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Abstract: This paper numerically investigates the seismic response of the filled joint under high
amplitude stress waves using the combined finite-discrete element method (FDEM). A thin layer
of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed
using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength.
The propagation of the 1D longitude wave through a single filled joint is studied, considering the
influences of the joint thickness and the characteristics of the incident wave, such as the amplitude
and frequency. The results show that the filled particles under high amplitude stress waves mainly
experience three deformation stages: (i) initial compaction stage; (ii) crushing stage; and (iii) crushing
and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction
dominates the mechanical behavior of the joint, and the particle area distribution curve varies little.
In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak
particle velocity (PPV), of the incident wave. On the other hand, in the crushing stage, particle
crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV
due to the fragments created by the crushing process. This process consumes part of wave energy
and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing
PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with
the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer
particles can be crushed. Under the same incident wave, the transmission coefficient decreases when
the filled thickness increases and the filled particles become more difficult to be crushed.

Keywords: high amplitude stress wave; filled joint; amplitude attenuation; particle crushing; grain
size reduction; FDEM

1. Introduction

Joints commonly exist in the rock mass, which have an important effect on the mechanical
behavior of the rock mass [1,2]. Generally, a joint can slow down and attenuate the stress wave [3].
The study of the seismic response of the joint is one of the main tasks in rock dynamics, and numerical
methods are often commercial and feasible in the study of this subject.

Numerous field investigations showed that two types of naturally occurring joints commonly
exist, i.e., the unfilled joint and the filled joint. The unfilled joint, with no material filled in the joint gap,
is often treated as an interface with zero thickness in the numerical models. Considering different joint

Materials 2017, 10, 13; doi:10.3390/ma10010013 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials


Materials 2017, 10, 13 2 of 15

constitutive models, many researchers have investigated the propagation of the stress wave through
unfilled joints, using discontinuous deformation analysis (DDA) [4], numerical manifold method
(NMM) [5], particle manifold method (PMM) [6], distinct lattice spring model (DLSM) [7], and the
discrete element method (DEM) [8–15].

The filled joint, on the other hand, is often filled with granular materials such as sand, clay, and
weathered rock as shown in Figure 1. The fillings may have a thickness up to several centimeters,
which have a noticeable influence on the mechanical behavior of the joint [16,17]. It has been also
found that the seismic response of the filled joint depends on the density, thickness, and mechanical
behavior of the fillings [18,19]. Hence, the filled joint cannot be simply treated as a zero-thickness
interface in the numerical models. Compared with the case of the unfilled joint, there were very
limited studies regarding the numerical simulation of the seismic response of filled joints reported
in the literature. In [6], the researchers conducted the numerical simulation on the propagation of
the stress wave through the filled joints using PMM. A thin layer of bonded particles were welded
on the background rock to model the filled joint. The effect of the filled mass and joint thickness on
the wave attenuation was discussed. In their study, the bonded particle medium was actually a thin
layer of elastic medium which did not undergo plastic deformation regardless of the amplitude of the
stress waves. Nevertheless, this elastic deformation assumption is far from reality when the geological
properties of the filled joints are taken into account. As shown in Figure 1, the granular fillings suffer
the dynamic compressive stress σn resulting from the combined influence of the incident, reflected,
and transmitted waves. Experimental data tested by the rock split Hopkinson pressure bar (SHPB)
showed that the filled joints endured nonlinear deformation due to the plastic flow and compaction
of the fillings [20,21]. Therefore, the elastic-plastic model is likely to be more suitable to describe the
deformation behavior of the filled joint. Based on DEM, [22] used a thin layer of particles without
bond strength to simulate the filled joint and accurately reproduced the SHPB test on the propagation
of the low amplitude stress wave through a filled artificial joint.
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On the other hand, field test data has shown that the practical blasting stress waves often have
high amplitudes [24,25]. Near the blasting source, the high amplitude of the stress wave often causes
the filled granular material to bear a high stress state. It has been found that the granular particles,
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such as quartz sand, can be crushed under the high compressive stress in the laboratory tests [26].
Recently, some interesting experimental phenomena were reported on regarding the seismic response
of the filled joint under high amplitude stress waves, by making full use of the high-strength metallic
SHPB. In [23], researchers observed the dynamic weakening and acoustic fluidization of the granular
fault gouge under high amplitude stress waves. The researchers in [27] conducted laboratory tests
on the response of artificial filled joints under high amplitude stress waves. It was found that the
particle crushing has a very important influence on the transmission behavior of stress waves through
filled joints. However, up to now, few numerical models were reported to study the effect of the
particle crushing on the propagation of high amplitude stress waves through filled joints, and the main
purpose of this paper is to numerically investigate this subject.

