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Abstract: Colored waterborne polyurethanes have been widely used in paintings, leathers, textiles,
and coatings. Here, a series of black waterborne polyurethanes (WPUs) with different ratios of
black dye, Sudan Black B (SDB), were prepared by step-growth polymerization. WPU emulsions as
obtained exhibit low particle sizes and remarkable storage stability at the same time. At different
dye loadings, essential structural, statistical and thermal properties are characterized. FTIR (fourier
transform infrared) spectra indicate that SDB is covalently linked into waterborne polyurethane
chains. All of the WPUs with covalently linked SDB show better color fastness and resistance of
thermal migration than those with SDB mixed physically. Besides, WPUs incorporated SDB covalently
with different polymeric diols, polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG),
poly-1, 4-butylene adipate glycol (PBA) and polycaprolactone glycol (PCL), were prepared to obtain
different properties to cater to a variety of practical demands. By a spraying method, the black WPUs
can be directly used as metal coatings without complex dyeing process by simply mixing coating
additive and other waterborne resins, which exhibit excellent coating performance.
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1. Introduction

Recently, colored polymeric dyes, especially back dyes, have been widely used in textiles, ink,
coatings, leathers and photoelectric materials [1–6]. Generally, the strategy on developing polymeric
dyes is usually to physically mix micromolecular dyes with polymeric matrices by ionic bonds,
hydrogen bonds or Van der Waals force. However, there is a thorny problem that, with time elapsing,
the dyes may migrate and aggregate, leading to color fading of materials due to the noncovalent bond
interaction between matrices and dyes. Moreover, plenty of black dyes containing benzidine groups
have a potential risk to humans and environment [7–9]. Therefore, low-toxic and environmentally
friendly materials are of great importance.

An effective method to solve the problem is to chemically link micromolecular dyes to polymeric
main chains [10,11] or side chains [12] by various chemical reactions. Generally speaking, polymeric
dyes are safe and nontoxic for humans because they cannot be absorbed by skin owing to their large
molecular dimension, excellent chemical and thermal stability. Moreover, polymeric dyes with tunable
molecular structures exhibit great compatibility and strong binding force with fibers. In the past
decades, many researchers have been devoted to investigating polymeric dyes. For example, in the
1980s, Marechal et al. studied systemically on polymeric dyes for the first time [13–15]. Recently,
many polymeric dyes have been prepared by incorporating chromophores into common polymeric
materials, such as polyacrylates, polyethlene, polyamide and polymaleic acid, to enlarge the application
fields [12,16–19]. Waterborne polyurethanes (WPUs) as a kind of highly versatile polymeric material
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with excellent environment-friendly and low-toxic properties have been widely used as coatings,
leathers, adhesives, and paints [20–22]. By a facile polycondensation reaction, a lot of colored WPUs
are developed by chemically incorporating micromolecular dyes into polyurethane matrices, which
could show great migration resistance and color fastness while not obviously changing the intrinsic
characteristic of the polymer materials [23–26]. However, there are few of reports on black dyes
because of incomplete purity of black for purely organic dyes.

Here, A series of novel black WPU dyes with different ratios of black dye, Sudan Black B (SDB),
were prepared by polycondensation reaction, which exhibit good migration resistance, storage stability
and heat resistance, while, at the same time, not causing significant aggregation/phase separation
between micromolecular dyes and WPU matrices. Besides, Black WPUs with different polymeric diols
are also investigated serving as black metal coatings, which exhibit excellent coating performance.

2. Experimental

2.1. Materials

Isophorone diisocyanate (IPDI) was purchased from Bayer Co., Ltd. (Leverkusen, Germany)
Polytetramethylene ether glycol (PTMG, Mn = 2000) and polypropylene glycol (PPG, Mn = 2000) were
supplied by Mitsubishi Co., Ltd. (Tokyo, Japan). Poly-1,4-butylene adipate glycol (PBA, Mn = 2000)
was obtained from Qingdao Xinyutian Chemical Co., Ltd. (Qingdao, China). Polycaprolactone
glycol (PCL, Mn = 2000) was supplied by Daicel Corporation (Kobe, Japan). All of the glycols were
thoroughly dehydrated at 110 ◦C before use. 2, 2-dimethylolpropionic acid (DMPA) and Sudan black
B (SDB, C.I.26150) were purchased form Aladdin Reagent Co., Ltd. (Shanghai, China). 1,4-Butanediol
(BDO), Dibutyltin dilaurate (DBTDL), triethylamine (TEA), were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Hefei, China). BYK-025 and BYK-331 were acquired from BYK-Chemie GmbH Co.,
Ltd. (Wesel, Germany). ACRYSOLTM RM-8W was provided by Rohm&Haas Co., Ltd. (Philadelphia,
America). Other reagents were obtained from Energy Reagent Co., Ltd. (Shanghai, China), and used
as received.

