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Abstract: Thermally-assisted compaction of granular materials is of keen interest in many engineering
applications. A proper estimation of the material behavior of compacted granular materials is
contingent upon the knowledge of microstructure formation, which is highly dependent on the bulk
material properties and processing conditions, during the deformation stage. Originating from
the pair interactions between particles, the macroscopic properties are obtained using various
homogenization techniques and postulating continuum constitutive laws. While pioneers in this
field have laid fundamental groundwork regarding effective medium descriptions, there exists a
discrepancy between discrete and continuum level solutions. In our previous work, we elaborated
a Particle Mechanics Approach (PMA) that integrates thermal contact and Hertzian deformation
models to understand the thermo-mechanically-coupled consolidation problem. We also considered
the analogous problem from the perspective of the conventional Continuum Mechanics Approach
(CMA). In this study, following the multi-scale modeling framework, we propose an effective thermal
expansion coefficient for the thermally-assisted compaction of granular materials.

Keywords: effective thermal expansion coefficient; thermo-mechanical coupling; granular materials;
particle mechanics; contact mechanics; thermally-assisted compaction

1. Introduction

In-depth understanding of the thermo-mechanical coupling that takes place during
thermally-assisted compaction of granular materials is the key to successful design and optimization
of many powder process engineering applications. It is well known that the elastic properties of bulk
materials are altered by a change in temperature. Moreover, as also pointed out by Jaeger et al. [1],
granular materials exhibit exceptional properties, which differ from those of the primary bulk material and
depend on the processing conditions of the granular system. In this regard, there is a significant number
of efforts to elucidate the collective behavior, which is also referred to as effective thermo-mechanical
properties, of granular materials in response to boundary conditions and system parameters.

Mathematical models were developed to understand the thermal contact of conforming elastic
surfaces [2–4]. Starting from the definition of thermal flux at the smooth contact surface of two spherical
particles, Batchelor and O’Brien solved the analytical equation that expresses the effective thermal
conductivity of ordered and randomly-distributed packed granular assemblies [4]. Experimental
studies validating these models were presented in the related work of Hadley [5], Nozad et al. [6]
and Shonnard and Whitaker [7]. More refined studies relaxed these assumptions by focusing on
elasto-plastic contacts [8] or rough non-conforming surfaces [9–11]. Recently, the field of porous
media has continued to attract researchers in light of understanding the correlation between geometry,
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loading conditions and anisotropy in the microstructure, which in turn affect the macroscopic behavior
of compacted beds [12]. Yun and Santamarina conducted a fundamental study on thermal conduction
through one-dimensional granular chains of spherical particles [13]. They pointed out the decisive
role of inter-particle contacts in heat transfer mechanisms and highlighted the need for the effective
thermal conductivity models to consider the inherent presence of contacts in particulate materials [13].
Exploring the effects of packing grains during thermal cycling, Chen and his co-workers [14]
showed that thermal expansion, due to an imposed thermal gradient, has a significant effect on
the rearrangement of the particle bed. Moreover, heat transfer in granular flows has been of great
interest for numerous industrial applications, particularly in regards to understanding the effect of
process conditions on heat transfer mechanisms in granular media [15–19].

In recognition of the uniqueness of granular materials and their importance to a wide variety of
thermally-assisted compaction processes, two main methodologies have received considerable attention
for addressing the need for simulating and predicting the macroscopic behavior of granular materials.
One of the most adopted approaches treats the particles as individual bodies such that the coupled
effects of various multi-physical phenomena are described at the particle-scale. Accounting for particle
interactions and adopting constitutive relations of contact mechanics [20–22], the discrete element
approach has been widely used in the field of particle-scale research [23]. This method is based on
the early work of Cundall and Strack, where authors introduced an explicit numerical scheme to describe
granular dynamics by tracing the motion of the particles and the generation of forces over the contact
network while solving discrete equations of motion [24]. The interrelationship between particle motion
and energy with the macroscopic behavior of the assembly provides understanding of the overall
behavior of the confined material [25]. The main advantage of this methodology is the capability of
presenting broad information about the microstructure of the granular material [26]. Although there exists
a considerable amount of computational challenges in modeling a large number of particles with discrete
element methods, improvements were done in formalisms, and new simulation techniques increased the
achievability of calculations at the particle level.

The second most implemented methodology to model the collective behavior of particulate materials
is the continuum mechanics approach, in which the granular material is assumed to be statistically
homogeneous [27]. This simplification is achieved by treating the system as units of ordered arrays,
simulating disordered arrangements by statistical correlation functions or using empirical correlations.
The statistical averaging techniques provide homogenized solutions of the highly heterogeneous granular
media at the cost of imposing two assumptions: (i) affine motion approximation, namely the motion of
each grain follows the macroscopic strain, and (ii) well-bonded structure, contact number and positioning
do not change under the applied load. Despite the fact that effective medium theory particularly estimates
the effective elastic moduli of a packed bed of spherical particles to a large extent, the discrepancy between
numerical and experimental results is remarkable. Makse and co-workers questioned the relevance
of force laws defined at the single contact level, where they pointed out that the simplification done
in effective medium theory is the misleading element in the formulation [28,29]. The affine motion
assumption demolishes the ability of the approach to account for the relaxation and rearrangement of
particles that are under shear deformation. Moreover, concerning the variety of boundary conditions and
geometrical effects, experimentation techniques become insufficient in providing reliable information
about the microstructure to feed empirical correlations.