This paper is structured as follows. Section 1 reviews the previous numerical studies on the
propagation of stress waves through rock joints and analyzes the limitations in these studies. Section 2
introduces the FDEM modelling on the seismic response of the filled joint under high amplitude stress
waves. Section 3 shows the numerical results in detail and these results are discussed in Section 4.
Conclusions are given in Section 5.

2. FDEM Modelling

2.1. Principles of FDEM

FDEM is an advanced numerical method which combines continuum mechanics with DEM
algorithms to simulate multiple interacting deformable solids [28]. In FDEM, the elastic deformation
of discrete bodies is employed in a traditional finite element method (FEM), while the nucleation of
new fractures and the interaction between discrete bodies are captured by DEM. A solid is initially
discretized using a triangular FEM mesh, and cohesive joint elements are inserted between adjacent
FEM elements. Before the failure of the simulated material, the model experiences linear elastic
deformation. When an excessive amount of deformation occurs, the cohesive joint elements can
be deformed through open or slip and eventually break. As a consequence, the original meshed
solids can be cracked into new independent ones. After that, the numerical simulation employs the
DEM algorithm to capture the interaction between solids. There are two types of material properties
involved in FDEM models, i.e., macro- and micro-properties. Macro-properties including Young’s
modulus (E) and Poisson’s ratio (υ) are used to describe the elastic deformation of the discrete bodies;
whereas micro-properties describing the strength of the cohesive joint elements control the cracking
behavior of the material, i.e., tensile strength ft, cohesion strength c, model I fracture energy GI, and
model II fracture energy GII [29–33]. The cohesive joint model in FDEM is actually derived from the
Mohr-Coulomb type behavior of the material with maximum tensile strength cut-off, except that two
fracture energy properties (GI and GII) are introduced. After the breakage of the cohesive joint elements,
the newly created surfaces can interact with each other according to the contact algorithm, through the
normal and tangential contact forces which are described by the normal, tangential penalties (pn, pt)
and the friction coefficient of the fracture surface µf. More detailed definitions of the above-mentioned
parameters can be found in [29–33].

2.2. Model Description

In this paper, we focus on 1D longitude stress wave problems. Owing to the computational
capacity, FDEM models only have limited length in this paper. Figure 2 shows the FDEM model
which consists of an incident bar, a transmitted bar, two covers, and a thin layer of polygonal particles.
The x-o-y coordinate system was introduced into the model, with the origin located at the geometric
center of the model. Both the incident and transmitted bars have a width of 25.4 mm and a length
of 1000.0 mm. The two bar ends that contact with the particles are planar (Figure 2b). Similar to the
configuration in [22], a thin layer of particles without bond strength were initially sandwiched between
the incident and transmitted bars to simulate the joint fillings. The centroids of polygonal particles
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are distributed randomly in the joint gap. The particle size uniformly ranges from 0.6 to 0.96 mm,
with a mean size of 0.78 mm. The porosity of the fillings is 27.1%, which is close to the porosity of the
natural dense sand. The maximum mesh size was set as 0.3 mm. Two covers, each with a length of
20.0 mm and a width of 2.0 mm, were placed on the top and bottom of the filled layer and were meshed
with a maximum element size of 1.0 mm. Previous studies showed that the ratio of the maximum
mesh size to the wavelength, γ, should be less than 1/8–1/12 in order to guarantee the simulation
accuracy of the wave propagation problem [8]. The P-wave velocity of the rock bars was calculated as
4758.3 m/s (based on the assigned properties in the following section). In this paper, the maximum
mesh size of the bars was taken as 8.0 mm. Therefore, γ can be calculated as around 1/50 according to
the minimum incident wavelength of 396.0 mm (based on the largest frequency of 12.0 kHz involved
in the following section).
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2.3. Boundary Conditions