2.2. Methods

Fourier transform infrared (FTIR) spectra were recorded on a Bruker Tensor27 FTIR spectrometer
(Bruker Co., Ltd., Karlsruhe, Germany) in the range of 4000–500 cm−1 using the thin WPU films (less
than 20 µm in thickness) prepared by coating SDB-WPU emulsions on a potassium bromide (KBr)
flake and then evaporating water by heating under an infrared lamp.

Ultraviolet-visible (UV-vis) spectra of SDB and WPU dispersion were measured by UV-3600
spectrophotometer (Shimadzu Co., Ltd., Kyoto, Japan) in dimethylformamide (DMF) and water at
298 K. UV-vis spectra of WPU films were recorded on UV-vis-NIR spectrometer (Shimadzu Co., Ltd.,
Kyoto, Japan) ranging from 240 nm to 1200 nm at 298 K.

Dynamic light scattering (DLS): The particle size distribution of WPU emulsion were carried out
on a Zetasizer Nano ZS-90 (Malvern Co., Ltd., Worcestershire, the United Kongdom) by dynamic light
scattering (DLS) at room temperature.

Gel permeation chromatography (GPC) analyses were investigated by a Waters GPC instrument
system (Waters Co., Ltd., Milford, Massachusetts, America) and calibrated with linear polystyrene,
at a constant column temperature of 35 ◦C using tetrahydrofuran (THF) as eluent with a flow rate of
0.6 mL/min.

Differential scanning calorimetric (DSC) curves were recorded via a Mettler-Toledo DSC
(Mettler-Toledo Co., Ltd., Zurich, Switzerland) at a constant heating rate of 10 ◦C/min from −65 ◦C
–180 ◦C under N2 atmosphere.

Thermogravimetric analysis (TGA) curve was collected by Shimadzu TGA-50 (Shimadzu Co.,
Ltd., Kyoto, Japan) under N2 atmosphere at a constant heating rate of 10 ◦C/min from 25 ◦C to 700 ◦C.
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WPU films were prepared by pouring WPU emulsions onto some polytetrafluoroethylene panels,
and the panels were left at 25 ◦C for 48 h to obtain a series of homogeneous thin films with a thickness
of 1 mm. The as obtained films were characterized without further annealing process.

The migration ratio (Mp) was used to evaluate migration resistance of SDB-WPU. A glass plate
was coated with SDB-WPU latex to form uniform film and divided into two areas (Area A and Area B),
as shown in Scheme 1. Area A was clamped by a watch glass tightly, while Area B was exposed to
the air. Then, the glass plate was kept at 60 ◦C for 24 h. The films in Area A and Area B were selected
and dissolved into DMF at the same concentration and the absorbance was measured by UV-3600
spectrophotometer. Mp was calculated using the followed formula:

Mp = [(AmaxB − AmaxA)/AmaxA] × 100% (1)

where AmaxA and AmaxB are the maximum absorbance (Amax) of the SDB-WPU in DMF in Area A and
Area B, respectively.
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Scheme 1. Evaluation model for thermal migration of the dye.

Preparation of the black coatings: SDB-WPU, defoamer, thickener, leveling agent and deionized
water were added into a dispersion machine. After stirring at high speed until a well-blended latex
forms and then being left to stand for 30 min, the latex was sprayed on the surface of steel plate and
kept at 100 ◦C for 20 min.

The physical properties of the SDB-WPU black coatings were evaluated according to standard test
methods (impact strength GB/T 1732-93, Gloss GB/T 1743-89, adhesion force GB/T 1720-89, pencil
hardness GB/T 6739-2006, and water resistance GB/T 23999-2009).

