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Abstract: The results of Lamb wave identification for the aerospace structures could be easily
affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of
Lamb waves is of particular concern. Compared with the similar research works on the traditional
signal domain transform methods, this study is based on signal construction from the viewpoint
of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal
construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore,
to improve the compensation effect, the influence of the signal construction process on the other
crucial signal properties, including the signal waveform and amplitude spectrum, is considered
during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then,
after the basic signal construction principle is explored, the numerical realization of LDSC and
NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially
regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed
for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative
imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction
and damage imaging methods, the experimental and numerical validation is finally arranged on the
aluminum plates.

Keywords: structural health monitoring; Lamb waves; dispersion compensation; signal construction;
damage imaging

1. Introduction

To determine the integrity and reduce the life-cycle costs of critical aerospace structures,
the concept of structural health monitoring (SHM) is increasingly acknowledged. SHM can permit the
real-time and in-situ damage identification via distributed network sensors permanently mounted
on or embedded into the structures [1–5]. As a kind of guided ultrasonic waves in thin-wall
structures, Lamb waves can travel over large distances with high sensitivity to both the surface
and internal defects. The suitability of Lamb waves for SHM of plate-like aerospace structures has
been well demonstrated. Besides the classic ellipse or triangulation damage location, Lamb wave
imaging of phased array [6,7], reverse-time migration [8], tomography [9], time reversal [10–12] or
delay-and-sum [13,14], is frequently proposed and performed for metallic or composite structures.
While in practical applications, the multi-mode and dispersion characteristics are the two most
important issues needing to be properly addressed. Usually, a windowed toneburst with finite
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time duration is selected to generate single fundamental symmetric mode (S0) or anti-symmetric
mode (A0) by tuning excitation frequency at a proper operating point on dispersion curves [15,16].
However, over the frequency range of such a narrowband excitation signal, neither the group nor phase
velocities can maintain frequency-independence even at the operating point of “zero dispersion” [15].
The dispersion effect remains non-negligible. The Lamb wavepackets will spread out in time and
space with their envelopes misshaped as they propagate [17]. This can explicitly affect the accuracy
and resolution of Lamb wave monitoring.

Time reversal process (TRP), based on the principle of spatial reciprocity and time reversal
invariance of linear wave equations, can automatically compensate the dispersion effect on Lamb
waves [18,19]. Unfortunately, the traveling time of the compensated waves is also eliminated at
the same time. This makes TRP less practical in damage detection because time-of-arrival (TOA)
information is eliminated. To overcome this problem, virtual time reversal (VTR) [20] was introduced
to partially recompress the dispersive wavepackets with time information retained. Using the
priori-knowledge of dispersion characteristics of Lamb waves in the tested structures, a number
of signal processing approaches have been developed for dispersion compensation and regularly
applied in Lamb wave imaging.

Sicard et al. [21,22] proposed a numerical reconstruction method for time compaction of S0

mode signals in steel plates and applied the method to strengthen the small corrosion-pitting
detectability of Lamb-synthetic aperture focusing technique (L-SAFT). Based on the assumption
that dispersed waveforms get converged at t = 0 and then diverge again in the back-propagation
direction, Wilcox solved the dispersion problem by mapping Lamb wave signals from the time to
distance domains [23]. The time-distance domain mapping (TDDM) results subjected to inaccuracies
of the supplied dispersion data were also analyzed. To perform TDDM in compact omni-directional
array imaging [7,24], the single mode signals before or after phase addition were converted to the
wavenumber domain. Hall [25] and Engholm [26] employed TDDM to advance the imaging capacity
for adaptive beamforming of minimum variance distortionless response (MVDR). Pradoa et al. [27]
utilized TDDM in Lamb mode diversity imaging for correct defect localization. Liu and Yuan [28]
proposed the linear mapping (LM) technique to effectively recompress the dispersive A0 mode signals
in aluminum plates. Xu et al. [29] compared TDDM and LM approaches. The suitability of TDDM for
the embedded ultrasonic structural radar (EUSR) technique was also explored. Recently, a modified
time-distance domain transform (TDDT) method is introduced and applied for dual damage imaging
on an aluminum plate [30]. Marchi et al. [31] actualized dispersion compensation of Lamb waves with
warped frequency transform (WFT) and performed the compensation procedure for impact location.

Except for LM, most of the above approaches are the signal domain transform ones, in
which the former time-frequency domain dispersive signals are commonly transferred to the
distance-wavenumber domain for dispersion compensation [21,23,30,31]. The signal domain transform
methods, originally performed by Booer et al. [32] for the dispersed seismic waves guided by coal
seams, have been widely used as the classical dispersion compensation methods for Lamb waves.
However, in the methods, the influence of the compensation process on the other important signal
properties, especially the signal waveform or the amplitude spectrum, closely related to the signal
amplitude and physical damage sensitivity is usually neglected for simplicity. Then, the waveform
deformation or the amplitude spectrum alteration can be easily brought about to the compensated
signals. In TDDT [30] for instance, though the waveform correction is considered, the amplitude
spectrum is found to be grievously altered to result in the severe deterioration of the signal SNR
and damage sensitivity. This would probably create much inconvenience in the interpretation of the
processed signals and decrease the compensation effect.

Considering the above problems and providing alternative efficient dispersion compensation
approaches for high spatial resolution Lamb wave imaging of aerospace structures, the two
compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal
construction (NDSC) are comparatively presented in this paper, based on signal construction with the
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idea of nonlinear wavenumber linearization. During the investigation of LDSC and NDSC, the signal
waveform and amplitude spectrum maintenance are particularly regarded to enhance the dispersion
compensation effect. The remaining content is organized as follows: Section 2 theoretically and
numerically analyzes the different dispersion effects on Lamb wave signals. In Section 3, LDSC and
NDSC are proposed. Both the basic signal construction principle and numerical realization of LDSC
and NDSC are discussed. Additionally, the two signal construction methods are compared with the
typical dispersion compensation methods, i.e., TDDM and TDDT. In Section 4, LDSC or NDSC-based
high spatial resolution imaging is developed. Section 5 conducts the experimental validation and
numerical simulation to testify the proposed dispersion compensation and high spatial resolution
imaging methods based on LDSC or NDSC. Conclusions are made in the last section.

