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Abstract: Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that
is usually performed with polymers that are molten in a printer nozzle and placed line by line
on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining
polymers with functional materials are also commercially available. Especially combinations of
polymers with metal particles result in printed objects with interesting optical and mechanical
properties. The mechanical properties of objects printed with two of these metal-polymer blends were
compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show
that hybrid materials mostly containing bronze have significantly reduced mechanical properties.
Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the
original filaments, indicating sufficient quality of the printing process. Our investigations show that
while FDM printing allows for producing objects with mechanical properties similar to the original
materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating
mechanical strength.

Keywords: 3D printing; FDM technology; hybrid printing materials; metal filament; tensile strength;
flexural modulus

1. Introduction

Three-dimensional (3D) printing belongs to the emerging topics of our time. On the one
hand enabling localization and individualization of production [1], it offers on the other hand new
opportunities to produce objects that would have been difficult or even impossible with former
technologies [2].

Different technologies enable 3D printing, such as stereo-lithography, selective laser sintering,
or fused deposition modeling (FDM) [3]. Especially if the FDM technology is of high technological
interest since most inexpensive printers are based on this principle. Here, a polymer filament is guided
through a heated nozzle where the material is molten and deposited at defined positions on a printing
bed. After finishing the first layer, the distance between printing bed and extruder nozzle is increased,
and the second layer is printed on the first one, etc. [4].

In FDM printing, usually diverse thermoplastic polymers are used, such as poly (lactic acid) (PLA),
acrylonitrile butadiene styrene (ABS), polyamide 6.6 (PA 6.6), polycarbonate, etc. [5]. Additionally,
several special filaments exist, combining polymers with different other materials, such as wood,
brick dust, or metal particles. These filaments, however, are in the moment only used for printing
models, not objects that may be stressed mechanically, since their mechanical properties are known to
be reduced in comparison with pure polymer filaments. Nevertheless, scientific examinations of the
influence of the printing parameters on the mechanical properties of these special filaments are scarce.
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Polymer-metal blends have already been used for FDM printing of metal-oxide semiconductors
using a sintering step after 3D printing [6]. Polymers loaded with metal oxide nanoparticles, such
as TiO2 or MoO3, were FDM printed and tested with respect to their antimicrobial and antifungal
properties [7]. 3D printing with electro-conductive materials was tested by diverse groups, using
techniques from laser-assisted writing [8] and metallic inks [9,10] to filling conductive liquids into 3D
printed substrates [11,12] to direct FDM printing [13].

In spite of these inspiring research approaches giving rise to novel technological applications of
the FDM process, only one group at this time published research describing the influence of filling ABS
with different amounts of metal particles and printing such a hybrid filament at different temperatures
and with different infill densities, indicating that increased temperatures result in increased tensile
stress and elongation at break [14,15].

Our article thus describes the mechanical properties of two commercially available metal-polymer
hybrid filaments, based on PLA, influenced by different printing parameters, and measured in
elongation and bending tests. PLA was chosen as the base material due to several reasons: Firstly,
it belongs-together with ABS-to the most often used polymers in FDM printing. PLA is of special
interest due to its biocompatible, biodegradable, non-toxic, non-immunogenic, and non-inflammatory
properties, making the material usable in medical applications [16]. In biomedical applications,
degradation is often advantageous, especially due to the lack of toxicological risks [17]. Additionally,
PLA offers the best adhesion on textile materials and is thus also suited to add new mechanical
properties or design aspects to technical textiles or garments [18,19]. The latter aspect is of special
importance for metal-filled printing polymer, which can be expected to show a reduced mechanical
strength, but interesting optical properties, suggesting their use in combination with another material
with higher tensile strength. Finally, PLA is known to show shape-memory properties, such as
self-repairing processes or self-fitting of implants [20–26], making it useful in diverse applications
where a shape change due to a temperature change is desired.

2. Results

First, TGA (thermo-gravimetric analysis) measurements were performed to examine the metal
fractions of the hybrid filaments under investigation, resulting in 78 wt % bronze in the Bronzefill
filament and 46 wt % iron in the Magnetic Iron filament, respectively. These values correspond—for
average densities of 8150 kg/m3 (bronze), 7860 kg/m3 (iron), and 1320 kg/m3 (PLA)—to approximately
36 vol % of metal in Bronzefill and 12 vol % of metal in Magnetic Iron, respectively.