2.3. Synthesis of SDB-WPUs

The preparation processes of SDB-WPUs are shown in Scheme 2. IPDI and PTMG (Mn = 2000)
were added to a three-neck round-bottom flask (specific mass ratios are presented in Table 1). Then, the
mixture was heated at 90 ◦C for 2 h under an N2 atmosphere (NCO content was determined using a
standard di-n-butylamine titration test method [27]). Subsequently, the mixture was cooled down to
80 ◦C; a specified amount of DMPA was added; and it was again heated to 80 ◦C for approximately 2 h
until the content of the NCO group in the mixture reached the expected theoretical value. The calculated
amounts of BDO and SDB were added at 70 ◦C and allowed to react for 4 h with a trace amount of
DBTDL (0.05–0.1 wt %) as a catalyst. A moderate amount of acetone was required at this stage to
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reduce the viscosity in the course of polymerization (the weight ratio of prepolymer and acetone is 7:3).
TEA as a neutralization agent (neutralization ratio is 100%) was added at 40 ◦C to react with carboxyl
group for 5 min to form a NCO-terminated WPU prepolymer (the molar ratio of –NCO and –OH is
around 1–1.1). Finally, specific deionized water was poured into the mixture with the shearing rate
of 3000 r/min to form WPU emulsion. A black aqueous dispersion was obtained after the acetone
was removed from the WPU emulsion using a rotary evaporator in vacuum. The solid content of the
obtained WPU emulsion was approximately 30 wt %. By this method, a series of SDB-WPUs were
synthesized, as illustrated in Table 1.
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Table 1. The specific ratio of each component in SDB-WPUs (Sudan Black B-waterborne polyurethanes).

Sample Polymeric
Diol

Polymeric
Diol /g IPDI /g DMPA /g SDB /g BDO /g SDB

(wt %)

SDB-WPU1 PTMG 25 12 2.3 0.42 1.8 1%
SDB-WPU2 PTMG 25 12 2.3 0.83 1.7 2%
SDB-WPU4 PTMG 25 12 2.3 1.7 1.55 4%
SDB-WPU6 PTMG 25 12 2.3 2.6 1.4 6%

SDB-WPU-PTMG PTMG 25 12 2.3 0.83 1.7 2%
SDB-WPU-PPG PPG 25 12 2.3 0.83 1.7 2%
SDB-WPU-PCL PCL 25 12 2.3 0.83 1.7 2%
SDB-WPU-PBA PBA 25 12 2.3 0.83 1.7 2%

3. Results and Discussion

3.1. UV-Vis Spectra of SDB

Sudan black B (SDB) is a highly coloration-efficient and cost-effective dye, with high
molar absorptivity. The UV-vis spectra of SDB with different concentrations are measured in
N, N-dimethylformamide (DMF). As Figure 1a shows, SDB has an almost total absorption in the
visible region with an intense absorbance around 621 nm and a minor absorbance centered at 428 nm,
indicating that SDB solutions are nearly blue-black in dilute solution. Obviously, the maximum
absorbance (Amax) at 621 nm intensifies from 0.159 to 1.235 as the concentration of SDB in DMF
increases from 2 mg/L to 20 mg/L (Figure 1b), which lines up with Beer-Lambert Law that can be
used to calculate the SDB concentration in SDB-WPU.
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Figure 1. (a) UV-vis absorption spectra of SDB (Sudan Black B) with different dye concentrations
in DMF (dimethylformamide). (b) The linear relationship of the Amax (621 nm) with different
dye concentration.

3.2. Structural Analysis of SDB-WPUs

SDB-WPUs were synthesized from the reaction between –NH/–OH and –NCO groups according
to previously reported polycondensation reaction (Scheme 2) [20,28]. Briefly, there are two main
steps in the course of polymerization. One is the reaction of diols and diisocyanates to obtain
prepolymers containing SDB. The other is the emulsifying process of the prepolymers with a high
shear speed after trimethylamine is added. Figure 2 shows the FTIR spectra of SDB-WPUs with
different ratios of SDB (0–6%). Compared to WPU without SDB (WPU0), the characteristic absorption
peak at 1595 cm−1 (N=N) appears and enhances with increasing SDB loadings. Meanwhile, the
representative N–H vibration at 3430 cm−1 disappears in all of the WPU films, suggesting that SDB
has been covalently linked to the WPU chains. Other characteristic absorption peak assignments for
SDB-WPUs include: 3325 cm−1 (νNH), 2860 cm−1 and 2940 cm−1 (νCH2 and νCH3), 1701 cm−1 (νC=O),
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1240 cm−1 (νC–O in carbamate group) and 1110 cm−1 (νC–O–C in PTMG), indicating that SDB-WPUs
were synthesized successfully.
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Figure 2. FTIR spectra of SDB and SDB-WPU with various dye contents on KBr plates.