2. Effects of Different Dispersion Relations on Lamb Waves

2.1. Sensing Model in Frequency Domain

To facilitate the theoretical investigation, a sensing model is firstly simplified in the frequency
domain. With piezoelectric (PZT) wafers applied as actuators and sensors, a Lamb wave signal,
supposed of single wavepacket for simplicity, can be represented in the frequency domain as [19,20]

V0(ω) = Va(ω)H(ω) (1)

where ω, r, Va(ω) and V0(ω) are the angular frequency, propagation distance, frequency-domain
excitation signal and sensor signal, respectively. H(ω), regarded as the transfer function of the whole
procedure including Lamb wave exciting, propagating and sensing, can be expressed by

H(ω) = A(r, ω)e−iK0(ω)r (2)

where A(r, ω) is actually the amplitude spectrum of H(ω), K0(ω) is the wavenumber that determines
the dispersion relation of the Lamb wave mode, and

cp(ω) = ω/K0(ω), cg(ω) = dω/d[K0(ω)] (3)

where cp(ω) and cg(ω) are the phase and group velocities of the mode, respectively.
With A(r, ω) simplified as “1” to ease the following analysis, the sensing model is derived as

V0(ω) = Va(ω)e−iK0(ω)r (4)

In Equation (4), since K0(ω) is usually nonlinear with ω, i.e., the Lamb wave mode is
nonlinearly-dispersive. Different frequency components of V0(ω) will have inconsistent time delays
K0(ω)r/ω to make the wavepacket spread out temporally and spatially [17,20]. Note that, A(r, ω),
normalized here is actually closely related to the amplitude spectrum of V0(ω) and will be taken into
account in Section 3.2. Applying inverse Fourier transform (IFT) to Equation (4), the sensor signal v0(t)
of nonlinear-dispersion can be calculated in the time domain.

2.2. Linear-Dispersion and Non-Dispersion Effects

The narrowband excitation signal of Lamb waves is normally given as an amplitude modulated
harmonic [28]

va(t) = m(t)eiωct (5a)

Va(ω) = M(ω−ωc) (5b)

where va(t) is the excitation signal in the time domain. m(t) is the amplitude modulation function
specifying the envelope of va(t), M(ω) =

∫
m(t)e−iωtdt is the Fourier transform (FT) result of m(t)

and the carrier frequency ωc corresponds to the central angular frequency of va(t).
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To further deduce the time-domain sensor signal vlin(t) of linear-dispersion from Equation (4),
the corresponding wavenumber can be defined by linearizing K0(ω) as its first-order Taylor series
expansion around ωc [28]

Klin(ω) = k0 + k1(ω−ωc)

= k1ω + (k0 − k1ωc)
(6)

where Klin(ω) is the linearly-dispersive wavenumber relation of vlin(t), k0 = ωc/cp(ωc),
k1 = dK0(ω)/dω

∣∣
ω=ωc = 1/cg(ωc) and

cp_lin(ω) = cg(ωc)/
{

1 + ωc/ω
[
cg(ωc)/cp(ωc)− 1

]}
, cg_lin(ω) = cg(ωc) (7)

where cp_lin(ω) and cg_lin(ω) are the phase and group velocities under linear-dispersion, respectively.
Supposing k0 6= k1ωc, i.e., ωc/cp(ωc) 6= ωc/cg(ωc) and cp(ωc) 6= cg(ωc) without losing generality,
it can be seen from Equation (7) that cp_lin(ω) varies with ω while cg_lin(ω) is a constant cg(ωc).

Inserting Equations (5a), (5b) and (6) into Equation (4) and applying IFT, vlin(t) is obtained with
shifting property of FT as

vlin(t) = 1
2π

∫
M(ω−ωc)e−i[k0+k1(ω−ωc)]r+iωtdω

= eiωct−ik0r

2π

∫
M(ω)e−iωk1r+iωtdω

= m(t− k1r)eiωct−ik0r

= va(t− k1r)eir(k1ωc−k0)

(8)

In Equation (8), vlin(t) is simply a va(t) delayed by its travelling time r/cg(ωc) with an extra
factor eir(k1ωc−k0). Since k0 6= k1ωc, eir(k1ωc−k0) 6= 1. The initial phase of carrier frequency ωc of
vlin(t) is uniformly shifted by r(k1ωc − k0) = ωc

[
r/cg(ωc)− r/cp(ωc)

]
without any signal envelope

deformation. The main dispersion problem of broadening and disturbing the travelling wavepacket in
the original nonlinearly-dispersive signal v0(t) will no longer occur in vlin(t) under linear-dispersion.

As a special case, when k0 = k1ωc in Equation (6), the non-dispersive relation Knon(ω) is
satisfied, i.e.,

Knon(ω) = k1ω (9)

Both phase and group velocities of non-dispersion are a constant cg(ωc). From Equation (8),
the non-dispersive time-domain sensor signal vnon(t) = va(t− k1r), indicating that vnon(t) is only a
time-delayed version of va(t) and free of any dispersion effect.

Noted that, Knon(ω) and Klin(ω) are practically the results of linearizing K0(ω) at the original
point and at the point of K0(ωc), respectively. With a non-zero offset k0− k1ωc as compared to Knon(ω),
Klin(ω), though a straight line about ω, does not possess a strictly-defined linear relation with respect
to ω. This is why Klin(ω) is referred in this study as a specific dispersive wavenumber relation, i.e., the
linearly-dispersive wavenumber relation, under which the dispersion effect of changing the initial
phase of carrier frequency ωc of vlin(t) can be generally disregarded.

2.3. Numerical Simulation

To validate the above analysis, a numerical simulation on A0 or S0 mode signals traveling for
30 cm in a 2024 aluminum plate with the thickness of 2 mm are conducted. Using the plate material
parameters in Table 1, the original nonlinear-dispersion wavenumber relations K0(ω) of the two
fundamental modes are theoretically derived from the Rayleigh-Lamb dispersion equation [23,28,30].
With Equations (6) and (9), the linearized wavenumber relations Klin(ω) and Knon(ω) can be calculated.
As shown in Figure 1, the narrowband excitation signal is a modulated 3-cycle sine burst, the central
frequency fc of which is selected as 75 kHz and 900 kHz to maximize the dispersion effect on A0 and
S0 mode signals, respectively. Taking K0(ω) in Equation (4) as the original nonlinear wavenumber
relation or the two kinds of linearized ones and applying IFT, the sensor signal v0(t), vlin(t) or vnon(t)
can be synthesized.
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Table 1. Material parameters of 2024 aluminum plate.