Figure 1 shows the results of tensile and bending tests, performed on the different filaments
(Figure 1a) and some bending specimens (Figure 1b), respectively. All of the measurements were
performed between 1 and 2 days after 3D printing; however, tests with all three materials approximately
15 min after printing (when the specimens were just cooled down) revealed no difference in tensile and
bending tests. PLA and Magnetic Iron filaments show similar force-elongation curves, with PLA having
a higher elongation at break and a higher tensile strength. The Bronzefill filament, however, starts
elongating plastically already at low forces and is stretched by more than 10% until it finally breaks.

Similar behavior is visible in the bending tests. Here, PLA again shows a higher force and
deflection at break than Magnetic Iron, with the PLA specimen not breaking for the standard conditions
depicted here (cf. Table 1). Similar to the tensile test, the Bronzefill specimen starts plastic deformation
for small forces and is deflected plastically for several millimeters until first (incomplete) breaks occur.

From this first test, it can already be stated that the Bronzefill filament with a high metal filling
shows mechanical properties significantly different from pure PLA or Magnetic Iron filament which
contains less metal particles.
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Figure 1. Typical examples of force-displacement curves: (a) Force-elongation measurements of the 
three filaments used in this study; (b) Force-deflection curve measured for bending specimens printed 
from the three filaments used here. 

In the following figures, the tensile strengths and flexural strength of specimens produced from 
the three materials are depicted. Both bending and elongation samples were produced with three 
different infill degrees, i.e., 20%, 60%, and 100%. Opposite to common casting methods known for 
plastics or metals, this light weight construction method is typical for 3D printing. This means that 
the cross-section of the samples is not always completely filled and that calculations of tensile and 
flexural strengths must be modified or, alternatively, interpreted correctly. 

For the tensile strength, the average cross-section of the samples was calculated by taking into 
account the numbers of completely filled outer layers and the infill degree, i.e., the completely filled 
cross-section was only reached for 100% infill degree, while lower infill degrees resulted in smaller 
nominal cross-sections. These calculated values were verified by comparing the measured masses of 
all samples, comparing lower infill degrees to samples with 100% filling. 

For the flexural strengths, scaling the dimensions of the bending specimens in a similar way is 
not possible since not only the amount of material in the cross-section is necessary for its calculation, 
but also the material’s distribution, influencing the moment of inertia. Thus, the values of the 
flexural strength are always depicted with respect to the outer dimensions of the bending specimens.  

This means that the values of the tensile strength depicted here should be identical for all of the 
infill degrees, while the values of the flexural strength must be larger for higher infill degrees. 

Figure 2 depicts the tensile strength and flexural strength, measured for PLA, using different 
infill degrees and orientations. The infill pattern is “rectilinear”, i.e., even lines are printed in the not 
completely filled area (cf. Table 1), oriented rectangularly in consecutive layers, with the angles 
between printed lines and the perimeter being either +45°/−45° or 90°/0°. 

For the tensile strength, both of the sets of samples with 100% infill degree reach approximately 
the value of the original filament, which can be assumed to be the maximum possible value.  
This means that during the 3D printing process, the same adhesion between the neighboring printed 
lines within one layer are reached as in the filament extrusion process. For lower infill values, the 
tensile strengths are reduced, which can be explained by the open parts in the inner layers that 
prevent the intra-layer adhesion. Instead, only lines printed in consecutive layers adhere to each 
other in small areas.  

Figure 1. Typical examples of force-displacement curves: (a) Force-elongation measurements of the
three filaments used in this study; (b) Force-deflection curve measured for bending specimens printed
from the three filaments used here.

In the following figures, the tensile strengths and flexural strength of specimens produced from
the three materials are depicted. Both bending and elongation samples were produced with three
different infill degrees, i.e., 20%, 60%, and 100%. Opposite to common casting methods known for
plastics or metals, this light weight construction method is typical for 3D printing. This means that the
cross-section of the samples is not always completely filled and that calculations of tensile and flexural
strengths must be modified or, alternatively, interpreted correctly.