To further demonstrate that SDB is chemically linked to polymeric main chains, the investigation
on macroscopic migration of the SDB-WPU between water and solvent phases is conducted.
The alteration of the color in two phases is recorded by digital camera at different moments,
as illustrated in Figure 3. To water emulsion are added chloroform to illustrate whether SDB can be
extracted. As Figure 3 shows, after stirring, chloroform does not immediately turn black. However,
after 24 hours standing, there is no obvious change in chloroform with slight black, which are caused
by few SDB-WPUs transferring from water to organic phase. As we all know, SDB as micromolecular
dye has high mobility, which should migrate into water immediately after intense stirring because
SDB is hydrophobic. Therefore, the slight change in chloroform ascribed to migration of SDB-WPU is
reasonable, further indicating that SDB is covalently incorporated into WPUs. The mechanical stability
in Table 2 also suggests that SDB is reacted into WPUs due to no obvious alteration in emulsion state,
which means that no hydrophobic SDB aggregates precipitates after centrifugal sedimentation.
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Figure 3. Graphs of: SDB-WPU2 (a–d); and SDB+WPU (physical mix of 2 wt % SDB and pure WPU) (e)
migration between aqueous phase and CH3Cl phase at different moments (ts). (a) ts = 0 h; (b) ts = 6 h;
(c) ts = 12 h; (d) ts = 24 h; and (e) ts = 5 min.

3.3. Statistical Properties of SDB-WPUs

The specific ratio of each component is shown in Table 1. The particle diameters measured by
DLS of emulsions are shown in Table 2. All of the WPU dispersions exhibit tiny average particle size
(<50 nm). As the SDB ratio increases from 1% to 6%, the average particle size increases from 19.79 nm
to 43.32 nm, ascribed to the enhanced hydrophobicity of SDB-WPU due to multi-aromatic rings in SDB.
Besides, multi-aromatic structures and large size of SDB may prevent polymeric chains from entangling
to small radius. To the best of our knowledge, smaller particle sizes show better emulsion stability.
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After more than six months, the dispersion remains homogeneous without any precipitates (Table 2).
Moreover, there is no obvious change in emulsion state after 30 min centrifugation at 3000 r/min
(Table 2), which demonstrates that SDB-WPUs are mechanically stable.

Table 2. The various statistical properties of SDB-WPUs.

Sample Average
Particle Size

Storage
Stability

Mechanical
Stability Mn a PDI b

SDB-WPU1 19.79 nm Unchanged Unchanged 16,100 3.61
SDB-WPU2 21.38 nm Unchanged Unchanged 16,300 3.70
SDB-WPU4 41.69 nm Unchanged Unchanged 14,400 3.63
SDB-WPU6 43.32 nm Unchanged Unchanged 13,200 3.17

SDB-WPU-PTMG 21.38 nm Unchanged Unchanged 16,300 3.70
SDB-WPU-PPG 19.21 nm Unchanged Unchanged 16,000 2.79
SDB-WPU-PCL 13.40 nm Unchanged Unchanged 18,900 2.85
SDB-WPU-PBA 13.97 nm Unchanged Unchanged 17,400 2.67

a Number, average molecular weights of SDB-WPUs measured in THF; b Polydispersity index (Mw/Mn).

The molecular weight information of SDB-WPUs is characterized by gel-permeation
chromatography (GPC, Table 2). In Table 2, all of the SDB-WPUs show broad molecular weight
distributions with polydispersity indices around 2–4. It is worth noting that molecular weight
information of SDB-WPUs is not very reliable due to the presence of extremely polar carboxylate and
ammonium groups.