Density ρ (kg·cm−3) Poisson’s Ratio µ Yong’s Modulus E (Gpa)

2780 0.33 73.1
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Figure 1. Excitation signal (fc = 75 kHz). (a) Waveform; (b) Spectrum.

The simulation results of the A0 mode signal are shown in Figure 2. As Figure 2a illustrates,
the theoretical wavenumber relations K0(ω) is a curve, showing the nonlinear-dispersion property.
While the linearized ones Klin(ω) and Knon(ω) are the two parallel straight lines and a constant offset
exists between them. In contrast to Klin(ω), Knon(ω) passing through the original point exhibits
the more ideal linear relation with ω. Due to the nonlinear K0(ω), the wavepacket in v0(t) is no
longer a 3-cycle windowed toneburst and the time duration increases from 40 µs (seen in Figure 1a)
to about 150 µs with its waveform disturbed and its amplitude decreased, as shown in Figure 2b.
With linearized Klin(ω) and Knon(ω), both the wavepackets in vlin(t) and vnon(t) are exempt from
expansion and distortion, as Figure 2c,d illustrate. Note that, the wavepacket in vlin(t) remains a 3-cycle
toneburst, but undergoes some waveform alteration in changing the relative sites and amplitudes of
the three crests and troughs, as compared with that of vnon(t) or the excitation signal. This is caused
by the initial-phase shift to the carrier wave of the wavepacket. Clearly, it is the only effect that the
linear-dispersion brings about and can be generally ignored.
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Figure 2. Simulation results of the A0 mode signal. (a) K0(ω), Klin(ω) and Knon(ω); (b) v0(t);
(c) vnon(t); (d) vlin(t).

The similar simulation results of the S0 mode signal can be obtained, as shown in Figure 3. Under a
much more nonlinear K0(ω) (seen in Figure 3a), the wavepacket in v0(t) is largely extended to the
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tanglesome waveform with its amplitude severely decreased, as shown in Figure 3b. Whereas, the
wavapacket shapes remain unchanged in both vlin(t) and vnon(t), as illustrated in Figure 3c,d.
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Figure 3. Simulation results of the S0 mode signal. (a) K0(ω), Klin(ω) and Knon(ω); (b) v0(t); (c) vnon(t);
(d) vlin(t).

3. Linearly-Dispersive or Non-Dispersive Signal Construction

As discussed above, it is the nonlinear wavenumber K0(ω) that causes the wavepacket elongation
and distortion in v0(t). The nonlinear-dispersion phenomenon can be well avoided if K0(ω) is
linearized to Klin(ω) or Knon(ω). This could exactly lead to the purpose of linearly-dispersive signal
construction (LDSC) and non-dispersive signal construction (NDSC). In signal construction, the signal
vlin(t) or vnon(t) is respectively constructed from the original nonlinearly-dispersed one v0(t) using
K0(ω). By doing this, the nonlinear wavenumber is practically linearized for dispersion compensation.
Compared with the traditional signal domain transform methods [23,30], LDSC or NDSC is only
performed in the time-frequency domain and a transfer to the distance-wavenumber domain is not
required. In the section, after the basic signal construction principle is investigated, the numerical
realization of LDSC and NDSC is discussed, in which both the signal waveform maintenance and
the amplitude spectrum preservation are particularly concerned during the signal construction
process. A comparison is also performed with the typical signal domain transform methods of
TDDM and TDDT.

3.1. Basic Principle of Signal Construction

In Lamb wave detection, the traveling distance r is probably unknown especially for a damage
scattered signal. vlin(t) or vnon(t) can not be directly synthesized using Equation (4), as mentioned in
Section 2.3. The basic signal construction principle is thus fruitfully explored here to calculate vlin(t) or
vnon(t) based on the sensing model without requiring r. Since the excitation signal Va(ω) is known in a
priori, from Equation (4), the crucial problem in signal construction is how to pursue the corresponding
phase-delay factor. Its general expression can be rewritten in a composite function [28,30]

E(r, ω) = E[r, K(ω)] = e−ikr
∣∣∣k=K(ω) (10)

where the subfunction is the dispersion relation K(ω) and the generating function E(r, k) = e−ikr. For a
given r, E(r, k) is only a simple exponential function and irrespective of the exact variation relation of
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its independent variable k, i.e., K(ω), which implies that E(r, ω) under various dispersion relations is
subject to an identical E(r, k).

From Equation (10), E(r, k) and E(r, ω) are the two distinct functions defined in the wavenumber
or frequency domain, but share the same functional values. Thus, mathematically, performing the
wavenumber-domain interpolation to E(r, k) at the equally-spaced frequency points k = K(ω) will
result in E(r, ω), the procedure of which can be mentioned as the construction of E(r, ω). Vice versa,
during the so-called deconstruction of E(r, ω), E(r, k) can be obtained by interpolating E(r, ω) with
even wavenumber intervals in terms of ω = K−1(ω), where K−1(ω) is the inverse function of K(ω).

Consider two arbitrary time-domain signals, vn(t) and vm(t) of the same propagation paths but
different dispersion relations Km(ω) and Kn(ω). Their phase-delay factors (Em(r, ω) = E[r, Km(ω)]

and En(r, ω) = E[r, Kn(ω)]) are correlated to each other on the basis of the identical E(r, k) via the
above construction and deconstruction processes, as shown in Figure 4, where K−1

m (ω) and K−1
n (ω)

are the inverse functions of Km(ω) and Kn(ω), respectively. This can provide an approach to calculate
one of the two factors, En(r, ω) for example, when the other variables Em(r, ω), Km(ω) and Kn(ω) are
given. That is:

(a) After the inverse function K−1
m (ω) is established from Km(ω), the frequency-domain

interpolation is carried out to Em(r, ω) at ω = K−1
m (ω) and Em(r, ω) is deconstructed to E(r, k);

(b) By implementing interpolation to E(r, k) at k = Kn(ω) in the wavenumber domain,
the phase-delay factor E[r, Kn(ω)] under the dispersion relation Kn(ω), i.e., En(r, ω) is
successfully constructed.
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According to the calculating procedure, En(r, ω) can be mapped to Em(r, ω) straightforwardly as

En(r, ω) = Em[r, Ωn(ω)], Ωn(ω) = K−1
m [Kn(ω)] (11)

where Ωn(ω) is the interpolation mapping sequence from Em(r, ω) to En(r, ω). Equation (11) suggests
that, En(r, ω) can be directly attained from Em(r, ω) through only one time frequency-domain
interpolation with Ωn(ω), so that E(r, k) and the wavenumber-domain interpolation for it is not
needed. Both the interpolation error and computation cost can be thus decreased. Furthermore, the
transform for the phase-delay factor between the frequency and wavenumber domains, implemented
in TDDM or TDDT, is not required.

