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Abstract: Demand response (DR) program can shift peak time load to off-peak time, thereby reducing
greenhouse gas emissions and allowing energy conservation. In this study, the home energy
management scheduling controller of the residential DR strategy is proposed using the hybrid
lightning search algorithm (LSA)-based artificial neural network (ANN) to predict the optimal
ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is
improved in terms of cost savings. In the proposed approach, a set of the most common residential
appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home
energy management scheduling controller. Four appliances, namely, air conditioner, water heater,
refrigerator, and washing machine (WM), are developed by Matlab/Simulink according to customer
preferences and priority of appliances. The ANN controller has to be tuned properly using suitable
learning rate value and number of nodes in the hidden layers to schedule the appliances optimally.
Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized
with ANN to improve the ANN performances by selecting the optimum values of neurons in each
hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved.
Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization
(PSO) based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN
outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly
reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four
appliances per 7-h period.

Keywords: lightning search algorithm (LSA); home energy management system (HEMS);
artificial neural network (ANN); load scheduling; residential demand response (DR)

1. Introduction

In recent years, the peak demand has been increasing in the domestic sector and caused unwanted
effects to the reliability and stability of power systems. The total energy demand is estimated to
increase by 75% at the end of 2020 compared to 2000 [1]. Peak time loads occur in the grid when
most end users are using electricity at the same time in a day [2]. In this case, power suppliers are
forced to increase generation to meet the high demand, thereby increasing carbon dioxide emission [3],
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which can promote climate change [4]. Energy consumption in a residential building depends on many
factors, such as the number of occupants living in the house, and usage pattern of household [5] as
well as period of use, and appliance power [6]. The technology for home energy management system
(HEMS) is efficient with data communication networks, which connect home appliances for remote
management based on the internet and a combination of the home network to reduce the peak demand
that leads to reduced risk of outages at the power distribution and transmission network [7]. A smart
home enabled with residential demand response (DR) technologies features a function of HEMS that
manages controllable appliances associated with smart socket and meters [8]. DR plays an important
role in encouraging residential customers to participate in the distribution system. These programs
are designed with an electricity tariff to persuade residential end users to voluntarily decrease their
daily electrical consumption pattern or maximize their satisfaction by allocating available resources
and effectively managing the electricity loads [9]. Participating customers in DR programs can save
on electricity bills when they reduce their electricity usages during peak periods and shifting peak
time load to off-peak time. HEMS can assist in the reduction of overall energy consumption through
optimal residential load scheduling of appliances and to achieve various goals and functions in homes,
such as automatic control, shift, or curtailment of the demand consumption [10].

Many optimization techniques can be used to solve many problems for different applications.
Particle swarm optimization (PSO) has been used to minimize the annual total building energy
consumption and to improve the building energy performance [11]. Similarly, fuzzy logic control
was improved using the quantum lightning search algorithm and backtracking search algorithm to
control an induction motor drive [12,13], and a quantum gravitational search optimization algorithm
was used to solve the optimal power quality monitor placement problem in power systems [14].
A variety of methods and optimization techniques have been used recently to help end users create
optimal appliance scheduling of energy usage based on different feed-in tariffs, pricing schemes,
and comfort settings. Kang et al. [15] proposed long-term scheduling and real-time pricing to operate
a framework of building an energy management system that included distributed energy storage
systems and energy resources to achieve optimal decisions. Optimal energy consumption scheduling
based on linear programming computations was applied to minimize the electricity bill and waiting
time for each home appliance that operates with real-time pricing tariff [16]. While Haider et al. [17]
presented dynamic residential load scheduling and used to achieve optimal scheduling of household
appliances to allow end users to decrease energy bills and reduce the peak load. In some related
works, neural networks have been used to save electric energy in residential lighting by implementing
specific schedules [18]. Pedrasa et al. [19] used stochastic programming approach formulated for
robust scheduling of four controllable residential distributed energy resources. The robust schedules
were formulated using an improved version of PSO technique to maximize the net benefit of end
users as the objective function to reduce electricity bill The method for scheduling home appliances
was developed by using a mixed integer nonlinear optimization model built under time-of-use
electricity tariff to minimize electricity costs, so that consumers were able to participate in a DR
program by making a decision [20]. The PSO algorithm was applied to optimize desirable points
during the appliance operation time [21]. Several studies combined the schedules of home appliances
with renewable sources. Artificial neural network (ANN) with genetic algorithm has been applied
for weekly appliance scheduling with optimized energy consumption in the residential sector to
reduce energy demand during peak periods and to maximize the usage of renewable sources [22].
Gharghan et al. [23] hybridized the PSO with ANN to improve the ANN operation by selecting
the optimum number of neurons in each hidden layer and learning rate, in which the selection of
these parameters was formerly made using the trial and error approach and did not always provide
optimum solutions. Neural network is an approach designed to handle any complex nonlinear
functions with accuracy through training and learning system input and output. A major challenge
faced in scheduling household appliances is the minimization of the energy consumption in a given
period without affecting the comfort of customers. However, most previous researchers focused
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on alleviating electricity bills and saving energy without considering the convenience of residential
end users.

