LSE will be allocated via
the Shapley value. As for the households in A/Ch and A/Cl , their reward will be distributed according to
their contributions to the consumption of PV energy. The overall flowchart of the operation strategy in the
smart community is shown in Figure 2.

Form the coalition of {                          } 

Classify the participating households
based on the setting of 

Update the A/C queues

No

Each A/C controller collects

Is it the last time slot ?

Output

Yes

t = t+1

Decide        based on Lyapunov optimization

Allocate the reward for each household
 and LSE via Shapley value

iW

/ , / ,h lA C A C LSE

( ), ( ), ( )i ic t N t H t

( )iX t

Figure 2. Flowchart of the operation strategy in the smart community. LSE: load serving entity.
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5. Case Study

5.1. Basic Data

In order to evaluate the effectiveness of the proposed coalitional game and online A/C energy
management algorithm, a smart community including six households and an LSE was selected as the
research object. The simulation was conducted in Matlab for one day, and the time resolution was 10 min.
Considering the fact that the households are close to each other in geographic distance, the PV generation
of these households takes the same data. Meanwhile, in order to compare the difference between A/Ch and
A/Cl , the baseline load demand of these households also takes the same data. The data of PV generation
and baseline load are all collected from the real-time measurements from real households, which are
shown in Figure 3.

0:00 6:00 12:00 18:00 24:00
0

1

2

3

4

Time

P
ow

er
 (

kW
)

 

 

PV generation
Baseline load

Figure 3. PV generation and baseline load of households.

The time-of-use price c(t) adopted in the simulation is shown in Table 1.

Table 1. Time-of-use price.

Time Price (RMB/kWh)

10:00–15:00, 18:00–21:00 1.37
7:00–10:00, 15:00–18:00, 21:00–23:00 0.8

23:00–7:00 0.37

The rated power of A/Cs in these households is set as 3 kW. According to the setting of Wi, the six
households are classified into A/Ch and A/Cl . The specific parameters of A/Cs in these households are
shown in Table 2.

Table 2. A/C (air conditioning) parameters of households.

A/Ch A/Cl

Household Standard Temperature (◦C) Wi Household Standard Temperature (◦C) Wi
1 20 8 4 20 5
2 21 8 5 21 5
3 22 8 6 22 5
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In order to verify the effectiveness of the proposed coalitional game and energy management
algorithm, the independent operation mode is taken as the comparison case. The comparison of the
features between the cooperative mode and independent mode is shown in Table 3.

Table 3. Comparison of cooperative mode and independent mode.

Operation Mode Householders Utility Company

Cooperative PV energy + A/C controller + Rewards sell PV energy and share rewards to householders
Independent operate on their own sell all PV energy to the main grid

5.2. Analysis of Results

In the proposed coalitional game, householders can get certain rewards and the energy saving service
of A/C controller. At the same time, the self-consumption of PV energy is improved, which will benefit
the LSE greatly. The results of a comparison between the proposed coalitional game and independent
operation mode are shown in Table 4.

Table 4. Comparison of revenue between the two operation modes.

Operation Mode Independent Mode Cooperative Mode

Revenue (RMB) −248.8419 −178.9992
Amount of electricity purchased from the main grid (kWh) 360.9796 274.5141

It can be seen from Table 4 that the revenue under the proposed game is significantly improved. The
value of the coalition is just the increased profit, which can be expressed as v(M) = 69.8427. The amount
of electricity purchased from the main grid is considerably reduced under the cooperative mode. The
specific comparison of real-time results for purchased electricity is shown in Figure 4. It can be seen that
during the most times in a day, householders need to purchase more electricity from the main grid under
the independent operation mode.
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Figure 4. Comparison of purchased electricity from the main grid.

The reward of the coalition is closely related to the configuration of PV generation in each household.
The simulation analyses the effect of PV generation to the reward. The result of sensitivity analysis is
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shown in Figure 5. With the increase of PV capacity, as the amount of electricity that needs to be purchased
from the main grid decreases, the reward of the coalition increases.
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Figure 5. Sensitivity analysis of PV generation.

As for the effect of online energy management algorithm in A/C controller, the cost comparison for
A/Ch and A/Cl is shown in Table 5.

Table 5. Cost comparison of A/Ch (higher deferrable degree) and A/Cl (lower deferrable degree).

Group A/Ch A/Cl

Total cost (RMB) 88.5773 90.4218
Cost from the main grid (RMB) 95.4719 97.3211

Average backlog of A/C queues (kWh) 731.8333 439.6667

The simulation results in Table 5 coincide with the theoretical analysis in Section 4.3. The performance
of the online energy management algorithm in the A/C controller is closely associated with the setting
of weight parameter Wi. When Wi gradually increases, the average backlog of queues would increase,
and the cost would decrease. As described in Section 5.1, the only difference between A/Ch and A/Cl
is the setting of Wi. The cost of A/Ch is lower than A/Cl , but the backlog of A/C queues in A/Ch is
larger than that in A/Cl . Thus, the theoretical analysis is validated. As for the guarantee of comfort level,
the comparison of the indoor temperature in these households and the outdoor temperature is shown in
Figure 6.