Inserting Equation (11) into Equation (4) and applying IFT, the basic formula of signal construction
is established as

vn(t) =
1

2π

∫
Va(ω)Em[r, Ωn(ω)]eiωtdω (12)

Note that, the travelling distance r, already presented in the phase-delay factor Em(r, ω), is not
expressly needed during the construction of vn(t).

3.2. Numerical Realization of LDSC and NDSC

With Km(ω) corresponding to K0(ω), and Kn(ω) to Klin(ω) or Knon(ω), the numerical realization
of LDSC or NDSC can be expected based on Equation (12), respectively. Note that, since the
aforementioned signals in different domains are stored as discrete ones in reality, FT and IFT are
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respectively replaced by Fast Fourier transform (FFT) and Inverse Fast Fourier transform (IFFT) in the
following discussion.

Taking LDSC for instance, from Equation (12), K0(ω), Klin(ω) and the phase-delay factor
E0(r, ω) = e−iK0(ω)r should be determined to calculate vlin(t). K0(ω) can be theoretically derived from
the Rayleigh-Lamb dispersion equation using the structure material parameters. Then, Klin(ω) is
decided by linearizing K0(ω) with Equation (6). As for the phase-delay factor E0(r, ω), Equation (2)
indicates that, E0(r, ω) is equivalent to the transfer function H(ω) with the amplitude A(r, ω)

normalized. H(ω) is the frequency spectrum of the temporal impulse response h(t). Hence, H(ω) as
well as E0(r, ω) can be obtained by applying FFT to h(t). h(t) can be obtained under impulse or step
pulse excitation [20].

With Equations (4) and (12) and using the convolution property of FT, vlin(t) can be finally
calculated as

vlin(t) = IFFT{[Va(ω)] · H[Ωlin(ω)]}
= va(t) ∗ IFFT{H[Ωlin(ω)]}

(13)

where IFFT[ ] and ∗ denote IFFT and convolution operations, respectively. Ωlin(ω) is the interpolation
mapping sequence in LDSC,

Ωlin(ω) = K−1
0 [Klin(ω)] (14)

Analogously, for the numerical realization of NDSC, it can be derived from Equations (13) and
(14) that

vnon(t) = va(t) ∗ IFFT{H[Ωnon(ω)]} (15)

Ωnon(ω) = K−1
0 [Knon(ω)] (16)

where Ωnon(ω) is the interpolation mapping sequence in NDSC. Note that, K0(ω) is assumed to be a
monotonic function to guarantee the existence of Ωlin(ω) or Ωnon(ω).

Equations (13) and (15) are the calculation formulas of LDCS and NDSC, respectively. Due to the
frequency-domain interpolation in signal construction, besides the dispersion relation, the other signal
properties, especially the signal waveform and amplitude spectrum could be undesirably changed at
the same time. Therefore, two important things should be considered:

(a) Signal waveform maintenance. Apparently, the nonlinear-dispersion relation K0(ω) is just
decided by E0(r, ω) and irrespective of the narrowband excitation signal Va(ω). In LDSC or NDSC,
the broadband excitation of impulse or step pulse, rather than the commonly-used narrowband
excitation, is adopted to acquire h(t), so that E0(r, ω) is individually obtained as H(ω) and the
frequency-domain interpolation for it can be expediently executed for dispersion removal without any
influence on Va(ω), as expressed by Equation (13) or (15). As a result, the waveform maintenance for
vlin(t) or vnon(t) can be achieved.

Conversely, when the narrowband excitation is used to acquire the single mode signal v0(t) as
usual, h(t) and therefore, H(ω) cannot be pursued straightforwardly, but implicitly given together
with V0(ω). The frequency-domain interpolation in Equation (13) or (15) has to be implemented on
V0(ω), instead of H(ω). That is

v′lin(t) = IFFT{V0[Ωlin(ω)]}
= IFFT{Va[Ωlin(ω)] · H[Ωlin(ω)]}

(17)

v′non(t) = IFFT{V0[Ωnon(ω)]}
= IFFT{Va[Ωnon(ω)] · H[Ωnon(ω)]}

(18)

In Equation (17) or (18), because of the entire interpolation on V0(ω), the frequency content
of Va(ω) is disarranged as Va[Ωlin(ω)] or Va[Ωnon(ω)], making va(t) dominated by other frequency
components. The waveform deformation, similar to the frequency-shifting phenomenon is then
produced to va(t) and the final constructed signal [30]. Additionally, the more Ωlin(ω) or Ωnon(ω)
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differs from ω, the more serious deformation will occur to v′lin(t) or v′non(t). Note that, Equation (17)
is actually the calculation formula of LM [28]. Since Klin(ω) is the local linear approximation of
the original dispersive one K(ω) with respect to the central frequency ωc, the mapped frequency
point Ωlin(ω) deviates much less from the former one ω, as compared with Ωnon(ω). The waveform
deformation in LM is very slight and can be disregarded [28,29].

(b) Amplitude spectrum preservation. With dispersion property only involved in the phase-delay
factor E0(r, ω), the other crucial signal characteristics, including the signal amplitude and physical
damage sensitivity are mainly dependent on the amplitude spectrum A(r, ω). Hence, A(r, ω)

normalized and neglected in the above discussion should be treated carefully during LDSC or
NDSC. Taking A(r, ω) into account, from Equations (1), (2) and (13), vlin(t), for example is actually
constructed as

vlin(t) = IFFT{Va(ω) · A[r, Ωlin(ω)] · E0[r, Ωlin(ω)]} (19)

Equation (19) indicates that, A(r, ω) is diverged to A[r, Ωlin(ω)] and should be restored. However,
unfortunately, A(r, ω) is a very complicated function of r and ω. Moreover, v0(t) normally consists
of multiple wavepackets with different unknown r. It is extremely hard to exactly calculate and
correct A(r, ω).