For the tensile strength, the average cross-section of the samples was calculated by taking into
account the numbers of completely filled outer layers and the infill degree, i.e., the completely filled
cross-section was only reached for 100% infill degree, while lower infill degrees resulted in smaller
nominal cross-sections. These calculated values were verified by comparing the measured masses of
all samples, comparing lower infill degrees to samples with 100% filling.

For the flexural strengths, scaling the dimensions of the bending specimens in a similar way is
not possible since not only the amount of material in the cross-section is necessary for its calculation,
but also the material’s distribution, influencing the moment of inertia. Thus, the values of the flexural
strength are always depicted with respect to the outer dimensions of the bending specimens.

This means that the values of the tensile strength depicted here should be identical for all of the
infill degrees, while the values of the flexural strength must be larger for higher infill degrees.

Figure 2 depicts the tensile strength and flexural strength, measured for PLA, using different
infill degrees and orientations. The infill pattern is “rectilinear”, i.e., even lines are printed in the
not completely filled area (cf. Table 1), oriented rectangularly in consecutive layers, with the angles
between printed lines and the perimeter being either +45◦/−45◦ or 90◦/0◦.

For the tensile strength, both of the sets of samples with 100% infill degree reach approximately
the value of the original filament, which can be assumed to be the maximum possible value. This
means that during the 3D printing process, the same adhesion between the neighboring printed lines
within one layer are reached as in the filament extrusion process. For lower infill values, the tensile
strengths are reduced, which can be explained by the open parts in the inner layers that prevent
the intra-layer adhesion. Instead, only lines printed in consecutive layers adhere to each other in
small areas.

For the flexural strength, a typical lightweight construction effect becomes visible—the samples
printed with 60% infill degree show significantly more than 60% of the maximum flexural strength
reached with 100% infill degree. The difference between 20% and 60% is even smaller.
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Figure 2. Results of tests on common poly (lactide acid) (PLA), three-dimensional (3D) printed with 
different infill degrees and orientations: (a) Tensile strengths for the different specimens and the 
original filament; (b) Flexural strengths for the different specimens. 

For the flexural strength, a typical lightweight construction effect becomes visible—the samples 
printed with 60% infill degree show significantly more than 60% of the maximum flexural strength 
reached with 100% infill degree. The difference between 20% and 60% is even smaller. 

It should be mentioned that while the flexural strength is mostly similar to or slightly higher 
than the tensile strength of a specimen, it is not unusual to find values of the flexural strength 
significantly higher than the tensile strength, e.g., for 3D printed PLA objects with and without 
carbon fiber reinforcement [27]. 

While PLA is only depicted here as a benchmark, the Magnetic Iron filament already contains 
an amount of metal that influences the mechanical properties as well as the masses of these samples. 
While the masses are increased, as compared to PLA samples, by a factor of approximately 1.58, the 
mechanical properties are depicted in Figure 3. Here, the tensile strength of the filament is not 
completely reached by the 3D printed test specimens, indicating that the adhesion within one 
printed layer is not perfect and can probably be marginally increased by modifications of the 
printing parameters. This results in a slightly reduced tensile strength, when compared to pure PLA. 
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Figure 3. Results of tests on Magnetic Iron, 3D printed with different infill degrees and orientations: 
(a) Tensile strengths for the different specimens and the original filament; (b) Flexural strengths for 
the different specimens. 

In the flexural strength, opposite to pure PLA, differences between both infill orientations 
become visible, with the 45° orientation always showing slightly higher values. Additionally, 

Figure 2. Results of tests on common poly (lactide acid) (PLA), three-dimensional (3D) printed with
different infill degrees and orientations: (a) Tensile strengths for the different specimens and the original
filament; (b) Flexural strengths for the different specimens.

It should be mentioned that while the flexural strength is mostly similar to or slightly higher than
the tensile strength of a specimen, it is not unusual to find values of the flexural strength significantly
higher than the tensile strength, e.g., for 3D printed PLA objects with and without carbon fiber
reinforcement [27].

