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CRYSTAL PREDICTION WITH SHIFTED
BOUNDARY CONDITIONS

Here we introduce a variation on the “floppy box”
Monte Carlo (FBMC) crystal prediction approach pro-
posed in Ref. [1, 2]. In the FBMC approach, candidate
crystal structures are predicted by performing a Monte
Carlo simulation for a small number of particles (typi-
cally N . 20). The particles are contained in a periodic
simulation box spanned by three vectors that can fluc-
tuate in both length and direction. Due to the small
number of particles, the system can sample a large num-
ber of crystal phases with differently shaped unit cells in
a short time, allowing it to rapidly find entropically and
energetically favorable structures. These structures can
then be tested for stability using simulations on a larger
scale or theoretical approximations.

The efficiency of simulations of small boxes with a vari-
able shape is highly dependent on the degree of distortion
of the simulation box. In particular, if the box is flattened
in any direction, particles can interact with periodic im-
ages of themselves and other particles that are several
boxes away. To keep the box distortion low, the floppy
box approach typically makes use of a lattice reduction
technique [3], which redescribes a given unit cell in terms
of a linear combination of its box vectors.

In order to simplify this extra step in the simulation,
we propose a variation on the FBMC approach which
makes use of shifted boundary conditions. In this shifted-
boundary Monte Carlo (SBMC) approach the unit cell is
defined by three perpendicular box vectors

vx = {Lx, 0, 0}
vy = {0, Ly, 0} (1)

vz = {0, 0, Lz},

where Lx,y,z are the box lengths along the x, y, and z-
axis. Periodic boundary conditions are then shifted such
that the origin of the next periodic image of the box in
the three directions are given by:

px = {Lx, 0, 0}
py = {δxyLx, Ly, 0} (2)

pz = {δxzLx, δyzLy, Lz},

where δij is the relative shift along the i-axis associated
with moving one periodic image in the j-direction. Note
that the vectors px,y,z span any unit cell shaped like a

parallelepiped. In our simulations, we now simply vary
the values of Lx,y,z and δij independently in our Monte
Carlo simulation, sampling different crystal structures in
a way that is equivalent to the FBMC method. Effec-
tively, the only change we have made thusfar is the re-
quirement that one of the vectors spanning the periodic
unit cell lies along the x-axis, and one lies in the xy-plane,
eliminating the (irrelevant) rotational freedom of the full
unit cell.

However, in this representation, lattice reduction can
be done by a simple redefinition of the shifting parame-
ters δij such that they each lie between −0.5 and 0.5. In
particular, starting from set of δij , the reduced shifting
parameters are given by

δredxy = m(δxy)

δredxz = m(δxz − [δyz]δxy) (3)

δredyz = m(δyz),

where [·] denotes rounding to the nearest integer, and
m(x) = x− [x] is a modulo function which always returns
a number between −0.5 and 0.5.

It is important to note that the reduction of the shift-
ing parameters here does not completely prevent the for-
mation of flat boxes, analogous to the lattice reduction
in the FBMC approach. For example, particles can still
line up into a widely spaced column in which the par-
ticles interact with periodic images several boxes away.
Following Ref. [1], we prevent this by implementing a
minimum axis length for all three directions, requiring
that Lx,y,z > Lmin = 0.75σ, with σ the size of the hard
core of our particles. No angular restrictions are required.

We store our particle coordinates as scaled coordinates
s, such that they can be converted to real-space coordi-
nates via

r = s1vx + s2vy + s3vz. (4)

As a result, when performing a Monte Carlo move which
changes one of the parameters Lx,y,z, particle positions
scale along with the volume change, and we apply the
standard Monte Carlo acceptance rule for volume rescal-
ing (see e.g. Ref. [2]). When performing a move which
changes one of the shifting parameters δij , the volume
remains constant, and acceptance is purely based on the
change in energy of the system.

To determine which periodic image particles we should
take into account when calculating interactions, we make
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use of our minimum axis length Lmin. Under the condi-
tion that −0.5 ≤ δij ≤ 0.5, the origin of an image of
the simulation box that is n boxes away along the x,
y, or z direction is at least a distance nLmin away from
the origin of the simulation box. As a result, any parti-
cle in this image box is at least a distance (n − 1)Lmin.
Hence, for particles with a maximum interaction range
σ + δ, we at most have to consider image particles up
to d(σ + δ)/Lmine+ 1 boxes away in each direction. We
loop over all of these boxes, and determine the actual
minimum distance between a point in the image box and
a point in the central box. We then take into account
image particles in each image box where this distance is
less than the interaction range.

We have confirmed that the FBMC and SBMC ap-
proaches largely predict the same structures for our
square-shoulder systems with interaction ranges δ/σ =
0.15 and 0.20. Although the results are not expected to
be identical, both methods find the same set of stable
zero-temperature structures, and show strong similarity
in the frequencies at which different structures are ob-
served.

It is important to note that the modification to the
FBMC approach proposed here is neither significantly
faster or more effective for the purpose of predicting can-
didate crystal structures. However, implementation of
the SBMC approach avoids the lattice reduction tech-
nique and simplifying the constraints for avoiding ex-
treme distortion of the simulation box. As a result, the
SBMC approach is considerably easier to implement.