Note that the FDEM model in Figure 2 only has limited length. When arriving at the truncated
boundaries, stress waves will be reflected back from the bar ends, which then interfere with the
recording of the wave signals. To eliminate this defect, the left end of the incident bar and the right
end of the transmitted bar were both set as the viscous boundary (no reflection boundary). Because
only the longitude waves are considered in this paper, both upper and lower boundaries of the bars
were fixed in the y-direction but free in the x-direction. The two covers were fixed in both x- and
y-directions to prevent the outflow of the particles when loaded by the stress waves. Positive parts of
the sinusoidal waves v = Asin2πft (0 ≤ t ≤ 1/(2f )) were adopted as the incident wave, where v denotes
the particle velocity; A is the particle peak velocity (PPV); f is the frequency; and t is the time variable.
The incident waves were inputted at the left end of the incident bar.

2.4. Assignment of Model Properties

During simulation, bars and covers were treated as pure elastic bodies which cannot produce
failure when loaded, while the filled particles can be crushed. The property of the covers was set as that
of the bars. Usually, macro-properties such as Young’s modulus E and Poisson’s ratio υ can be directly
acquired from laboratory tests. Table 1 lists the macro-properties in the calculation. Nevertheless,
there exists limited experience on estimating dynamic micro-properties in FDEM. In this study, the
assignment of FDEM micro properties of the filled particles referred to that of the granite according
to [30]. The model II fracture energy was taken as 2500.0 J/m2, with two times of model I fracture
energy. The micro tensile strength and cohesion strength were taken as 12.7 MPa and 50.0 MPa,
respectively. From SHPB tests on the artifical filled joint, [27] found that the filled sand particles
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experienced three different deformation stages depending on the amplitude of the incident wave,
i.e., initial compaction stage, crushing stage, and crushing and compaction stage. Figure 3 shows the
influence of the three different stages on the grain size distribution of the filled sand. When the wave
amplitude was relatively small (≤115.8 MPa), the grain size curve basically stayed invariant regardless
of the increment of the wave amplitude, which indicates that the particles were only compacted. As the
wave ampiltude ranged from 115.8 to 238.8 MPa, the grain size curve varied obviously and the number
of smaller particles significantly increased. It can be concluded that numerous partilces were crushed
into smaller ones in this stage. When the wave amplitude was larger than 238.8 MPa, the grain size
curve only changed slightly with the increase of the wave amplitude, which reveals that only a few
particles were crushed. Nevertheless, the numerical results considering the micro tensile strength of
12.7 MPa and micro cohesion strength of 50.0 MPa showed that most of the particles were crushed
only when the incident wave had a relatively small amplitude (2.0 m/s). That is, the grain size curve
changed obviously once the amplitude of the incident wave was very small. It is thus difficult to
reproduce the complete three deformation stages of the filled particles observed by [27], when the
micro tensile strength and cohesive strength were assigned according to [30].

Table 1. Macro properties of the FDEM model.

Parameters Rock Bars (Granite) Particles (Fused Quartz Sand)

Young’s modulus E (GPa) 60.0 a 72.0 c

Poisson’s ratio υ 0.20 b 0.17 c

Density ρ (kg/m3) 2650.0 a 2200.0 c

Friction coefficient of the intact material µi 0.25 b 0.25 b

a From [20]; b Estimated by experience; c From http://www.quartz.com/gedata.html.
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Figure 3. The grain size distributions of the filled quartz sand after loading by stress waves with
different amplitudes (adapted from [27]).

To obtain better results, a feasible method is to choose the micro properties by trial and error until
the three different deformation stages observed in the laboratory tests can be basically reproduced by
the FDEM model. After many trials, it was found that the complete three deformation stages of the
filled particles can be reproduced when the dynamic micro tensile strength was taken as 114.0 MPa and
the dynamic cohesion was set as 228.0 MPa. Meanwhile, the normal penalty was taken as ten times
the Young’s modulus of the particle and the shear penalty was equal to the Young’s modulus [28].
All involved micro properties are listed in Table 2.
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Table 2. Micro properties of the FDEM model.