While PLA is only depicted here as a benchmark, the Magnetic Iron filament already contains
an amount of metal that influences the mechanical properties as well as the masses of these samples.
While the masses are increased, as compared to PLA samples, by a factor of approximately 1.58,
the mechanical properties are depicted in Figure 3. Here, the tensile strength of the filament is
not completely reached by the 3D printed test specimens, indicating that the adhesion within one
printed layer is not perfect and can probably be marginally increased by modifications of the printing
parameters. This results in a slightly reduced tensile strength, when compared to pure PLA.
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Figure 2. Results of tests on common poly (lactide acid) (PLA), three-dimensional (3D) printed with 
different infill degrees and orientations: (a) Tensile strengths for the different specimens and the 
original filament; (b) Flexural strengths for the different specimens. 
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Figure 3. Results of tests on Magnetic Iron, 3D printed with different infill degrees and orientations: 
(a) Tensile strengths for the different specimens and the original filament; (b) Flexural strengths for 
the different specimens. 

In the flexural strength, opposite to pure PLA, differences between both infill orientations 
become visible, with the 45° orientation always showing slightly higher values. Additionally, 

Figure 3. Results of tests on Magnetic Iron, 3D printed with different infill degrees and orientations:
(a) Tensile strengths for the different specimens and the original filament; (b) Flexural strengths for the
different specimens.
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In the flexural strength, opposite to pure PLA, differences between both infill orientations become
visible, with the 45◦ orientation always showing slightly higher values. Additionally, opposite to PLA,
all of the samples broke during the test, while PLA samples only showed stress whitening. The values
reached here are significantly reduced in comparison with pure PLA, indicating that the inter-layer
adhesion is also reduced, resulting in smaller forces necessary to deflect the samples.

Next, Figure 4 depicts the results of the Bronzefill measurements. Here again, the value of the
filament is not reached in the tensile tests of the 3D printed specimens, nor do the samples with 100%
show infill a higher tensile strength than those with reduced infill degrees.

In the flexural strength, the ratio of the values at different infill degrees is similar to those measured
for the other two filaments, here not showing any significant difference between 45◦ and 90◦ orientation.
Bronzefill samples never broke in bending tests.
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explained by the missing cohesive bonds inside the PLA matrix due to embedment of metal particles.  
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strength is also higher than the approximately 12% metal content, but the effect is less severe than  
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In the next test, different infill patterns are compared for samples printed with 20% infill degree 
and 45° infill orientation. Figure 5 depicts the results. Unexpectedly, the rectilinear pattern—which is 
printed fastest-results in the highest tensile strength for all materials. Honeycomb (cf. Table 1)—which 
is often regarded as the most stable one—shows slightly reduced values, followed by Hilbert, which 
is known to be relatively unstable. The latter is built like a labyrinth with 90° corners after a few 
millimeters, identical for all of the layers (cf. Table 1). Both honeycomb and Hilbert patterns do not 
include straight lines connecting the outer shells, opposite to the rectilinear pattern, which is 
considered to be the reason for their reduced tensile strengths. 

Figure 4. Results of tests on Bronzefill, 3D printed with different infill degrees and orientations:
(a) Tensile strengths for the different specimens and the original filament; (b) Flexural strengths for the
different specimens.

Generally, tensile and flexural strengths are significantly reduced, when compared to pure PLA or
even Magnetic Iron, by a factor of 2–3. These factors are higher than expected due to the amount of
approximately one third of the polymer, which is exchanged by metal. However, this can be explained
by the missing cohesive bonds inside the PLA matrix due to embedment of metal particles.

For Magnetic Iron, the discrepancy between the percentaged loss of tensile and flexural strength
is also higher than the approximately 12% metal content, but the effect is less severe than for Bronzefill.

In the next test, different infill patterns are compared for samples printed with 20% infill degree
and 45◦ infill orientation. Figure 5 depicts the results. Unexpectedly, the rectilinear pattern—which is
printed fastest-results in the highest tensile strength for all materials. Honeycomb (cf. Table 1)—which
is often regarded as the most stable one—shows slightly reduced values, followed by Hilbert, which
is known to be relatively unstable. The latter is built like a labyrinth with 90◦ corners after a few
millimeters, identical for all of the layers (cf. Table 1). Both honeycomb and Hilbert patterns do
not include straight lines connecting the outer shells, opposite to the rectilinear pattern, which is
considered to be the reason for their reduced tensile strengths.
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Figure 5. Results of tests on the three materials under examination, 3D printed with different infill 
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Figure 5. Results of tests on the three materials under examination, 3D printed with different
infill patterns: (a) Tensile strengths for the different specimens; (b) Flexural strengths for the
different specimens.