Unlike Knon(ω), Klin(ω) is established by linearizing K0(ω) at K0(ωc) and is actually the local
linear approximation of K0(ω) around the central frequency ωc. Even Klin(ωc) = K0(ωc) at ωc.
From Equation (14), the mapped frequency point Ωlin(ω) during the interpolation will deviate much
less from the former one ω, especially within the frequency range of v0(t). Because of this, the
influence of LDSC on A(r, ω) is so slight that can be nearly neglected. While in NDSC, with the
non-zero offset k0 − k1ωc between Knon(ω) and Klin(ω), Ωnon(ω) differs much more from ω and
A(r, ω) is greatly varied.

This makes LDSC more preferable in some adverse situations, such as the serious energy loss
during Lamb wave travelling in complex structures or the weak flaws in tested structures. In such
situations, to ensure sufficient SNR and the damage sensitivity of Lamb wave signals, the highest
possible A(r, ω) within the signal bandwidth is usually selected by adjusting ωc of V0(ω) and needs
to be mostly unchangeable. It is clear that, with the signal waveform retained in the two signal
construction approaches, the amplitude spectrum can be only preserved in LDSC.

3.3. Comparison with TDDM and TDDT

LDSC and NDSC are largely analogous to the signal domain transform methods. It is necessary
to conduct a comparison with the typical signal domain transform methods, i.e., TDDM and TDDT,
the calculation formulas of which are respectively given as [23,30]

ṽ(r) = IFFT{V0[Ω(k)]}
= IFFT{Va[Ω(k)]} ∗ IFFT{H[Ω(k)]}

(20)

v(r) = IFFT{Va[Ωnon(k)]} ∗ IFFT{H[Ω(k)]}
= va(r) ∗ IFFT{H[Ω(k)]}

(21)

where Ω(k) = K−1
0 (ω), Ωnon(k) = K−1

non(ω), the distance-domain excitation signal
va(r) = IFFT{Va[Ωnon(k)]} and va(r) = va

[
cg(ωc)t

]
[30], ṽ(r) and v(r) are the results of TDDM

and TDDT, respectively.
To facilitate the comparison, the Formulas (13), (15), (20) and (21) are rewritten as

vlin(t) = va(t) ∗ IFFT{A[r, Ωlin(ω)] · E0[r, Ωlin(ω)]}
= va(t) ∗ IFFT{A[r, Ωlin(ω)] · Elin(r, ω)}

(22)

vnon(t) = va(t) ∗ IFFT{A[r, Ωnon(ω)] · E0[r, Ωnon(ω)]}
= va(t) ∗ IFFT{A[r, Ωnon(ω)] · Enon(r, ω)}

(23)
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ṽ(r) = IFFT{Va[Ω(k)]} ∗ IFFT{A[r, Ω(k)] · E0[r, Ω(k)]}
= IFFT{Va[Ω(k)]} ∗ IFFT{A[r, Ω(k)] · E0(r, k)}

(24)

v(r) = va(r) ∗ IFFT{A[r, Ω(k)] · E0[r, Ω(k)]}
= va(r) ∗ IFFT{A[r, Ω(k)] · E0(r, k)}

(25)

where Elin(r, ω) = E0[r, Ωlin(ω)], Enon(r, ω) = E0[r, Ωnon(ω)] and E0(r, k) = E0[r, Ω(k)].
It can be found that:
(a) Both the signal construction methods and the signal domain transform ones are essentially a

kind of spectral warping process [32]. In the process, as expressed by the similar Equations (22)–(25),
each frequency point ω is separately interpolated or mapped as another one, i.e., Ωlin(ω), Ωnon(ω)

or Ω(k), to fulfill nonlinear frequency rescaling on E0(r, ω). As a result, the spectral chaos in E0(r, ω)

produced by the nonlinear K0(ω) can be restored for dispersion elimination.
(b) The basic dispersion compensation idea of the two kinds of methods is different.

Equations (22)–(25) imply that the critical point for dispersion compensation is how to remove the effect
of nonlinear wavenumber K0(ω) on the phase-delay factor E0(r, ω). In LDSC or NDSC, as expressed
by Equations (22) and (23), the effect is eliminated by replacing E0(r, ω) with the newly-calculated
Elin(r, ω) or Enon(r, ω). This is equivalent to linearizing the nonlinear K0(ω) in E0(r, ω) as Klin(ω)

or Knon(ω), respectively. Thus, the nonlinear wavenumber linearization is the basis of dispersion
compensation in LDSC and NDSC. While in TDDM or TDDT, since the generating function E0(r, k) is
irrelevant to K0(ω) and free of nonlinear K0(ω)-induced dispersion effect, E0(r, ω) is deconstructed to
E0(r, k) for dispersion removal in Equations (24) and (25). Since E0(r, ω) and E0(r, k) correspond to
the distinct domains of time-frequency and distance-wavenumber, the conception of signal domain
transferring is introduced in TDDM and TDDT.

(c) Different from TDDM expressed by Equation (20), H(ω), rather than V0(ω) is acquired in
Equation (13), (15) or (21) to avoid the disarrangement of excitation signal spectra. Therefore, signal
waveform maintenance is not regarded in TDDM, but in LDSC, NDSC and TDDT.

(d) Comparing Equations (15) and (21), vnon(t) and v(r) can be transferred to each other with the
simple variable scaling relation r = cg(ωc)t. Thus, TDDT and NDSC are actually equivalent. The same
problem of significantly changing the amplitude spectrum would occur in TDDT. Generally, among
the four dispersion compensation approaches, only in LDSC can preservation of both signal waveform
and amplitude spectrum be accomplished.

4. High Spatial Resolution Imaging Based on LDSC or NDSC

LDSC or NDSC can be performed as a general signal processing approach for Lamb wave detection.
In this section, the two signal construction methods are applied associated with the delay-and-sum
algorithm for high spatial resolution damage imaging. Delay-and-sum is a commonly-employed Lamb
wave imaging algorithm of sparse PZT arrays [13,14]. The imaging algorithm can be illustrated by
Figure 5, where the monitored structure is integrated with a sparse transducer array of Q(Q ≥ 3) PZT
wafers. For a PZT pair Pi−j(i 6= j; i = 1, 2, · · ·, Q; j = 1, 2, · · ·, Q) composed of Pi at (xi, yi) and Pj at
(xj, yj), the relevant propagation time with respect to an arbitrary point O at (x, y) can be geometrically
decided assuming that only one Lamb wave mode exists with a constant group velocity cg(ωc) [13]

tij(x, y) =
[√

(xi − x)2 + (yi − y)2 +
√
(xj − x)2 + (yj − y)2

]
/cg(ωc) (26)