In this study, the lightning search algorithm (LSA) is used to improve the ANN for the home
energy management scheduling controller (HEMSC) for the residential DR strategy by modeling the
household appliances. The main contribution of this study focuses on the modeling of household
appliances and developing HEMSC to achieve energy savings in the home on the basis of the
scheduled operation of several appliances according to a specific time. Four appliances, namely,
air conditioner (AC), water heater (WH), refrigerator (REF) and washing machine (WM), are developed
in Matlab /Simulink according to customer preferences and priority of appliances.

2. Load Model of Home Appliances

Load modeling is necessary to evaluate residential DR at the distribution circuit and to study
customer behavior. Thus, specific home appliance models that describe the dynamics of the process
to be controlled are important to design. Determining the operating conditions and characteristics
of household appliances is necessary to develop a HEMSC with residential DR application. In this
study, four selected electrical appliances, namely, AC, WH, WM and REF, are developed using
Matlab/Simulink, as shown in Figure 1.

Figure 1. Block diagram of the proposed home energy management scheduling controller (HEMSC)
system. AC: air conditioner; REF: refrigerator; WM: washing machine; WH: water heater.

The signal of DR is assumed to come from the utility to the smart meter and then to the HEMSC
that includes the amount and duration of load. All appliances can receive a DR signal from the
HEMSC. The power consumptions of WH, AC, WM, and REF are 3, 2.3, 0.6, and 0.15 kW, respectively.
The following subsections describe the model details of home appliances.

2.1. Air Conditioner Modeling

This section presents the AC load model development to produce a load profile at the
distribution circuit level. To calculate the parameters that can be used with a physical-based AC
model, the mathematical expressions should be derived to obtain an accurate AC load model.
The mathematical model is presented as a set of equations to obtain the relationship between the
output and input parameters, as shown in Figure 2.

The AC unit parameters can be divided into three categories, namely, the characteristics of
AC, the set points of temperatures, and the building structures. The input parameters of the AC
model are the occupant heat gain Hp, room temperature at time ¢, T; ¢, outside temperature Tout,
set point temperature T, and the signal of DR S, ;. The model outputs are the room temperature,
which is used as an input to the model at the subsequent step of time and energy consumption.
Other parameters, such as the number of people in the home, room size, solar radiation, season,
number of windows, house area, heat gain rate of the house, and cooling load capacity, should be
considered in Simulink.
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Figure 2. Flowchart of the AC load model.

In the initial condition, the room temperature at time (t) should be determined based on the
cooling load factor for glass/corrected cooling load temperature difference [24] as follows:

Chvac % )

+

dc dc M

Tr,t+l =1y + dt (mhvac,t

where Q; is the heat gain rate of the house, T, is the room temperature at time ¢ (°C), dt is the length
of time slot, dc is the energy that changes the air temperature in the Room 1 (°C), myy,c ¢ is the status
of AC in the time slot, and Cy,y, is the cooling load capacity (Btu/°C) [25].

The output room temperature is used as an input room temperature to the AC model at the
following time step. From Equation (1), the heat gain rate of the house, Q;, is expressed as:

Qt = Succ+ (Hp X Np)
Aﬂ Awal Ace Awin
+((R*ﬂ+m+Rce+m+(K><S><Vhos))X(Tout,t—Tr,t)) @)
+Awins X Hsolar

where Hj, is the occupant heat gain (btu/h); Nj, is the number of people inside a room; K is the changes
in room air in any time slot; (Ag, Awan, Ace, Awin) are the areas of floor, wall, ceiling, and window of
the dwelling in (m?), respectively; Sygc is the solar heat gain coefficient of a window [26]; ( Rq, Ryal,
Ree, Awin) are the average thermal resistance of the floor, wall, ceiling, and window in (°C-m?-h/btu),
respectively; Tout + is the outside temperature (°C) [27]; Awin_s is the window area facing south (m?);
S is the air heat factor (btu/°C-m?); and Hg,, is the solar radiation heat power (W/ m?).