A different result is found in the flexural strength. Here, the three infill patterns give nearly
identical results. The honeycomb pattern—which is often used in lightweight construction—is never
significantly advantageous in comparison to rectilinear and Hilbert filling patterns.

Apparently, the choice of the infill pattern has to be based on the planned application, with
the rectilinear pattern having better tensile properties, while under bending all of the patterns show
similar strength.

In further experiments, different printing temperatures were tested, with temperatures of
200 ◦C/210 ◦C/220 ◦C chosen for PLA and Magnetic Iron, while Bronzefill was printed with
220 ◦C/230 ◦C/240 ◦C, since 220 ◦C was the lowest temperature at which it could be printed reliably.

Opposite to the findings described in References [14,15], no significant influence of the nozzle
temperature is visible in Figure 6; only a slight increase of PLA tensile strength and a slight decrease of
Magnetic Iron and Bronzefill flexural strength with increasing printing temperature can be recognized.
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Finally, the influence of the nozzle diameter was examined. Besides the usual nozzle diameter of
0.4 mm and the also commercially available diameter of 0.25 mm, a nozzle was modified to have a
diameter of 1.0 mm. Figure 7 depicts the results. For the smallest nozzle diameter, the tensile strengths
of all of the materials are lower than for the 0.4 mm nozzle. Unexpectedly, PLA and Magnetic Iron
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show identical values for both tensile and flexural strength. This may be explained by the high printing
quality of Magnetic Iron, without any deviations from the desired infill pattern, while for PLA, small
printing errors were visible during the infill printing process.

For the largest nozzle, PLA shows slightly higher tensile strength than for the usual diameter,
while the other filaments perform best with the middle nozzle. This may be explained by the pure
PLA necessitating lower temperatures to flow regularly, combined with a temperature gradient in
the unusually large nozzle, resulting in potentially too low temperatures in the middle of the nozzle,
which may be more problematic for the hybrid materials. On the other hand, the smallest nozzle will
probably produce a less regular material flow due to sporadic choking.

In the flexural strength, the standard nozzle diameter of 0.4 mm results in the best values, as can
be expected from the arguments above.

Materials 2017, 10, 1199  7 of 13 

 

For the largest nozzle, PLA shows slightly higher tensile strength than for the usual diameter, 
while the other filaments perform best with the middle nozzle. This may be explained by the pure 
PLA necessitating lower temperatures to flow regularly, combined with a temperature gradient in 
the unusually large nozzle, resulting in potentially too low temperatures in the middle of the nozzle, 
which may be more problematic for the hybrid materials. On the other hand, the smallest nozzle will 
probably produce a less regular material flow due to sporadic choking. 

In the flexural strength, the standard nozzle diameter of 0.4 mm results in the best values, as can 
be expected from the arguments above. 

0.25 mm 0.4 mm 1.0 mm
0

20

40

60
 PLA
 Magnetic Iron
 Bronzefill

Nozzle diameter

T
e

n
si

le
 s

tr
e

n
g

th
 (

M
P

a
)

0.25 mm 0.4 mm 1.0 mm
0

20

40

60

80

100  PLA
 Magnetic Iron
 Bronzefill

 Nozzle diameter

F
le

xu
ra

l s
tr

en
gt

h 
(M

P
a
)

(a) (b)

Figure 7. Results of tests on the three materials under examination, 3D printed with different nozzle 
diameters: (a) Tensile strengths for the different specimens; (b) Flexural strengths for the different 
specimens. 

To understand these effects on a microscopic scale, microscopic and confocal laser scanning 
microscope (CLSM) images were taken. The CLSM images depicted in Figure 8 show that PLA has a 
smooth, even, and homogeneous surface structure. In Magnetic Iron, the metal particles are clearly 
visible at the sample surface. The bronze particles included in the Bronzefill filament seem to have a 
broader diameter distribution; the black area near the middle of Figure 8c shows a region where 
probably a bronze sphere is already abraded. 

 
(a) (b) (c) 

Figure 8. Confocal laser scanning microscope (CLSM) images of (a) PLA; (b) Magnetic Iron; and  
(c) Bronzefill specimens after 3D printing. 