3.4. DSC and TG Analyses

Figure 4 shows the thermal properties of SBD-WPUs with different contents. From Differential
Scanning Calorimetry (DSC) curves (Figure 4a) (all of the samples were measured without the
elimination of the thermal history), a broad endothermic peak appears obviously in the range of
50–100 ◦C for all of the samples, which is not a typical glass transition, which usually shows a slope
between two platforms [29]. The broad peak is due to the disappearance of short-range ordered
structures in the hard segments [30]. There is a new endothermic peak around 125 ◦C for SDB-WPU6,
which is due to the damage of microcrystalline structures organized in the process of film formation.
Thermogravimetric (TG) analysis is shown in Figure 4b. All films show three thermal decomposition
courses. The slow descending slopes from the 80 to 250 ◦C due to the disappearance of small molecules
such as triethylamine and water. The steep slopes showing in the 250 ◦C–350 ◦C region are the
breakage of allophanate and carbamate bonds. The last stage appears in the 350 ◦C–460 ◦C region
where C–C bonds in the soft segment (PTMG) of WPUs decompose. It is noteworthy that SDB-WPU6
exhibits more clear decrease in the first decomposition stage. To make SDB-WPU6 (solid content is
~32%) disperse homogenously, more deionized water was added due to the incorporation of more
rigid and hydrophobic SDB compared to other samples. Therefore, there may be more residual water
in the film after being left at 25 ◦C for 48 h. With increasing SDB loadings, the maximum hard-segment
decomposition temperature rises from 306 ◦C to 314 ◦C by a derivative thermogravimetric analysis
(DTGA) (Figure 4c), which may be caused by more and more rigid phenyl rings in the hard segments,
while the maximum soft-segment decomposition temperature remains at 418 ◦C, indicating that there
is microphase separation to some extent between soft segments and hard segments.
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Figure 4. Thermal characterization of SDB-WPUs with various SDB contents via: DSC (a); TG (b); and
DTGA (c) measurements.

3.5. UV-Vis Spectra Analysis of SDB-WPUs

Figure 5 shows the UV-vis spectra of SDB-WPUs. Compared to the UV-vis spectra of pure SDB in
DMF solution, it is clearly found that, when SDB is introduced into the WPU chains, the maximum
absorption of SDB shifts from 623 nm to 603 nm, which likely results from the influence of conjugate
effect between aromatic amino in SDB and allophanyl in WPUs, which weakens electron-donating
ability of aromatic amino in SDB. It can be illustrated by dissolving SDB-WPU films in DMF solution,
in which maximum absorption wavelength is almost consistent with the SDB-WPU aqueous emulsion,
excluding the possible impact induced by the polarity of solvent. Figure 5b shows the UV-vis spectra
of SDB-WPU films. All of the SDB-WPU films exhibit complete, intense absorption in the visible region
in comparison to solution state, which is almost pure black, as observed by the naked eye.
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Figure 5. (a) UV-vis absorption spectra of SDB in DMF, SDB-WPU2 aqueous emulsion and SDB-WPU2
in DMF (blue) with the same concentration of SDB. (b) UV-vis absorption spectra of the SDB-WPU
films dispersed in BaSO4.

3.6. Analyses of SDB-WPUs with Different Polymeric Diols

To investigate the influence of soft segments on physical properties of black WPUs, different
polymeric diols (PTMG, PBA, PPG, PCL) are used to prepare WPUs with constant SDB content
(2%, wt/wt). All of the WPU emulsions show the particle diameters around 10–20 nm, suggesting
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the excellent dispersion, storage and mechanical stability (Table 2). All of the samples exhibit no clear
change after centrifuging for 30 min at 3000 r/min or sitting for six months.

The FT-IR spectra of WPUs with different polymeric diols are presented in Figure 6. Consistent
with the description above, SDB is covalently attached into WPU chains due to the disappearance of
N–H stretching vibration of SDB and the appearance of the representative N–H vibration at 3325 cm−1

in polyether-based WPUs (SDB-WPU-PTMG and SDB-WPU-PPG) and at 3350 cm−1 in polyester-based
WPUs (SDB-WPU-PCL and SDB-WPU-PBA). The differences between polyether-based WPUs and
polyester-based WPUs may be ascribed to their different microenvironments, such as the different
degree of microphase separation and amounts of hydrogen bonds. A similar phenomenon is presented
in stretching vibration of C=O (1730 cm−1 in polyester-based WPUs and 1701 cm−1 in polyether WPUs).
Other characteristic absorption peak assignments for SDB-WPUs with different polymeric diols are
similar to Figure 2: 2860 cm−1 and 2940 cm−1 (νCH2 and νCH3), 1240 cm−1 (νC–O in carbamate group)
and 1110 cm−1 (νC–O–C in soft segments), suggesting that SDB-WPUs were synthesized successfully.
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Figure 6. FT-IR spectra of SDB-WPUs with various polymeric diols on KBr plates.