If sij(t) is the scattered signal measured by Pi−j, then sij(tij(x, y)) is related to the amplitude
of the signal scattered from the point O. All the scattered signals measured by PZT pairs
Pi−j(i 6= j; 1 ≤ i, j ≤ Q) are time-delayed and summarized to get an averaged energy of point O.
That is
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E(x, y) =

[
2

Q(Q− 1)

Q

∑
i=1

Q

∑
j=i+1

sij
(
tij(x, y)

)]2

(27)

With the energy E(x, y) of each point normalized and grey-scaled, a damage image over the
whole structure can be generated. The local spots in the image with strong intensities will probably
correspond to the actual defects.
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The delay-and-sum imaging method is a simple but effective method that can automatically
focus the damage scattered signal measure by every PZT pair to any real flaw points. However,
the nonlinear-dispersion could affect the scattered signal to produce an inferior resolution imaging
result, from which neither a single flaw nor multiple ones can be easily identified. To remove the
dispersion influence, LDSC or NDSC is firstly introduced for sij(t) during damage imaging. The pixel
value of point O is then calculated as

Elin(x, y) =

[
2

Q(Q− 1)

Q

∑
i=1

Q

∑
j=i+1

sij_lin
(
tij(x, y)

)]2

(28)

Enon(x, y) =

[
2

Q(Q− 1)

Q

∑
i=1

Q

∑
j=i+1

sij_non
(
tij(x, y)

)]2

(29)

where sij_lin(t) and sij_non(t) are the LDSC-processed and NDSC-processed sij(t), respectively.
In Equations (28) and (29), since each dispersed wavepacket in sij(t) is recovered via LDSC or

NDSC in sij_lin(t) or sij_non(t), a great improvement in the spatial resolution of damage imaging
can be made. The capacity of Lamb wave adjacent multi-damage or quantitative imaging is then
significantly enhanced.

5. Experimental and Numerical Validations

5.1. Imaging Experiment of Adjacent Dual Damages

5.1.1. Experimental Setup

To verify the proposed signal construction and high spatial resolution imaging methods,
an experiment is arranged on a 1000 mm × 1000 mm × 1.5 mm 2024 aluminum plate, which is
largely used in aerospace structures. The material properties of the plate are given in Table 1. In the
experimental validation, the adjacent dual damage imaging is carried out. As illustrated in Figure 6,
the overall experiment setup is composed of Lamb wave detection system, matrix switch controller,
power amplifier and the aluminum plate. Lamb wave detection system can generate Lamb wave
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signals, amplify and collect sensor signals. The matrix switch controller controls the working sequence
of all PZT pairs and the power amplifier is applied to amplify the excitation signal to enlarge the
monitoring area of the plate.
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Figure 6. Experimental setup.

To monitor the entire plate, eight PZT wafers P1~P8 (PZT-5, 8 mm in diameter and 0.5 mm in
thickness) are deployed to form a square transducer array, as shown in Figure 6. The adjacent dual
defects D1 and D2 are produced as the two closely-located through-holes with the diameter of 9 mm
by an electrodrill. Figure 7 shows the distribution of the PZT array and dual damages in the monitored
region. Their exact positions in the orthogonal coordinate (seen in Figure 7) are listed in Table 2.
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5.1.2. Compensation Effect on the Sensor Signals

A step pulse excitation signal with the raising time of 0.25 µs is produced by the Lamb wave
detection system to acquire the impulse response of each PZT pair. By convoluting the impulse
response with a 3-cycle sine burst centered at 90 kHz, the desired sensor signals dominated by A0

mode can be conveniently extracted. After the derivation calculus of the measured step pulse response
g26(t) (seen in Figure 8) measured by P2−6 without any defects, the impulse response h26(t) is obtained,
as Figure 9 shows. It can be seen that, g26(t) and h26(t) are extremely complicated by multi-mode and
dispersion characteristics. What can be recognized from the two broadband responses is merely the S0

mode direct arrival and boundary reflection. The following A0 or S0 mode wavepackets are severely
overlapped with each other, as Figures 8 and 9 illustrate. The sensor signal v26(t) extracted from
h26(t) is shown in Figure 10a. The A0 mode direct arrival in v26(t) distinctly spreads out. Except for
the first reflected wavepacket of A0 mode near 250 µs in v26(t), the other reflections after 310 µs are
badly expanded and superposed. The signal resolution is grievously decreased. Note that, with less
dispersion, the direct arrival of S0 mode is in a compact wavepacket (seen in the interval 50–100 µs in
Figure 10a).
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Figure 9. Impulse response h26(t) of P2−6.

To compensate v26(t), LDSC or NDSC is performed. The procedure is given in detail as follows:
(a) Determining parameters. With the parameters in Table 1, the wavenumber relation K0(ω) of

A0 mode in the aluminum plate is theoretically derived, as Figure 11 shows. Then, the group velocity
at central frequency cg(90 kHz) is computed as 1964.4 m/s and the linearized wavenumber relation
Klin(ω) or Knon(ω) is computed using Equation (6) or (9). The mapping sequence Ωlin(ω) or Ωnon(ω)

can be determined with Equation (14) or (16), as illustrated in Figure 12.
(b) H26[Ωlin(ω)] or H26[Ωnon(ω)]. Applying FFT to h26(t) and interpolating the resultant H26(ω)

with Ωlin(ω) or Ωnon(ω), H26[Ωlin(ω)] or H26[Ωnon(ω)] is obtained.
(c) v26_lin(t) or v26_non(t). Based on Equation (13) or (15), v26_lin(t) or v26_non(t) is

finally computed.
As Figure 10b shows, either the A0 mode direct arrival or the reflections in v26_lin(t) get

well recompressed to the temporal sites relevant to their travelling times. Because of wavepacket
recovery, their amplitudes are pronouncedly heightened without signal waveform deformation,
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as compared with v26(t) (seen in Figure 10a). Conversely, the residual S0 mode wavepacket in
v26_lin(t) (seen in the interval 50–100 µs in Figure 10b) is uncompensated but suffers more distortion
and amplitude-attenuation. The reason for this is that LDSC is only performed with the A0 mode
dispersion characteristic.