Parameter Value

Tensile strength ft (MPa) 114
Cohesion strength c (MPa) 228

Mode I fracture energy GI (J/m2) 1250
Mode II fracture energy GII (J/m2) 2500

Friction coefficient of the fracture µf 0.5
Normal contact penalty, pn (GPa/m) 720

Tangential contact penalty, pt (GPa/m) 72

3. Results

In this paper, we are only concerned about the transmission characteristic of the stress wave.
Two monitoring points near (−900.0 mm, 0.0 mm) and (100.0 mm, 0.0 mm) were set to record the
incident and transmitted waves, respectively. For comparison purposes, two types of models were
adopted in the simulation: the crushing model and the non-crushing model. For the non-crushing
model, the strength properties of the filled particles were set as very large values in order to stop the
particles from crushing.

3.1. Transmitted Waveforms

Figure 4a shows the monitored incident waves with PPV of 2.5 m/s, 4.5 m/s, and 8.0 m/s.
The incident waves have the same f of 2.0 kHz and the filled joint has a thickness of 10.0 mm. Figure 4b
shows the corresponding transmitted waveforms which were plotted together with the same arrival
time for convenient comparison. It can be seen that the transmitted waves obtained by the crushing
and non-crushing models are the same when the PPV is 2.5 m/s. When the PPV reaches 4.5 m/s and
8.0 m/s, the transmitted wave resulting from the crushing model initially coincides with that by the
non-crushing model; however, it deviates after passing through a transition point ξ. Meanwhile, the
slope of the transmitted waveform of the crushing model abruptly decreases after ξ, and fluctuations
appear in the transmitted waveform. The transmitted wave of the crushing model has a smaller
amplitude than that of the non-crushing model.
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3.2. The Crush of Filled Particles and Its Effect on the Transmission Coefficient

3.2.1. Influence of the PPV of the Incident Wave

The transmission coefficient defined as the ratio of the peak value of the transmitted wave to that
of the incident wave is a significant index to evaluate the amplitude attenuation of the stress wave
though the filled joint. Figure 5 shows the variation of the transmission coefficient versus the PPV
when f is 2.0 kHz. It can be observed that the transmission coefficient obtained by the non-crushing
model nonlinearly increases with the PPV of the incident wave. However, the transmission coefficient
resulting from the crushing model first increases with the PPV, and after achieving a peak value it
decreases, and finally it increases again from a valley. The transmission coefficient as a function of PPV
follows the same pattern for the non-crushing model and the crushing model when the PPV of the
incident wave is less than about 2.5 m/s.
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Figure 6 show the configuration change of the filled particles at different times when the incident
wave has a PPV of 8.0 m/s. It can be found that for the non-crushing model, the filled particles were
only compacted when loaded by stress waves (Figure 6a). However, for the crushing model, the filled
particles were first compacted and then crushed (Figure 6b).
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Figure 7 show the configuration change of the filled particles for the crushing model, after being
loaded by the stress waves with different PPVs. It can be seen that the particles were not crushed
when the PPV is less than 2.5 m/s. When the PPV is 3.0 m/s, some crushed particles appear in the left
bottom image of the filled particles. When the PPV ranges from 3.5 m/s to 6.0 m/s, the number of
crushed particles increases abruptly, while this variation trend becomes gentle when the PPV is larger
than 6.0 m/s.
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To quantitatively investigate the configuration change of the filled particles, a custom Matlab
code was used to conduct the grain area distribution analysis, and the method is illustrated in Figure 8.
The image of the filled joint layer (visualized using an open source software, Paraview, Sandia National
Laboratories, Albuquerque, NM, USA) was first converted to a black-white image (see Figure 8a), in
which white areas denote particles and the black areas represent void space. Then each isolated white
area was identified as an independent polygonal particle whose area can be calculated. According to
Ar = l2Ap, the real area of the particle Ar can be obtained, where Ap is the pixel area and l is the length
of each pixel. Finally, we carry out the statistical analysis on the particle size distribution.
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Figure 8. Details of the method to obtain the particle area distribution. (a) The original image of the
filled particles; (b) The processed picture after each polygonal particle was marked by a rectangle with
a dot in the center.