In Figure 9, the cross-sections of specimens after tensile tests are visible. For PLA and Magnetic 
Iron, all of the broken lines of the infill area show a diminution next to the break, which is not visible 
in the completely filled top and bottom areas. Apparently, failure starts with a visible elongation in 
the infill area, while the lines in top and bottom areas are too strongly connected for being elongated 
and at the same time reduced along their radii. While Magnetic Iron already shows a higher 
irregularity of the infill lines, as compared to PLA, this effect is further increased for Bronzefill. 
Additionally, the distribution of the bronze particles is quite inhomogeneous. Such inhomogeneities 
will result in some areas being less strong—i.e., containing less polymer material and more 

Figure 7. Results of tests on the three materials under examination, 3D printed with different
nozzle diameters: (a) Tensile strengths for the different specimens; (b) Flexural strengths for the
different specimens.

To understand these effects on a microscopic scale, microscopic and confocal laser scanning
microscope (CLSM) images were taken. The CLSM images depicted in Figure 8 show that PLA has a
smooth, even, and homogeneous surface structure. In Magnetic Iron, the metal particles are clearly
visible at the sample surface. The bronze particles included in the Bronzefill filament seem to have
a broader diameter distribution; the black area near the middle of Figure 8c shows a region where
probably a bronze sphere is already abraded.
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In Figure 9, the cross-sections of specimens after tensile tests are visible. For PLA and Magnetic
Iron, all of the broken lines of the infill area show a diminution next to the break, which is not visible
in the completely filled top and bottom areas. Apparently, failure starts with a visible elongation in the
infill area, while the lines in top and bottom areas are too strongly connected for being elongated and
at the same time reduced along their radii. While Magnetic Iron already shows a higher irregularity
of the infill lines, as compared to PLA, this effect is further increased for Bronzefill. Additionally,
the distribution of the bronze particles is quite inhomogeneous. Such inhomogeneities will result in
some areas being less strong—i.e., containing less polymer material and more bronze—than others,
becoming the “weak links” in the whole sample. This explains the small tensile and flexural strengths
measured for all Bronzefill samples.
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Figure 9. Microscopic images of specimens after tensile tests, prepared from (a) PLA; (b) Magnetic
Iron; and (c) Bronzefill.

Figure 10 depicts digital microscope images of bending specimens. For PLA, failure occurs via
a superposition of delamination between different layers and breaks of layer bundles. According to
Figure 9a, this can be explained by the relatively small contact areas and thus weak links between
consecutive layers especially in the infill area.
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Figure 10. Microscopic images of specimens after bending tests, prepared from (a) PLA; (b) Magnetic
Iron; and (c) Bronzefill.

For Magnetic Iron, no sample showed delamination; instead one progressing break line is visible.
Along the line, stress whitening can be recognized. This can be understood since in Figure 9b, the
contact areas between neighboring infill lines seem to be larger due to the uneven, “smeared” geometry
of the single lines, reducing the danger of delamination. At the same time, the mechanical strength
of each line is reduced due to the included metal particles. Both effects, taken together, result in a
modified failure mechanism when compared to PLA.

Bronzefill, finally, shows several stress whitening lines surrounding the progressing break line.
The large amount of metal in this material leads to a high elongation at break (Figure 1a), which results
in Bronzefill specimens never breaking during bending tests.
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In addition to the tensile strength and the flexural strength, the measurements performed in this
study also allow for calculating the elastic modulus and the flexural modulus. However, as it could
already be assumed from Figure 1, these values describing the elastic deformation of the specimens
are quite similar for all of the materials and are nearly identical for the specimens produced with
the same material using different printing parameters. The elastic and the flexural modulus are only
significantly reduced for all of the samples printed with the small nozzle, which is similar to the
finding that tensile and flexural strength are significantly reduced in this case, too.

Instead, chain mail structures were printed with the three filaments, as depicted in Figure 11a.
These structures are slightly flexible due to the interconnected chain links. They were printed without
the support structure. While the pure PLA chain mail structure (green) could easily be untightened by
carefully breaking the undesired connections between the single chain links, this process was harder
and needed more time for the Bronzefill sample since the latter material tends to “smearing” and
forming undesired additional connections.

The tensile tests resulted in broken sub-structures at low forces (Figure 11b); this approach did
not lead to the desired force distribution between large numbers of small sub-structures. As visible in
Figure 11b, failure happened along the thinnest parts of the single chain links. Instead of making the
structure stronger by creating a larger area, the weak links in this structure break easily, as compared
with the compact tensile and bending test samples.
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80 mm.