To change the room temperature by 1 °C to btu/°C, the specific heat of air needs to be specified.
The specific heat capacity of air, Cp, is 0.2099/ m2-°C, and the house volume, Vhos, IN m3, is included in

Equation (3): . .
tu tu,
dc ( Oc) =G (m:,, c) X Vios (m3) 3)

The amount of AC power consumed in kW with a thermostat operating in OFF or ON mode and
running at its rated power when switched on at a given interval, Py t, can be expressed as:

thac,t = Mpyae X thac (4)

where My, is the status of the device; My = 1 means that the device is turned on,
and My, = 0 means that the device is turned off. Py, is the AC rated power in kW.

The differences between the set point of AC and the lower or upper limit of the temperatures
are called dead band. If the room temperature decreases below a set point minus the dead band
temperature, then the AC unit is switched OFF. If the room temperature reaches its maximum set point
plus the dead band temperature, then the AC unit is switched ON. However, if the room temperature
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is within its tolerable band, then the AC keeps the same status as described mathematically in
Equation (5):

0, Thvact < (Ts — AT)
Mhyvac = 1, Thvac,t > (Ts,t + AT) X thvac,t (5)
Mhvac,t—1- Ts,t —AT < Thvac,t < TS,t + AT

The electric power demand of the AC load model depends on the DR signal, Stipy,c +- During a DR
event, this signal, which originates from the revised thermostat set point, can be changed by end users.
T;,+ is the set point temperature, and AT is the dead band temperature (£2 °C).

By using Equations (1), (4) and (5), we simulate the component models of AC and the mathematical
model in Matlab, as shown in Figure 3.

Tr,t Tr,t+1

Tout

H SOIer -

heat gainQ,t

Temp

1 - Scopel

P_consumption

E

Status of device

delay time M,hvact

Feed back signal

Set point

Set point condition

Figure 3. Matlab block for the simulation model of the AC load model.

2.2. Electric Water Heater Modeling

The electric water heaters (EWHs) are among the major appliances that consume high energy in
residential areas. Energy consumption depends on the amount of hot water that people use at home.
To obtain an accurate model of EWH and to reflect any goal of DR strategies, EWH should be modeled
for use in HEMSC by calculating the input and output parameters, as shown in Figure 4.

Power (Pewh)

(Tout,t+1)

(°0)
Inlet temp
Tinl (°C)
Tank temp
Tout,t (°C)

Figure 4. Flowchart of the electric water heater (EWH) load model. DR: demand response.

A domestic EWH consists of a thermostat to sense temperature and OFF/ON switch to heat water.
The WH parameters can be divided into three categories, namely, the set point temperature, the use of
hot water, and the device characteristics. The input parameters are the ambient temperature, Tamp,
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water flow rate, Fy, 1, temperature of inlet water, Tinl, the set point temperature, Tset, temperature of
water tank, Toutt, and signal of residential DR, Sreyp, t- The model output is the temperature of the
EWH tank that is used as an input to the model at the subsequent step of time and power consumption.

The data for the EWH model depends on additional parameters, such as the surface area of
storage tank WH, cross-sectional area, and volume that contribute to the design of accurate models.

In the initial condition, the water temperature at time (t) of the EWH should be calculated based
on the usage pattern [25]. First, the outlet water temperature of the tank is considered, which is
expressed as

T _ Tout,t ><(Voztank_Vth)+nn1XFlr,tth dt
outt+1 = + %0

Voztank 6
% Pewh,t 3412 BTU _ Agank X (Tout,f - Tamp) ( )
Voztar\k kwh Rtank

where T, is the inlet water temperature (°C), Fj,; is the hot water flow rate at a given interval (m3/s),
Voliani is the volume of the tank (m3), Agk is the surface area of the tank, Tamp is the ambient
temperature, Riyp is the heat resistance of the tank (°C-m3-h/btu), and dt is the duration of the time
slot t.