Figure 9 shows the particle area distribution of the filled particles after being loaded by the stress
wave with different PPVs. It can be seen that the curves are steep and coincide with each other when
the PPV is small (<4.5 m/s). There exist few particles with area less than 0.3 mm2. With the increase
of the PPV, the number of particles with areas less than 0.3 mm2 increases. When the PPV is larger
than 4.5 m/s, the curve has evident changes and smaller particles become more numerous. As the PPV
ranges from 7.0 to 8.0 m/s, the change of the curves is not obvious.
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3.2.2. Influence of the Frequency of the Incident Wave

Figure 10 shows the variation of the transmission coefficient with the frequency of the incident
wave. The filled joint has a thickness of 10.0 mm and the PPV of the incident wave is 8.0 m/s.
The crushing model and the non-crushing model were both examined. It can be found that the
transmission coefficient curves obtained by the two models both decrease with an increase of the
frequency. Nevertheless, there exist some differences between the two curves. The transmission
coefficient resulting from the crushing model is smaller than that of the non-crushing model. With the
increase of the frequency, the magnitude difference between the two results becomes smaller and
smaller. When the frequency is 10.0 kHz, the transmission coefficients calculated from the two models
have the same magnitude.

Figure 11 show the configuration change of the filled particles. It can be seen that the amount of
crushed particles decreases abruptly with the increment of the frequency. No crushed particles exist
when the frequency is 12.0 kHz.
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Figure 12 shows particle area distribution of the filled particles after loading by the stress wave
with different frequencies. It can be observed that the curve becomes steeper with the increment of the
frequency. When the frequency ranges from 2.0 to 6.0 kHz, the curve changes obviously. However,
it only has a slight change when the frequency is larger than 6.0 kHz. Such a result indicates that the
stress wave with low frequency can induce more crushed particles than that with high frequency.
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3.2.3. Influence of the Filled Thickness

In this section, the incident waveform was fixed while the thickness of the filled joint varied.
The incident wave had a PPV of 4.0 m/s and a frequency of 2.0 kHz. Figure 13 shows the variation of
the transmission coefficient versus the thickness of the filled joint, taking into account the crushing
model and the non-crushing model. It can be seen that the transmission coefficient obtained by
the two models both decrease with an increase of the filled thickness. Generally, the transmission
coefficient obtained by the crushing model is smaller than that obtained by the non-crushing model.
With an increase of the thickness, the magnitude difference between them becomes smaller. When the
thickness is 15.0 mm, the transmission coefficient obtained by the two models is the same.
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Figure 14 shows the configuration change of the filled joint with different thicknesses after loading
by the stress wave. It can be found that more crushed particles exist in the thin filled joint than that
in the thick filled joint. With the increase of the filled thickness, the filled particles become more
difficult to crush. When the thickness reaches 15.0 mm, there are few crushed particles. Because the
thickness (or number) of the filled particles varies, we did not analyze the particle area distribution in
this section.
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4. Discussion