From Figure 6, it can be seen that the lowest indoor temperature in these households is 19 ◦C, which
does not influence the comfort level of householders in winter. When the queue of an A/C has accumulated
to a certain degree, or the price drops, the A/C controller will start the A/C to guarantee the comfort level
and economic efficiency of the householder.
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Figure 6. Comparison of outdoor temperature and indoor temperature.

5.3. Allocation Result of Rewards

According to (4), the Shapley value of the participating players in the coalition is calculated in
Tables 6–8.

Table 6. Reward of A/Ch.

S ∪ {i} A/Ch A/Ch, A/Cl A/Ch, LSE A/Ch, A/Cl , LSE

v(S ∪ {i}) 0 0 35.8436 69.8427
v(S) 0 0 0 33.9991

|S|!(N−|S|−1)!
N! 1/3 1/6 1/6 1/3

|S|!(N−|S|−1)!
N! [v(S ∪ {i})− v(S)] 0 0 5.9739 11.9479

Table 7. Reward of A/Cl .

S ∪ {i} A/Cl A/Ch, A/Cl A/Cl , LSE A/Ch, A/Cl , LSE

v(S ∪ {i}) 0 0 33.9991 69.8427
v(S) 0 0 0 35.8436

|S|!(N−|S|−1)!
N! 1/3 1/6 1/6 1/3

|S|!(N−|S|−1)!
N! [v(S ∪ {i})− v(S)] 0 0 5.6665 11.3330

Table 8. Reward of LSE.

S ∪ {i} LSE A/Ch, LSE A/Cl , LSE A/Ch, A/Cl , LSE

v(S ∪ {i}) 0 35.8436 33.9991 69.8427
v(S) 0 0 0 0

|S|!(N−|S|−1)!
N! 1/3 1/6 1/6 1/3

|S|!(N−|S|−1)!
N! [v(S ∪ {i})− v(S)] 0 5.9740 5.6665 23.2809

According to the Shapley value method, the reward of the three players is shown in Table 9.
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Table 9. Reward of players.

i A/Ch A/Cl LSE

φi(v) 17.9218 16.9995 34.9214

Table 9 shows that the reward of A/Ch is more than the one of A/Cl . Combined with Table 5, it can
be known that the households in A/Ch adopt a larger value of Wi, which provides the A/C controller with
larger space for regulation and thus makes greater contribution to the cost reduction of the grand coalition.
Therefore, the households in A/Ch get more payment in the coalition. According to the consumption of
PV energy, the reward of each household is shown in Table 10.

Table 10. Reward of each household.

A/Ch A/Cl

Household Reward (RMB) Household Reward (RMB)
1 5.8976 4 5.6088
2 5.9765 5 5.6282
3 6.0476 6 5.7625

6. Conclusions

This paper has proposed a theoretical coalitional game approach for the cooperation between
households and LSE in a smart community. In the coalitional game, householders can be considerably
rewarded and acquire energy saving service from the A/C controller by purchasing PV energy from
the LSE. Moreover, in the A/C controller that the LSE provides for the participating householders, an
online energy management algorithm based on Lyapunov optimization is developed for the control of
A/C units to reduce the amount of electricity purchased from the main grid and further increase the
revenue of the coalition. This algorithm transfers the original A/C energy management problem into a
linear programming problem, which effectively reduces the computational complexity. The Shapley value
has been adopted to divide the reward of the coalition among the participating members, based on their
contribution. Through simulation with realistic data from the residential community, we have shown that
the proposed coalitional game and A/C energy management algorithm can effectively increase the profits
of householders and the LSE compared to the noncooperative case.

Our results demonstrate that the proposed coalitional game has significant potential to serve as an
effective means of improving the profitability of the LSE and cutting the expenses of householders. As
for practical application, the operation mode based on the proposed coalitional game can be used to help
community planners to improve the total revenue. Particularly, the time complexity of the proposed
algorithm is low and the required computational resource is small, which makes the algorithm suitable to
be integrated into the embedded system in smart households. Moreover, the algorithm can be implemented
in a distributed way, which has fewer communication costs. The A/C controller based on the proposed
algorithm can be used to determine the least-cost schedules of A/C while guaranteeing householders’
comfortable experiences. When setting the weight parameters in the A/C controller, householders are able
to choose a larger value in order to get more payments.
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