In v26_non(t), as Figure 10c illustrates, though the dispersion effect on A0 mode waves are removed,
the amplitudes of the recompressed wavepackets are even lower than those of the dispersive ones in
v26(t). This is mainly attributed to the high degree of alteration in the amplitude spectrum A26(r, ω)

of v26(t) during NDSC. Figure 12 shows that, the mapped frequency point Ωnon(ω) is far from the
former one ω and especially, Ωnon(90 kHz) at the central frequency 90 kHz is migrated to much lower
29 kHz. According to the A0 mode amplitude-frequency response computed with the theoretical
formula in [16], as Figure 13 shows, A26(r, ω) around 29 kHz is obviously weaker than that around
90 kHz. The amplitude spectrum A26_non(r, ω) of v26_non(t) would dramatically decline with distinct
variation tendency in contrast to A26(r, ω), as Figure 14a illustrates. This can definitely decrease the
amplitude of v26_non(t).

By comparison, Ωlin(ω) cross the −3 dB bandwidth (68–112 kHz) of v26(t) deviates much less
from ω and even overlaps with ω at fc = 90 kHz, as shown in Figure 12. Thus, the amplitude
spectrum A26_lin(r, ω) of v26_lin(t) is scarcely changed after LDSC and is almost the same as A26(r, ω),
as Figure 14a shows. Note that, the amplitude of S0 mode is so small in lower frequencies (seen in the
interval 16.3–42.7 kHz in Figure 13) that the direct arrival of the mode nearly disappears in v26_non(t)
(seen in the interval 50–100 µs in Figure 10c). For the convenience of comparison, the envelopes of
v26(t), v26_lin(t) and v26_non(t) are plotted together in Figure 10d. It can be obviously seen that, both
the signal resolution and SNR are considerably improved by LDSC. Whereas, NDSC can only compress
the A0 mode wavepacket without any signal energy reinforcement.
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Figure 10. Original extracted and processed A0 mode dominated sensor signals measured by
P2−6. (a) Original extracted sensor signal v26(t) from (b) LDSC-processed result v26_lin(t) of v26(t);
(c) NDSC-processed result v26_non(t) of v26(t); (d) Envelopes of v26(t), v26_lin(t) and v26_non(t);
(e) TDDM-processed result ṽ26(r) of v26(t); (f) TDDT-processed result v26(r) of v26(t).
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Figure 14. Amplitude spectra of original and processed sensor signals measured by P2−6. (a) Amplitude
spectra A26(r, ω), A26_lin(r, ω), A26_non(r, ω) of v26(t), v26_lin(t) and v26_non(t); (b) Amplitude spectra
A26(r, ω), Ã′26(r, ω), A′26(r, ω) of v26(t), ṽ26(r) and v26(r).

TDDM and TDDT are also executed on v26(t) to obtain the distance-domain signals ṽ26(r) and
v26(r), respectively. In ṽ26(r), as Figure 10e shows, the A0 mode direct arrival and reflections are in
compact wavepackets but with many more cycles. Evidently, ṽ26(r) is disturbed by high frequencies.
The signal waveform deformation of frequency shifting could decrease the compensation effect on
ṽ26(r). As Figure 10f shows, ignoring the discrepancy between independent variables, t and r, v26(r)
is identical with v26_non(t) (as illustrated in Figure 10c). After ṽ26(r) and v26(r) are rescaling with
t = r/cg0, their amplitude spectra Ã′26(r, ω) and A′26(r, ω) can be also calculated. As Figure 14b shows,
compared with A26(r, ω), Ã′26(r, ω) is shifted toward a much higher frequency range and A′26(r, ω)

has a much lower amplitude, which corresponds to the frequency shifting waveform deformation in
ṽ26(r) and the severe amplitude spectrum altering in v26(r), respectively.

5.1.3. Compensation Effect on the Damage Scattered Signals

Subtracting the A0 mode sensor signals of the health plate from those of the damaged plate, the
damage scattered signals can be obtained. Figure 15a1,a2 show the typical original dispersive scattered
signals s58(t) and s′58(t) from the single and dual adjacent damages measured by P5−8, respectively.
Due to dispersion, both the damage scattered wavepackets and the other wavepackets are elongated
and seriously overlapped with each other in s58(t) and s′58(t). It goes into an extraordinary challenge
to interpret s56(t) or s′56(t).
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Figure 15. Original and processed damage scattered signals measured by P5−8. (a1) Original scattered
signal s58(t) from D1; (a2) Original scattered signal s′58(t) from D1 and D2; (b1) LDSC-processed result
s58_lin(t) of s58(t) (b2) LDSC-processed result s′58_lin(t) of s′58(t); (c1) NDSC-processed result s58_non(t)
of s58(t); (c2) NDSC-processed result s′58_non(t) of s′58(t).

However, in the LDSC-processed result s58_lin(t) of s58(t), as Figure 15b1 shows, the scattered
wavepacket from D1 is recompressed to a 3-cycle sine burst and is distinctly separated from the
right neighbouring wavepacket. While in s′56_lin(t), as Figure 15b2 illustrates, the two well-recovered
wavepackets scattered by D1 and D2 can be readily distinguished with high enough amplitudes.
Apparently, not only waveform reconversion but signal energy reinforcement is also accomplished
for the dispersive scattered wavepackets via LDSC. The NDSC-processed results s56_non(t) and
s′56_non(t) are shown in Figure 15c1,c2, respectively. In s56_non(t), the scattered wavepacket from
D1 gets compensated, whereas the scattered wavepacket is decreased in its amplitude and grievously
contaminated by other reflections or noises, as Figure 15c1 shows. Because of the amplitude attenuation,
the two compensated damage scattered wavepackets are nearly submerged by other wavepackets and
barely discriminated in s′56_non(t), especially for the one from D1, as Figure 15c2 shows. The reason for
this is the severe alteration of the amplitude spectrum during NDSC.

5.1.4. Damage Imaging Results

Using the original, LDSC or NDSC-processed scattered signals acquired by all 28 PZT pairs
of the sparse array, several images for the single or dual adjacent damages can be generated with
Equations (27)–(29), as shown in Figure 16 where each symbol “X” denotes the actual damage position
and the circulars denote the PZT wafers. With the dispersion effect on the scattered signals (seen in
Figure 15a1,a2), no flaw spot can be clearly observed at each actual damage position in Figure 16a1,a2.
The imaging for the single or dual damages obviously fails.
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As the dispersion influence is efficiently removed in the LDSC-processed results (seen in
Figures 15b1 and 12b2), both the single damage and the dual neighboring ones can be visibly and
accurately recognized as bright focalized spots in Figures 16b1 and 13b2, showing the outstanding
spatial resolution and SNR of the proposed LDSC-based damage imaging method. Due to the
amplitude attenuation of the compensated scattered signals induced by the serious amplitude spectrum
alteration (seen in Figures 15c1 and 12c2), the flaw point is relatively blurred with a higher noise-level
in the NDSC-based imaging result of D1, as illustrated in Figure 16c1. While in the image of D1 and D2,
as Figure 16c2 shows, the SNR is too low to identify the two flaw spots.Materials 2017, 10, 4  19 of 23 
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Figure 16. Different images of single and adjacent dual damages obtained by using traditional
delay-and-sum, LDSC-based or NDSC-based imaging method. (a1) Original imaging result of D1;
(a2) Original imaging result of D1 and D2; (b1) LDSC-based imaging result of D1; (b2) LDSC-based
imaging result of D1 and D2; (c1) NDSC-based imaging result of D1; (c2) NDSC-based imaging result
of D1 and D2.