When impinging on a filled joint, only one part of the stress wave can pass through, and according
to the SHPB testing theory, the transmitted stress wave is actually the dynamic compressive stress
σn that induces the deformation of the filled particles. Due to σn, plastic flow and compaction were
produced in the filled particles (see Figure 6). This process causes the density and the stiffness of the
filled material to increase. It has been found that the increase of both the density of the fillings and
stiffness of the filled joint can allow more waves to propagate through the filled joint [19]. For the
non-crushing model, dynamic compaction is only experienced in the filled particles (see Figure 6a).
The larger the PPV of the stress wave, the much denser the compacted filled particles. As a result,
the transmission coefficient always increases with the PPV (see Figure 5). However the grannular
material in a natural filled joint such as sand has limited strength. When the PPV is small (<4.0 m/s),
the induced transmitted waves can only produce a relative small amount of crushed particles (see
Figure 7). Hence, the particle area distribution curve changes little (see Figure 9). We call this process
the initial compaction stage. In this stage, the transmission coefficient calculated by the crushing
model has the same variation trend as that by the non-crushing model (see Figure 5). However much
more particles in the crushing model were crushed when the PPV is large (>4.0 m/s) (see Figure 6b).
Due to the crushing event, more particles with smaller area were produced, which results in the
abrupt increase of the area percentage of small particles (see Figure 9). Also, fluctuations exist in the
transmitted waveforms, due to the crushing behavior (see Figure 4b). The crushing of the particles
has two effects on the propagation of the stress wave: (i) it causes the stiffness of the filled joint to
decrease; and (ii) it consumes part of the wave energy. In general, the incident wave with large PPV can
produce more crushed particles (see Figure 7). Therefore, the transmission coefficient decreases with
the increment of the PPV (see Figure 5). We named this process as the crushing stage. When the PPV
is very large (>6 m/s), the particle area curve changes little (see Figure 9). It indicates that the filled
particles were mainly compacted accompanied by crushing. Therefore, the transmission coefficient
increases with the PPV again (see Figure 5). We call this process the crushing and compaction stage.
It can be found that the results of the crushing model in Figures 5 and 9 are very similar with those
observed by [27] in the laboratory, which indicates that the FDEM model is capable of simulating the
seismic response of the filled joint under high amplitude stress waves.

It has been found that the filled joint can allow more incident waves with low frequency pass
though than those with high frequency [22]. That is, the transmission coefficient decreases with the
increase of the frequency of the incident wave. When the frequency of the incident wave is relatively
small, the amplitude of the induced transmitted wave is large enough to lead to the crushing of the
filled particles. Therefore, the transmission coefficient of the crushing model is smaller than that of
the non-crushing model under the same frequency (see Figure 10). However, the amplitude of the
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transmitted stress wave decreases with the increase of the frequency, which causes the abrupt decrease
of the number of the crushed particles (see Figure 11). Consequently, the particle area distribution
curve moves downward with the increase of the frequency (see Figure 12). The transmission coefficient
of the crushing model is gradually closer to that of the non-crushing model with the increase of the
incident wave frequency (see Figure 10). When the frequency is 12 kHz, there are no particles crushed.
Thus, the transmission coefficient of the two models is the same.

It has been also found that the transmission coefficient decreases with the increment of the filled
thickness [22]. That is, the transmitted wave through the thin joint has a higher amplitude than
that through the thick joint under the same incident wave. When the filled thickness is small, the
amplitude of the transmitted wave is high enough to cause the crushing of the filled particles. Therefore,
the transmission coefficient of the crushing model is smaller than that of the non-crushing model
(see Figure 13). With the increase of the filled thickness, the number of the crushed particles decreases
(see Figure 14). And the difference of the transmission coefficient by the two models gradually becomes
smaller and finally is the same.

5. Conclusions

The research on the propagation of the stress wave through the joined rock mass is of great
significance in blasting engineering and geophysical exploration. Using FDEM, we simulated the
seismic response of the filled joint under high amplitude stress waves and addressed some important
conclusions. Under the stress wave, the filled particles mainly experience three deformation stages
depending on the amplitude of the incident wave, i.e., initial compaction stage, crushing stage, and
crushing and compaction stage. In the initial compaction stage and crushing and compaction stage,
the filled particles are mainly compacted and the particle area distribution curve changes slightly.
The transmission coefficient increases with the increase of the PPV. However, the particle crushing
plays the dominant role in the crushing stage and the particle size distribution curve changes abruptly
in this stage due to the significantly increased amount of small fragments. The crushing stage consumes
part of the wave energy and reduces the stiffness of the filled layer. As a result, the transmission
coefficient decreases with the increase of the PPV in this stage. When the frequency of the incident
wave increases, the transmission coefficient decreases and fewer particles are crushed. Under the same
incident wave, the transmission coefficient decreases and the filled particles become more difficult to
be crushed with the increment of the filled thickness.
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