3. Discussion

Our experimental results give rise to the influence of different material and printing parameters
on the mechanical properties of polymer-metal hybrid FDM-printed objects.

When comparing pure PLA with the PLA blends Magnetic Iron (46% metal) and Bronzefill (78%
metal), the results revealed higher tensile and flexural strengths than expected due to the polymer
fractions of these materials.

No significant influence could be measured for the filling pattern or the printing temperature.
The nozzle diameter, on the other hand, clearly influenced the mechanical properties of the specimens,
with the custom nozzle diameter of 0.4 mm being ideal in most cases.

Comparing the tensile strengths of the 3D printed materials with the values of the pure filaments
showed for PLA and Magnetic Iron nearly no difference, indicating that the 3D printing process results
in ideal inter- and intra-layer adhesion. For Bronzefill, a significant difference between the values of
the filament and the 3D printed objects is visible, showing that for this filament the printing process
can still be optimized.
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Especially for Bronzefill with its relatively high amount of metal particles, the interfacial adhesion
between PLA and metal plays an important role. While the influence of printing parameters on the
mechanical properties of the resulting specimens has been studied for pure polymers [28,29], no reports
about the mechanical properties of metal-polymer samples were found in the literature. Nevertheless,
PLA is sometimes blended with silver nanowires to increase conductivity [30] or metal-organic
frameworks to increase also the mechanical properties of the resulting nanocomposites [31]. This
shows that including significantly smaller metal particles, most probably in the form of nanofibers, may
even support the mechanical properties of 3D printed objects. While nowadays commercially available
FDM polymers are either blended with almost round metal particles or carbon fibers/graphene
sheets, combining metallic properties with fiber shapes may introduce new mechanical and also
electrical properties.

Here, however, the interfacial adhesion is apparently significantly reduced in comparison with the
adhesion inside the pure polymer. This can be recognized from Figure 9c. Here, the base layers show a
significantly different color than the other layers along the break. Keeping in mind that the average
ratio of metal in Bronzefill is 36 vol %, this ratio corresponds approximately to the visible amount of
metal particles in the lower layers of the Bronzefill sample. In all of the upper layers, however, the
fracture plane seems to consist nearly purely of metal. This can be explained as follows: while TGA
measurements have revealed that the metal fraction in the filament changes only by approximately
2 wt %, comparing different areas or the filament, on smaller scales variations of the metal content occur
during printing. In the lower layers, which are completely filled, these metal agglomerations are not
critical. In the upper layers, especially in the relatively open infill area with only few contacts between
the printed lines, each line can break at the weakest point, which is where most metal is agglomerated.

This effect also explains why only for Bronzefill there is a significant different between the tensile
strengths of the filament and the printed samples. Apparently for Bronzefill, another printing strategy
has to be chosen as for pure PLA, i.e., printing should be performed creating as densely filled specimens
as possible to avoid disproportionately high decrease of the mechanical properties with an increase
of the metal content. On the other hand, increasing the metal-polymer interface adhesion would
significantly increase the mechanical properties of such hybrid printing material and should thus be
investigated in the future.

Generally, while FDM printing of polymer-metal hybrid materials can not be expected to result in
objects as strong as pure polymers or even metals, this study shows that small metal concentrations
can be embedded into a polymer filament, resulting in magnetic, conductive, optic, or other desired
properties, without severely decreasing the tensile and flexural properties. As an example, Figure 12
shows the effects that can be created with the Bronzefill sample by polishing it in different manners.
Tests were performed on bending test specimens (Figure 12a) and chain mail samples (Figure 12b).
The first ones were polished using a steel brush, showing a slight increase of gloss (middle specimen in
Figure 12a) as compared to the original sample (left specimen in Figure 12a). Additionally, a bending
specimen was polished by inserting it into a rotating drum filled with small screws; this resulted in
higher gloss (right specimen in Figure 12a). The chain mail samples were damaged by the steel brush
and thus only polished with the rotating drum. Figure 12b shows the difference between the original
sample (left specimen) and the polished one (right specimen). Here, the increased gloss due to the
polishing process is clearly visible.
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the dimensions and shapes of the integrated metal particles, and testing material combinations of 
polymers with high and metals with low melting points, possibly allowing for extending the recent 
polymer extrusion to a polymer-metal co-extrusion technology.  