The differences between the set point lower and upper limits of the tank temperature are called
dead band. If the water tank temperature drops below the set point lower limit minus the dead band
temperature range, then the EWH coils are switched ON. If the water tank temperature is raised to its
set point upper limit plus the dead band temperature, then the heating coils of EWH are switched OFFE.
The EWH operation depends on the device status, 1y}, which is mathematically expressed as:

1, Tewh,t < Tse,t — AT
Mewh = 0, Tewh,t > Tse,t + AT X Snewh,t (7)
Mewh,t—1s Tse,t — AT < Tewh,t < Tse,t + AT

where Stigyp ; is the DR signal, Tge s is the set point temperature, and AT is the dead band temperature
(£2 °C). The electric power demand of the EWH load model depends on the DR signal Sty ;-

The amount of EWH power consumed in kW depends on the thermostat that operates in the
OFF/ON states and runs at its rated power [28]. The power of EWH at a given time is calculated by:

Pewh,t = Mewh X Pewh (8)

where my; is the status of the device; and mgy, = 1 means that the device is switched on,
and Mgy = 0 means that the device is switched off. Py, is the EWH rated power in kW.

By using Equations (6)—(8), we simulate the component models of EWH and the mathematical
model in Matlab, as shown in Figure 5.

Feed back signal

Tout,t

Flow rate

Condition 1

Scope

Status of device Power consumption

Set point

Set point condition

Feedback signal

Figure 5. Matlab block for the simulation model of the EWH load model.
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During a DR event, the signal, which originates from the revised thermostat set point, can be
changed by the homeowner. The data for the EWH model depend on the storage tank WH and other
parameters that contribute to the design of the EWH physical model.

2.3. Water Heater and Refrigerator Modeling

WM is a home appliance operated by a motor connected to the agitator through a unit called
transmission. WMs are divided into two categories depending on the positioning of their axis, namely,
vertical axis WM and horizontal axis WM. The power consumption of WM at the residential sector
accounts for approximately 7.2% of the total electricity consumption [29] and usually consists of
an induction motor. In addition, the main electrical component of REF is the compressor, which is
again an induction motor. Many different approaches are used to model the WM and REF. Real data are
measured by using a power quality analyzer to obtain accurate WM and REF models. Matlab/Simulink
is developed using resistors and reactance, as shown in Figures 6 and 7, for WM and REF, respectively.

.

S1 [ ]‘7 Discrete,

Brl Currentmeter Ts = 1e-05 s.
e

= g i =

I total
Br2 Currentmeterl

i]
- — V total
53 ? Voltmeter I':la

Br3 Currentmeter2 [
v

Breaker4 . _ .

Voltmeterl

711 tov

+ B
" =il i
|antmeter2 PF1
W 712 I

v

S
]Iﬁmﬁ

Figure 6. Simulation model of WM.

Discrete,
TIs =1e-05 s,

Br Currentmeter

ii

Ttotall
Constant
Brl Currentmeter Voltmeter P1
s
Brs 7L %—‘ -»a Scope2
S2 P¥ 'Total power
+ Voltmeterl L,
g WRAE
[ 711 F B V totall

PF1

Figure 7. Simulation model of REF.

The rated power of WM depends on the stage of washing cycles, including washing, rinsing,
and spinning, which last typically 55 min to finish the WM job at full load with 53 L of water.
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3. Gathering Data for Household Appliance Models

Data were obtained in December 2015 by using a power quality analyzer to measure the power
consumption of AC, WH, WM, and REF as shown in Figure 8 by considering a sample apartment
house in the town of Kajang, Malaysia as a case study.

Figure 8. Power quality analyzer to measure the power consumption.

The input physical model of AC considered three important factors, namely, AC characteristics,
temperature, and building characteristics. The temperature consisted of outdoor and indoor set points.
The outside temperature was measured by a temperature and humidity sensor wireless data logger
connected inside and outside residences, as shown in Figure 9.

Figure 9. Temperature and humidity wireless data logger.

Solar irradiation (H solar) was measured by using the Apogee Instruments pyranometer.
The pyranometer is a silicon cell that is sensitive to a portion of the solar spectrum that estimates the
total radiation across the entire solar spectrum, as shown in Figure 10. The REF data were obtained
with a freezer temperature of —18 °C and refrigerator temperature of 3 °C, as shown in Figure 11.
Thermal mass in the freezer and REF was combined and includes five bottles of water, two chickens,
and 6 kg of fruits and vegetables in the REF at a working time of 24 h. The simulation model output
result of REF after calculating the equivalent circuit of the motor depended on the measured data.

Figure 10. Apogee Instruments pyranometer solar radiation sensors.
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Figure 11. REF power consumption measurement.

Each case of washing, rinsing and spinning has different power consumptions. By contrast,
the REF power consumption depends on two cases: the first case has doors closed, and the second
case denotes frequent opening of the doors. The temperature settings on the REF and freezer are 3 °C
and —18 °C, respectively.