5.2. Numerical Simulation of Quantitative Imaging

With relatively more PZT wafers, the above high spatial resolution imaging methods can be
attempted for quantitative imaging, in which besides locations, the other particular damage properties,
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e.g., severities or geometric dimensions, can be attained. In the numerical simulation, because of the
excellent dispersion compensation capacity, LDSC is adopted for quantitatively imaging a rectangular
hole H1 (50 mm × 60 mm) or circular hole H2 (40 mm in diameter) in a 1000 mm × 1000 mm × 1.5 mm
aluminum plate with an array of 16 PZT wafers P′1~P′16, as shown in Figure 17. Table 3 gives the
exact positions of the PZT wafers and holes. The simulation is conducted by the commercial finite
element modeling (FEM) software ABAQUS®/EXPLICITE. The plate is modeled using the A4 node
shell elements (S4) with the material parameters in Table 1. The step pulse excitation signal with the
raising time of 0.25 µs is loaded as the opposing out-of-plane point-source and the deviation of the
out-of-plane strain at each sensing point is calculated as the impulse response with the fixed time step
of 0.5 µs. To extract the A0 mode dominated sensor signal from the impulse response of every PZT
pair, the same 3-cycle sine burst excitation signal centered at 90 kHz is used.
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Figure 17. Distribution of the PZT array and holes in the aluminum plate.

Table 3. The coordinates of PZTs and holes.

PZTs (x, y)/(mm) PZTs (x, y)/(mm)

P′1 (300, 300) P′10 (−150, −300)
P′2 (150, 300) P′11 (0, −300)
P′3 (0, −300) P′12 (150, −300)
P′4 (−150, −300) P′13 (300, −300)
P′5 (−300, 300) P′14 (300, −150)
P′6 (−300, 150) P′15 (300, 0)
P′7 (−300, 0) P′16 (300, 150)
P′8 (−300, −150) H1 (30, 40)
P′9 (−300, −300) H2 (30, 40)

The dispersive scattered signals from H1 or H2 are compensated by LDSC with the interpolation
sequence Ωlin(ω) in Figure 12. Figure 18a1,a2 illustrate the original scattered signals s17(t) and s′17(t)
from H1 or H2 measured by P′1−7. Their corresponding LDSC-processed results are respectively shown
in Figure 18b1,b2, in which the impressive recompression for the hole-scattered and other wavepackets
of A0 mode is observed. In the images computed with Equation (27) using all 120 original scattered
signals from H1 or H2, as Figure 19a1,a2 show, the two holes are displayed as the expanded spots
with obscure boundaries. Except for the gross sites, the more detailed flaw information cannot be
further identified due to the poor imaging resolution. Using all the LDSC-processed scattered signals,
H1 and H2 can be imaged with satisfactory spatial resolution based on Equation (28), as illustrated
in Figure 19b1,b2, where the outer edges of the holes are also plotted. The flaw spots are in good
coincidence with the hole locations, sizes and shapes, which can enable the following attractive
quantitative identification for the hole damage. Note that, since the four corners of the rectangular
hole are the most remarkable scattering sources for A0 mode Lamb waves, the scattered wavepackets
are preferentially focalized on them to yield the four brightest points in Figure 19b1.
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(a2) Original imaging result of H2; (b1) LDSC-based imaging result of H1; (b2) LDSC-based imaging 
result of H2. 
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Figure 18. Original and LDSC-processed damage scattered signals from the rectangular or circular hole
measured by P′1−7. (a1) Original scattered signal s17(t) from H1; (a2) Original scattered signal s′17(t)
from H2; (b1) LDSC-processed result s17_lin(t) of s17(t); (b2) LDSC-processed result s′17_lin(t) of s′17(t).
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Figure 19. Different images of the rectangular hole H1 or circular one H2 respectively obtained by
using traditional delay-and-sum or LDSC-based imaging method. (a1) Original imaging result of H1;
(a2) Original imaging result of H2; (b1) LDSC-based imaging result of H1; (b2) LDSC-based imaging
result of H2.
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6. Conclusions

To overcome the nonlinear-dispersion problem in Lamb wave identification of aerospace
structures, two signal construction methods, LDSC and NDSC are presented with the conception of
nonlinear wavenumber linearization. Furthermore, the effects of the compensation process on the
other crucial signal properties, especially the signal waveform and amplitude spectrum are particularly
concerned. A comparison with TDDM and TDDT is also performed. The investigation results
indicate that, with signal waveform suitably corrected and amplitude spectrum nearly unchanged,
the dispersive signals can be preferably compensated by LDSC. Both the signal resolution and
signal energy can be highly enhanced in the LDSC results. In either NDSC or TDDT, though signal
waveform correction is realized, the amplitude spectrum is severely altered. This would result in
the amplitude attenuation to the compensated signals and limit the application of NDSC or TDDT
under low SNR circumstances. Without signal waveform correction, the recompressed wavepackets
in TDDM-processed signals can be easily deformed with other frequency components, which could
probably cause much inconvenience to the signal interpretation.

Hereafter, a LDSC or NDSC-based imaging method is further developed for high spatial
resolution or quantitative damage imaging, respectively. Due to the amplitude attenuation in the
ND-SC-processed damage scattered wavepackets, NDSC-based imaging for the actual adjacent
dual flaws in the aluminum plate failed with serious noise, while the two flaws can be clearly
displayed with high spatial resolution and SNR using the LDSC-based imaging method. Because of
the outstanding dispersion compensation ability to keep other signal characteristics unchanged,
satisfactory quantitative results of the rectangular or circular hole can be also attained by LDSC-based
imaging with relatively more PZT wafers in the numerical simulation.
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