Figure 12. Example of Bronzefill samples: (a) Bending test specimens without polishing (left), polished
with a steel brush (middle) and by inserting the specimen in a rotating drum filled with small screws
(right), sample widths of 10 mm; (b) Chainmail (for an overview image, cf. Figure 11) before (left
sample) and after polishing in a rotating drum (right sample), chain link width of 12 mm.

Future research should concentrate on optimizing the polymer-metal interface adhesion,
modifying the dimensions and shapes of the integrated metal particles, and testing material
combinations of polymers with high and metals with low melting points, possibly allowing for
extending the recent polymer extrusion to a polymer-metal co-extrusion technology.

Additionally, due to the possibility to combine PLA based FDM polymers with textile materials,
combining filaments with high amounts of metal should be tested with respect to possible stabilization
(i.e., increase of tensile and flexural strength) of the samples. Especially in combination with the
shape-memory properties of PLA, this might allow for using metal-polymer hybrid materials in
applications with higher mechanical stress.

4. Materials and Methods

For 3D printing, the FDM printer Orcabot XXL (Prodim, Helmond, The Netherlands) was used.
The printing parameters are depicted in Table 1, with the standard parameters (which were used if not
mentioned otherwise) marked with light-grey background.

The filament materials used here were PLA, Magnetic Iron (Proto-pasta, Vancouver, WA, USA),
and Bronzefill (Colorfabb, Belfeld, The Netherlands), all were purchased from Filamentworld,
Neu-Ulm/Germany.

Since the Bronzefill filament could not be printed using temperatures below 220 ◦C, here the
temperature dependence was examined using higher temperatures.

The layer thickness was chosen as half the nozzle diameter, i.e., layers printed with 0.25 mm
nozzle diameter had a thickness of 0.125 mm, etc. The width of each printed line corresponded with
the nozzle diameter.

The thickness of the complete top and bottom layers was left nearly equal for all three of the
nozzle diameters, i.e., four layers with 0.125 mm height each for the 0.25 mm nozzle, two layers with
0.2 mm height for the 0.4 mm nozzle, one layer with 0.5 mm height for the 1 mm nozzle. Similarly, the
numbers of perimeters were set to the value of approximately 0.8 mm for all three nozzles.
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Table 1. Printing parameters used in this study. Marked values were used as standard values. Infill
patterns from [32].

Parameter Value 1 Value 2 Value 3

Nozzle diameter 0.25 mm 0.4 mm 1 mm
Infill degree 20% 60% 100%

Infill orientation 45◦ - 90◦

Infill pattern Rectilinear Honeycomb Hilbert curve

Sketch of infill pattern
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Printing temperature (PLA, Magnetic Iron) 200 ◦C 210 ◦C 220 ◦C
Printing temperature (Bronzefill) 220 ◦C 230 ◦C 240 ◦C

Printing bed temperature - 60 ◦C -
Thickness of complete layers (top/bottom) - 0.45–0.5 mm -

Thickness of complete perimeters - 0.8–1.0 mm -

Measurements of the tensile strength and the flexural modulus were performed using a
Sauter universal testing instrument. Dimensions and measurement parameters of the tensile and
bending specimens were defined according to EN ISO 527-1:2012 (tensile strength) and ISO 178
(flexural strength). The stl file for printing the specimens for the tensile tests was created by Piotr
Cichalewski [33], the stl file for printing the chain mail was generated by Itai Nahshon [34].

TGA measurements were performed on a Hi-Res TGA 2950 Thermogravimetric Analyzer (TA
Instruments, New Castle, DE, USA). Samples of approximately 25 mg were cut from the untreated
filaments. The samples were then heated to 450 ◦C in nitrogen and to 500 ◦C in synthetic air at a
constant heating rate of 30 ◦C/min. The remaining mass of the sample corresponds to the metal
fraction of the hybrid filament.

Images of sample surfaces and fracture areas were taken using a digital microscope VHX-600D
with a nominal magnification of 50× and a confocal laser scanning microscope (CLSM) VK-9000 with
a nominal magnification of 2000×. Both microscopes are from Keyence, Neu-Isenburg, Germany.
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