To simulate the model in Matlab, the equivalent circuit of MW and REF should be calculated
to reflect the behavior of the real operation and to obtain an accurate result for both appliances.
The equivalent circuit of the motor can be represented as impedances, as shown in Figure 12.

Ri L1 L2 Rz

X1

Figure 12. Equivalent circuit of WM and REF.

4. Artificial Intelligent Techniques Used for Home Energy Management Scheduling Controller
In this section, ANN, LSA, and the proposed hybrid LSA-ANN are discussed.

4.1. Artificial Neural Network Technique

An ANN is an information processing paradigm that models nonlinear systems and attempts
to simulate the functionality of the human brain. Neural networks have many unique benefits,
especially with the complex nonlinear relationships between system input and output, which handle
any complex nonlinear functions through training and learning system input and output.

In this study, a feed-forward neural network type and the Levenberg—Marquardt training
algorithm are selected for training the ANN in the Matlab toolbox. The ANN structure consists
of five inputs (Tac, Twh, Tot, Tim , DR), two hidden layers with the activation function as sigmoid
function, and four outputs (AC, WH, WM, and REF). The actual data are collected from the simulation
system, which represents the training data of the ANN, as shown in Figure 13.
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Input layer Hidden layerl Hidden layer 2 Output layer
Tac WH
Twh N AC

7 S
— K&
Tot wm
—
Tim REF
i i
1 1
1 1
DR | i

Figure 13. Architecture of the artificial neural network (ANN) algorithm.

All inputs and outputs of ANN-based HEMSC can be expressed by Equations (9) and (10):

Tac1 Twhnt Tot1 Tim1 DLy
Tac2 Twh2 Tot2 Tim2 DL2
Input = : 9)
Tacn Twhn Totn Timn DLy |

AC; WH; REF; WM,
AC, WH, REF, WM,

Output = (10)

AC, WH,, REF, WM,, |

where T, denotes the room temperature (°C); Ty, is the WH temperature; Ty is the total power
consumption; Tiy, denotes the time of the system; and DR is the signal of a DR event.

In this system, the DR starts from between 16 h and 23 h, and the value of demand limit (DL) is
assumed to be 3 kW. If Ty; is higher than DL, then the controller will switch OFF the lower priority
appliance; otherwise, the system works normally. The T, and Ty}, of the system are used to evaluate
the comfort level of the end users for AC and WH, respectively. The outputs of the ANN are the
signals to turn the four home appliances ON or OFF according to customer preferences, comfort level,
and priority of appliances. Sudden changes in the home appliances can be predicted by using ANN.

4.2. Overview of Lightning Search Algorithm

Optimization is a process to find the best solution to problems depending on the input variables
after determining the objective function subjected to constraints. The objective function is often
formulated based on a certain application and can take the form of minimal error, minimal cost,
optimal design, and optimal management. LSA is a new optimization algorithm based on the natural
phenomenon of lightning [29], and it is inspired by the probabilistic nature and sinuous characteristics
of lightning discharges during a thunderstorm. LSA is organized from the mechanism of step leader
propagation. This algorithm considers the participation of fast particles (projectiles) in the figuration
of the binary tree structure of a step leader. Similar to other metaheuristic algorithms, LSA also
needs a population to begin the search. The projectile suggests random solutions for corresponding
problems to be solved by LSA. More details about LSA and basic ideas can be found in [30,31]. The step
leaders are formed in the first phase because transition projectiles are ejected from the thunder cell
in a random direction. Thus, the formula of uniform probability distribution is used for a random
number of step leaders. The standard uniform distribution can be formulated as follows:
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1

f(xT)_{ W, fOra<xT§b } (11)

0, elsewhere

where xT is a random number that may provide a solution; and a and b are the lower and upper

bounds of the solution space, respectively. The probability density function f (x°) of an exponential
distribution [31] is shown by Equation (12):

1.(&) s
f(xs)—{ e W’ , for x> >Db } (12)

0, forx*<b

After the initial is evaluated, the position and direction are updated with Equation (13):

Pi-New = Pi T exprand (p) (13)

where p? gy is the new projectile, and p; is the old projectile.

The projectiles and the step leaders that have traveled close to the ground do not have adequate
potential to ionize large sections in front of the leading edge. In this way, the lead projectile can be
formulated as a random number taken from the standard normal distribution. The normal probability
density function f(x!) is expressed as:

flxb) = { e (<’ /2“2} (14)

1
oV2m
where f(xL) is the normal probability density function, o is the scale parameter, and p is the
shape parameter.