CELL THEORY USING VORONOI CELLS FOR
INTERACTING PARTICLES

Cell theory [4, 5] provides a simple route for calculat-
ing a mean-field approximation for the free energy of a
crystalline solid. In cell theory, the partition function of
a single particle in the crystal is approximated by assum-
ing that all other particles are located at their lattice site.
The partition function of the particle under consideration
is then written as:

Q1 =
V0
Λ3

〈
exp

(
−β
[
u(r)− 1

2
u(r0)

])〉
V0

, (5)

where β = 1/kBT with kB Boltzmann’s constant and T
the temperature, and u(r) is the energy of the particle at
position r. The thermal wavelength Λ has no effect on
the phase behavior, and can therefore freely be chosen to
equal the particle diameter σ. In the case of hard spher-
ical particles, this partition function reduces to the free
volume available to the central particle (divided by Λ3).
This is commonly approximated by assuming that this
volume is a polyhedron, formed by taking the Wigner-
Seitz cell of the particle, and moving each of its faces
inward to a distance ri − σ from the lattice position of

the central particle, where ri is the distance to neighbor i
in the perfect lattice [6]. Although this slightly underes-
timates the free volume available to the central particle,
the effects of this approximation are on the same order
as the approximations made in cell theory, and the vol-
ume of the resulting polyhedron is significantly easier to
calculate than the “true” free volume.

Here, we extend this approach to particles interacting
with square shoulder repulsions, with hard core diameter
σ, shoulder width δ, and shoulder height ε. In this case,
we consider for each of the N neighbors of the central
particle two possible planes delimiting the free volume of
the central particle: one at distance σ from the neighbor
position (representing its hard-core repulsion), and one
at distance σ + δ from the neighbor position (represent-
ing its shoulder), as illustrated in Fig. 1a. Clearly, all
of the outer planes again form a polyhedron which ap-
proximates the free volume of the central particles if the
square-shoulder repulsion was absent (blue in Fig. 1b).
Similarly, the innermost polyhedron represents the vol-
ume V∅ available to the particle where it interacts with
no other particles, i.e. its energy u = 0. In total, we can
construct 2N polyhedra, each associated with a different
combination of particle interactions. For example, the
red polyhedron drawn in Fig. 1c shows the volume V{5}
available to the particle if it at most interacts with neigh-
bor 5. We can calculate the subvolume associated with
the case where the particle interacts only with neighbor 5
(shaded blue in Fig. 1c) by calculating δV{5} = V{5}−V∅.
Using the same approach, we can calculate e.g. the sub-
volume V{5,6} (Fig. 1d) where the particle interacts with
both particle 5 and 6 via

δV{5,6} = V{5,6} − δV{5} − δV{6} − V∅. (6)

This approach can be straightforwardly repeated until
the subvolume for each set of interactions is known. The
total single-particle partition function can then be writ-
ten as:

Q =

2N∑
i=1

δVSi exp(−β(uSi − uref/2)), (7)

where δVSi
denotes the subvolume for interacting with

particles in the set Si of neighbors, and uSi
is the energy

of that state, given by ε times the length of Si. Addi-
tionally, uref is the energy of the particle in the central
position.

To calculate these volumes, we construct 2N polyhedra
and calculate their volume Vi using the Voro++ library
[7]. Any cell that does not contain the central lattice
position is assumed to have volume Vi = 0. This only
occurs if the ground state energy of the crystal cell un-
der consideration has an energy uref > 0. Effectively,
this means that we ignore the energy change associated
with moving away from a neighbor the particle interacts
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FIG. 1: Two-dimensional illustration of the calculation of the approximate volume of different regions contributing to the cell
theory free energy. a) Construction of the planes delimiting the different regions. For each neighbor (labeled 1 through 6), we
draw two planes: one at distance σ from the neighbor (solid lines), and one at distance σ + δ (dashed lines). b) Total volume
available in the cell (blue), and the volume V∅ available with no interactions (red). c) Determination of the subvolume δV{5}
From V∅ and V{5}. d) Determination of the subvolume δV{5,6}.

with at its ideal lattice site. This additional approxima-
tion is justified by the observation that if these positions
contribute meaningfully to the free energy, the cell con-
tains local energy minima which do not correspond to
the central lattice position, implying that the particle
has multiple favored positions within its cell. Since this
conflicts with the mean-field assumption that all parti-
cles are (on average) at their lattice site, cell theory is
already likely to break down in these cases. Moreover, a
crystal structure where particles can lower their energy
by moving away from their lattice site is not likely to be
stable. After calculating all volumes, we calculate the
associated subvolumes by subtracting from each volume
Vi all subvolumes that correspond to neighbor sets that
are strict subsets of neighbor set i. If we set δV0 = V0,
we can write this as:

δVSi
= VSi

−
∑

j,Sj(Si

δVSj
. (8)

To test the effect of the additional approximations
made in this method, we compared the results of this ap-
proach to cell theory free energies calculated using Monte
Carlo integration of the single-particle partition function
in Eq. 5, performed by repeated insertion of the central
particle into a small insertion volume around its central
position. The results are in good agreement within the
deviations normally expected from cell theory. As an
example, we plot in Fig. 2 a comparison of the free
energy of a body-centered cubic crystal for interaction
range δ/σ = 0.15 as a function of density at fixed tem-
perature, calculated using both random insertion and the
Voronoi cell approach.
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FIG. 2: Comparison between cell theory calculation via di-
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tion (line), for a body-centered cubic crystal at temperature
kBT/ε = 0.5 and interaction range δ/σ = 0.15.
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