The thermal properties of SDB-WPUs with various polymeric diols are characterized by DSC
and TG curves (Figure 7). Similar results line up with the discussion above. The difference
in DSC (Figure 7a) is that a typical endothermic peak appears at 40–50 ◦C in SDB-WPU-PCL
and SDB-WPU-PBA due to the melting of crystalline structure of the polyester in PCL and PBA.
There is a clear difference in third decomposition stage caused by different thermal resistance of
polymeric diols and degree of microphase separation (Figure 7b) [31–33]. According to the TG curves,
SDB-WPU-PTMG, with the highest starting and soft-segment decomposition temperatures, shows the
best thermal resistance, while SDB-WPU-PBA exhibits the poorest thermal resistance. The remaining
two kinds of WPUs have similar thermal resistances.

As we all know, dyes are physically mixed into polymeric coatings influenced by dispersants
in that dyes tend to migrate from the coatings interior to aggregate on the coatings surface due to
weak binding force. To evaluate the migration property of SDB-WPUs, the same experiments were
carried out with the sample formed by physically mixing WPU with SDB (WPU+SDB) as a control.
As provided in Table 3, Mp values of SDB-WPUs and WPU+SDB are 7%–8% and 31.0%, respectively,
manifesting that SDB-WPUs exhibit greater thermal-migration resistance than WPU+SDB. Shown in
Scheme 3 are the models of thermal migration of dye-doped WPU and dye-incorporated WPU. SDB
tends to migrate and aggregate to a certain area due to enhanced free volumes and weak binding
force (Scheme 3a), which may cause inhomogeneous color distribution. Migration process occurs in
both the interior and surface of SDB-WPU films. For example, SDB in the interior may migrate to
surface and then aggregate to an area in the surface leading to the inhomogeneity of black. However,
the mobility of SDB is confined due to the covalent binding of –NH in SDB and –NCO, resulting in
homogeneous dispersity of SDB in WPU. The black SDB-WPU obtained by covalent link with excellent
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migration-resistance property can be applied effectively in polyurethane coatings, while traditional
preparation method via mixing polyurethane resin with micromolecular dyes cannot easily achieve
such remarkable migration resistance.

Materials 2017, 10, 1247  9 of 13 

 

excellent dispersion, storage and mechanical stability (Table 2). All of the samples exhibit no clear 

change after centrifuging for 30 min at 3000 r/min or sitting for six months.  

The FT-IR spectra of WPUs with different polymeric diols are presented in Figure 6. Consistent 

with the description above, SDB is covalently attached into WPU chains due to the disappearance of 

N-H stretching vibration of SDB and the appearance of the representative N-H vibration at 3325 cm−1 

in polyether-based WPUs (SDB-WPU-PTMG and SDB-WPU-PPG) and at 3350 cm−1 in polyester-

based WPUs (SDB-WPU-PCL and SDB-WPU-PBA). The differences between polyether-based WPUs 

and polyester-based WPUs may be ascribed to their different microenvironments, such as the 

different degree of microphase separation and amounts of hydrogen bonds. A similar phenomenon 

is presented in stretching vibration of C=O (1730 cm−1 in polyester-based WPUs and 1701 cm−1 in 

polyether WPUs). Other characteristic absorption peak assignments for SDB-WPUs with different 

polymeric diols are similar to Figure 2: 2860 cm−1 and 2940 cm−1 (νCH2 and νCH3), 1240 cm−1 (νC-O in 

carbamate group) and 1110 cm−1 (νC-O-C in soft segments), suggesting that SDB-WPUs were 

synthesized successfully. 

 

Figure 6. FT-IR spectra of SDB-WPUs with various polymeric diols on KBr plates. 