From Equation (14), the randomly generated lead projectile can search in all directions from the
current position defined by the shape parameter. The scale parameter o decreases exponentially to
find the best solution. Therefore, the position of pl in step + 1 can be shown in Equation (15) [31]:

pREw = pt +normrand (p;, o) (15)
where pLi,y is the new lead projectile.

4.3. Proposed Hybrid Lightning Search Algorithm-Based Artificial Neural Network

The ANN algorithm can be used to control the appliances in HEMSC. The comfort level of end
users can be utilized as the inputs of the ANN to determine and improve the suitable ON/OFF status
of appliances and schedule another time without affecting the convenience of end users in the devices.
The learning rate and the neurons in each hidden layer in the ANN architecture are the significant
parameters. However, the selection of the learning rate and the neurons are subject to trial-and-error
processes, which do not give the optimal solution. LSA addresses such a problem to enhance the ANN
performance by finding the optimum learning rate and the best value of neurons in each hidden layer of
the neural network that can be used in home energy scheduler controller. The implementation starts by
resetting the LSA parameters, namely, number of iterations (T), population size (N), problem dimension
(D), and channel time. Each step leader in this algorithm contains three components, namely, learning
rate (LR), number of neurons in the first hidden layer (N1), and number of neurons in the second
hidden layer (N2). The obtained values of LR, N1 and N2 are used in the ANN training to minimize
the error of ON/OFF devices status in HEMSC. The flow chart of the proposed hybrid LSA-ANN
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is shown in Figure 14. The mean absolute error (MAE) is used as objective function to improve the
performance of the ANN by minimizing the error function, as shown in the following equation:
MAE = i 1 (error)? (16)
i=1 "

where error = s; — Se, Sa is the actual status, s, is the estimated status of HEMSC, and m is the number
of samples.

Start

Reset LSA parameters: number of iteration (T),
size of the population (N), number of problem
dimension (D), channel time
2

( Generate initial population of step leaders ]

i>N
Reach Maximum population?

Choice N1, N2, LR and Run ANN

2

Calculate objective function (MAE) for each
step leader (Pij) using Eq. (16)

t>T
each maximum iteration?

Yes

Eliminate bad channel
(Move step leader from

Reach maximum
hannel time?

No worst to best)
( Update best and worst step leaders 12
2 Reset channel time ]

[Update kinetic energy, Ep and Update direction]

i>N
each maximum step leaders?

No Calculate objective function
(MAE) for each step leader
( Calculate distance (dist) between populations ] (Pij) using Eq. (16)

Choice N1, N2, LR and
Run ANN

Jj>D
Reach maximum problem dimension?

( Update position using Eq.(15) ] { Update position using Eq.(13) ]
v L2

— Check the boundary control mechanism for new position
G | , )

Forking
occur?

Create two symmetrical ]
channels at fork point

- — — Eliminate channel which
( Remain position )—J—( New position )4—[ has lower energy ]

¥
{ Output the optimal N1, N2 and LR ]

Figure 14. Flowchart of the proposed hybrid LSA-ANN.

5. Overall Proposed Home Energy Management Scheduling Controller System

The proposed HEMSC algorithm is developed such that it can control and schedule the WH,
AC, WM and REEF, and switch customer load to decrease the costs of electrical power consumption
during DR event. The HEMSC algorithm starts by reading the data and information of all the
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above-mentioned appliances. Each appliance is compared on several set points, including load
priority, power consumption, and customer preference, by settings on the room temperature of AC
and the water temperature of WH. The entire system is implemented by Matlab/Simulink, as shown
in Figure 15.

Flowrate Power WH|
TsI;i;?Dreﬂtﬂ? s. D Flow rate (Fr)
— Al TWH—
WATER HEATER (WH)

Scope2

N | Pe———
[ E—

swich2 wle

AC

ATR CONDITIONER (AC)

WH

REF ‘M—r frig swich
WM Repeating Power Frig (kW)
S

Switch3

Scopel

REFRIGERATOR (REF)

Power WM (kW) —

Hybrid LSA-ANN m_lm—"_, o
T S —
L3

s
switch4
WASHING MACHINE (WD)

Figure 15. Matlab block implementation for the simulation model of the overall system.

6. Results and Discussion

This section describes the results of the simulation models of the home appliances with
experimental results and the hybrid LSA-ANN results for the home energy management
scheduling controller.

6.1. Home Appliance Simulation Result

The following subsections describe the simulation model results of the modeled home appliances.

6.1.1. Water Heater Simulation Result

A case study is conducted to illustrate the performance model of the WH. This case study shows
the hot water usage of WH at different times, as in Figure 16a. In Figure 16b, the maximum temperature
is assumed to be 48 °C, and the minimum temperature of the WH setting is assumed to be 42 °C.
These values can be altered in the physical model according to the preference of customers.

3 6 55
‘ water usage
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2 £ 352
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Figure 16. Simulation model of EWH load: (a) flow rate of the hot water in gpm; and (b) hot water
temperature within 42—48 °C with the power consumption pattern.
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When the hot water is used at 7:00 a.m. and the temperature reaches its minimum allowable
set point of 42 °C, the WH will switch ON to keep the water temperature at its comfortable range.
When the hot water is used between 4:00 p.m. and 6:00 p.m., the WH will switch ON again to maintain
the water temperature in the tank until the temperature reaches its maximum allowable set point
of 48 °C, to switch OFF the WH. When the temperature of the water in the tank is within 4248 °C,
the heater switch status will maintain the previous device state.

6.1.2. Air Conditioner Simulation Results

In the simulation, the maximum and minimum temperatures of AC are set at 28 °C and 18 °C,
respectively. These values can be changed in the physical model according to the preference of the
customer. Real data are measured to be used as input for the AC load model that includes the H
solar and outside temperature, both of which are measured in Kajang, Malaysia. According to the
homeowner comfort setting of the room temperature, which is set between 28 °C and 18 °C, the AC
Simulink is shown in Figure 17.

S S N A
AL ARG A A As &
el W HH I lihE
Cof ST V12
= - I | NI 5
i 0 e
0 2 A:t :6 8§ 10 12 14 16 1‘8 2‘0 2‘2 22

Time ( hour)

Figure 17. Simulation model of AC power consumption pattern with room temperature.

Figure 17 shows that if the room temperature reaches its minimum set point temperature of 18 °C,
then the AC is switched OFF. When the room temperature reaches its maximum set point temperature
of 28 °C, then the AC is switched ON to keep the room temperature in its comfortable range. When the
room temperature is within 18-28 °C, the switch status will maintain the previous device state.

6.2. Experimental Measurement Data

The temperatures outside and inside the building were measured by using a wireless data logger
sensor, and the measured outdoor temperature is shown in Figure 18. The solar irradiation was
measured using the Apogee instrument pyranometer sensors and the measured data are shown in
Figure 19. Both the temperature and solar irradiation were used as inputs to the AC model.
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Figure 18. Measured outdoor temperature.
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Figure 19. Measured solar irradiation data.

Other data from WM and REF power consumption were also considered. According to the real
measurement of WM, 55.5 min was needed to complete the job with three different energy consumption
levels during washing, rinsing, and spinning. In the washing cycle, three intervals at 11.5, 2.25 and
2.5 min were needed to finish the task. In the rinsing cycle, three duration times were needed to
finish the job, with a 1 min interval. Finally, the last cycle needed 2.5, 2.5 and 6min to complete the
job. The experimental measurement data of the WM power consumption are shown in Figure 20.
The power consumption curve of the REF was measured every minute, as shown in Figure 21.
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Figure 20. Actual power consumption curve of WM load.
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Figure 21. Actual power consumption curve of REF load.

6.3. Results of the Hybrid Lightning Search Algorithm-Based Artificial Neural Network

The inputs of ANN include the room temperature T,., WH temperature T}, time of the system
Tim and total power consumption of the system Ty;. The signals are output to ON/OFF the WH, AC,
WM, and REF. By using the ANN training and testing data, we can find all other parameters, such as
inputs, number of neurons in each hidden layer, number of hidden layers, weights, learning rate, and
output. LSA searches the best values for learning rate and the number of neurons in each hidden layer
to enhance the ANN performance. The objective function for 10, 20, 30, 40 and 50 population sizes can
be obtained, as shown in Figure 22. Several populations are executed to permit the LSA to select the
population size to achieve the minimum error and the consumption time.
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Figure 22. Objective function with iteration of the hybrid LSA-ANN for different population sizes.

Figure 22 illustrates that the number of populations (N) as 40 can give the best result for the LSA
than the population size numbers of 10, 20 and 30 because a high error and the objective function are
achieved in error 9.128 x 10~ after 40 iterations. The population size of 50 needs more working time
than the population size of 40. The ANN parameters based on the results of the hybrid LSA-ANN are
shown in Table 1. The PSO algorithm is also implemented to obtain the same objective for 10, 20, 30,
40 and 50 population sizes for comparison with the results from the hybrid LSA-ANN, as shown in
Figure 23.