The thermal properties of SDB-WPUs with various polymeric diols are characterized by DSC 

and TG curves (Figure 7). Similar results line up with the discussion above. The difference in DSC 

(Figure 7a) is that a typical endothermic peak appears at 40–50 °C in SDB-WPU-PCL and SDB-WPU-

PBA due to the melting of crystalline structure of the polyester in PCL and PBA. There is a clear 

difference in third decomposition stage caused by different thermal resistance of polymeric diols and 

degree of microphase separation (Figure 7b) [31–33]. According to the TG curves, SDB-WPU-PTMG, 

with the highest starting and soft-segment decomposition temperatures, shows the best thermal 

resistance, while SDB-WPU-PBA exhibits the poorest thermal resistance. The remaining two kinds of 

WPUs have similar thermal resistances. 

 

35003000 2000 1500 1000

SDB-WPU-PBA

SDB-WPU-PCL

SDB-WPU-PTMG

Wavenumber (cm
-1

)

3325

3350
1730

1701
SDB-WPU-PPG

Figure 7. Thermal characterization of SDB-WPUs with various polymeric diols via: DSC (a); and TG
(b) measurements.

Table 3. Thermal-migration property of SDB-WPUs and WPU+SDB.

Samples A1
a A2

b Mp (%) c

WPU+SDB 0.332 0.435 31.0%
SDB-WPU-PTMG 0.309 0.332 7.4%
SDB-WPU-PPG 0.276 0.298 8.0%
SDB-WPU-PCL 0.327 0.351 7.3%
SDB-WPU-PBA 0.252 0.271 7.5%

a maximum absorbance of SDB-WPUs in area A; b maximum absorbance of SDB-WPUs in area B; c migration ratio
of SDB-WPUS.
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3.7. Application in Metal Coatings

Black SDB-WPU coatings can easily be prepared by spraying the mixture on the metal surface after
compounded with other waterborne resins and coatings additives (Table 4). The coating properties of
the SDB-WPUs are illustrated in Table 5. All of the film coatings show smooth and bubble-free surfaces
with glossiness around 80–90. Because of the chemically linking reaction, SDB is uniformly distributed
into the polyurethanes without dyes aggregating and phase separation (Figure 8), resulting in excellent
coatings performance. To further investigate the properties of SDB-WPU coatings, adhesion force,
pencil hardness, impact strength and water resistance are tested. Slight difference can be observed in
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these properties, attributed to the change of polymeric diols, which are able to significantly influence
degree of microphase separation, flexibility, rigidity and crystallinity. Consequently, different black
WPU coatings with SDB linked chemically may be developed by changing the kind of polymeric diol
to cater to a specific applied situation.

Table 4. Formulation of black SDB-WPU coatings.

Entry Function wt %

SDB-WPU Resin 95
BYK-025 Defoamer 0.5
BYK-331 Leveling additive 0.3

ACRYSOLTM RM-8W Thickener 1.2
Deionized water - 3

Total - 100

Table 5. The properties of black waterborne polyurethane coatings with various polymer diols.

Property SDB-WPU-PTMG SDB-WPU-PPG SDB-WPU-PCL SDB-WPU-PBA

Appearance Smooth,
No bubbles

Smooth,
No bubbles

Smooth,
No bubbles

Smooth,
No bubbles

Gloss (60◦) 83 83 86 87
Adhesion force (grade) 0 1 0 0

Pencil hardness 2B 3B B 2B
Impact strength (kg/cm) 50 50 50 50

Water resistance (24 h) Unchanged Unchanged Unchanged Unchanged
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4. Conclusions

In summary, a series of black WPUs from Sudan black B (SDB) were prepared. The obtained
SDB-WPU emulsions show remarkable storage and mechanical stability. Compared to the traditional
method by physically mixing dyes with polymeric substrates, SDB-WPUs also exhibit excellent
thermal-migration resistance and color fastness, in that SDB is chemically linked to WPU chains.
Besides, incorporation of SDB does not obviously change the thermal properties of WPUs. By altering
different polymeric diols, all of the SDB-WPUs show some differences in glossiness and adhesion force
but maintain their excellent storage and mechanical stability, and great thermal resistance. Therefore,
different black WPU coatings with SDB linked chemically may be developed by changing the kind of
polymeric diol to cater to a specific applied situation.
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