Table 1. ANN-designed parameters.

Parameter Value Type
Number of inputs 5 ANN inputs
Number of outputs 4 ANN outputs
Number of hidden layers 2 ANN hidden layer
Number of neurons in hidden layer N1 6 Obtained from LSA
Number of neurons in hidden layer N2 4 Obtained from LSA

Number of iterations 1000 ANN iterations
Learning rate 0.6175 Obtained from LSA
-7
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£ | | | —— PS030
R 11 e A i B o2 0
S |=—Psoso
= | | | |
e
@) | | | |

1 - -t - === === -1 = = — 7

0 ‘ ; ‘ :

0 20 40 60 80 100

Iterations

Figure 23. Objective function with iteration of the hybrid particle swarm optimization (PSO)-ANN for
different population sizes.

The obtained results from the hybrid LSA-ANN are compared with those from the hybrid
PSO-ANN to validate the developed algorithm. The result of the hybrid LSA-ANN achieves a MAE
error of 9.128 x 10~ after 40 iterations at a population size of 40. The hybrid PSO-ANN obtains a MAE
error of 1.195 x 1078 after 81 iterations at a population size of 40, as illustrated in Figure 24.
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Figure 24. Performance comparison of LSA and PSO.

The regression coefficient (R) close to unity and the value of R for training is 1. The performance
of the hybrid LSA-ANN is shown in Figure 25.

Training: R=1

Output ~= 1*Target + 8.5¢-08

0 0.2 0.4 0.6 0.8 1
Target

Figure 25. Performance of the hybrid LSA-ANN.

6.4. Results of the Proposed Hybrid LSA-ANN Based Home Energy Management Scheduling Controller

A DR event is usually imposed by the power utility to reduce the total power consumption at the
peak period time with DL. The DR event is assumed to start from between 4:00 PM. and 11:00 PM.,
and DL is assumed to be 3 kW. If the total electrical power consumption is greater than the DL, then the
HEMSC will turn OFF the appliance according to priority, starting with REF, and force the loads to
shift and schedule their operating time after the DR event to keep the total power consumption below
its DL. The HEMS issues a control signal to turn ON the appliance when the total household load
is below its DL level. In this way, the HEMSC will optimize the scheduling of the appliances while
maintaining the total power consumption below its DL.

Two case studies are considered to describe the implementation of the HEMSC algorithm.
The first case does not apply the DR signal and the second case applies the DR signal by using
the hybrid LSA-ANN, as shown in Figure 26. The second case using the hybrid PSO-ANN is shown in
Figure 27 to clarify the performances of WH, AC, WM and REF, and to calculate the power saving.

Figures 26 and 27 show that AC, WM, and REF have to be switched OFF, and one appliance,
which is the WH, can be operated and draws 3 kW according to priority. The AC and REF require their
schedules to be shifted to another period. The results explain the performance of the proposed HEMSC
with the reduction of the total power consumption of the four home appliances at a specific time below
the DL value. The algorithm prevents the total power consumption from exceeding the selected DL
value. The energy saving for the total power consumption is 9.7138% per 7 h without any effect on
the comfort level of the end users, whereas the energy saving for the total power by using the hybrid
PSO-ANN is 2.3817% per 7 h. The power saving performance of the proposed hybrid LSA-ANN based
HEMSC is better than that of the hybrid PSO-ANN.
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Figure 27. Total power consumption before and after DR signal with the hybrid PSO-ANN.

7. Conclusions

This paper presents the application of LSA to solve the problems of ANN by finding the optimum
learning rate and the best value of neurons in each hidden layer of the neural network that can be
used in HEMSC. A comparison of results shows that the hybrid LSA-ANN used in HEMSC is better
than the hybrid PSO-ANN in terms of scheduling household appliances and reducing the peak load
while guaranteeing end user comfort associated with the operation of loads. The ANN ON/OFF
estimation status is enhanced by minimizing the MAE. The hybrid LSA-ANN achieves a MAE error
of 9.128 x 10—, whereas the hybrid PSO-ANN achieves a MAE error of 1.195 x 10~5. The proposed
algorithm shows a better response in switching the status in HEMSC. Therefore, the energy saving
for the total power by using the hybrid LSA-ANN is 9.7138% per 7 h, whereas that by using the
hybrid PSO-ANN is 2.3817% per 7 h. The results explain the capability of the proposed HEMSC
algorithm to maintain the total electrical energy consumption below the DL value during a DR event.
Moreover, the algorithm easily deals with the DR signals and is more effective in energy saving.
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