The improvement of theoretical models and numerical simulation schemes remains an active area of
research in the study of granular matter. A quasi-continuum approach has been recently developed, and
the formulation was used for simulation of inter-particle bonding in granular systems [30]. Zheng and
Cuitiño implemented the quasi-continuum approach to bridge the micro- and meso-scale through a
discrete-continuum formulation of elastic-inelastic deformations occurring in the post-rearrangement
regime of consolidation of inhomogeneous granular beds [30]. Since this approach provides the flexibility
of storing individual particle interactions in an finite element modeling (FEM) scheme, it provides the
overall behavior of the entire body without losing critical information specific to the microstructure.
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Koynov et al. presented a notable adaptation of this approach on the topic of powder compactions for
pharmaceutical purposes [31]. Gonzalez and Cuitiño introduced a new formulation that accounts for the
interplay of nonlocal mesoscopic deformations characteristic of confined granular systems. In the absence
of the classical restriction of independent contacts of the Hertz law, the extended theory of nonlocal contact
formulation provides predictive models at moderate levels of deformation and high confinement [32].

The present work attempts to establish a relationship that defines the effective thermal expansion
property of a packed bed of spherical particles under the effect of the thermally-assisted compaction
process. We elaborate on a Particle Mechanics Approach (PMA) that entails the integration of contact
mechanics principles with a thermal-contact model to account for the heat conduction at the quasi-static
equilibrium of the deformed state of granular materials. The disordered nature of the problem leads
to highly non-linear coupled equations; therefore, we investigate a regular packing to simplify the
problem and make it mathematically traceable. Moreover, we consider the analogous problem from the
perspective of the conventional Continuum Mechanics Approach (CMA), while practicing the effective
medium approach descriptions that define the macroscopic thermal and mechanical properties. Similar
in spirit to the work of Chan and Tien [2], who proposed the effective thermal resistance, and to the
work of Walton [33], who presented a method to calculate the effective elastic moduli of granular
packing, we adopt a multi-scale approach to link the particle level information to the continuum level
description of the thermally-assisted compaction process. Finally, we derive the equation of effective
thermal expansion coefficient for the regularly-packed bed of particles.

2. Mathematical Models

2.1. Particle Mechanics Approach

Particle scale modeling of the thermally-assisted compaction process requires an extension
of the discrete element method to account for the integration of heat conduction (e.g., [25,34,35]).
Starting from the well-known theory of Hertzian deformation [20], heat conduction through the
conforming contact of spherical particles [2,4] is adopted for the case of thermally-assisted compaction.
Under steady state conditions, the total of the forces acting on individual particle m from neighboring
particles n ∈ Nm and the total heat transferred to particle m are zero, that is:

Fm = ∑
n∈Nm

Fmnnmn = 0 (1)

Qm = ∑
n∈Nm

Qmn = 0 (2)

where nmn is the unit normal vector defined from xn to xm, i.e., from the center of particle n to the
center of particle m.

Johnson studied the elastic deformation of locally spherical particles that are subject to a
compression load by contact mechanics considerations [36]. Small-strain deformation of conforming
surfaces results in a flat circular contact area. The collinear, elastic, contact force between particles m
and n is defined through reduced elastic modulus Emn, reduced particle radius Rmn and overlap γmn

between these particles. Specifically, the contact force is:

Fmn =
4
3

Emn(Rmn)1/2(γmn)3/2 (3)

where:

Rmn =

[
1

Rm +
1

Rn

]−1
(4)

Emn =

[
1− (νm)2

Em
+

1− (νn)2

En

]−1

(5)

γmn = Rm + Rn − ‖xm − xn‖ (6)
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Similar to previous studies in the literature [35,37], in the present study, a linear thermal expansion
formulation is taken into consideration; that is Rm = Rm

re f

[
1 + αm

(
Tm − Tm

re f

)]
, where αm is the

thermal expansion coefficient, Tre f is the reference temperature and Rm
re f is the radius of the particle

at the reference temperature. Due to the fact that the contact geometry depends highly on the heat
conduction between the consecutive conforming particle pairs, it is expected to capture a distribution
of the contact area formation throughout the compacted medium.

The major heat transfer mechanisms in compacted particle beds consist of conduction through
solid particles, conduction through the contact area between two touching particles, conduction
to/from interstitial fluid, heat transfer via convection, radiation between particle surfaces and radiation
between neighboring voids [34]. For a system of granular media where the thermal conductivity of
the solid particles is much larger than that of the interstitial medium, the driving mechanisms for the
heat transfer are the first two. Restricting attention to the problem of thermally-assisted compaction
of spherical particles in a vacuum, we focus on thermal contact models that consider the conduction
through solid particles and the contact areas between touching particles.

The analytical solution of the heat conduction through the solid phase of ordered spherical
particles has been proposed by Chan and Tien [2] and Kaganer [3]. Moreover, the problem of heat
transfer regarding the compaction of particles that are in or nearly in contact is deeply investigated
by Batchelor and O’Brien [4]. In an attempt to find the approximate effective thermal conductivity of
ordered and randomly-packed granular beds, Batchelor and O’Brien discussed the heat flux across the
flat, circular contact surface between smooth, conforming and elastic particles. In this study, we adopt
Batchelor and O’Brien’s model for predicting the heat conductance, which is the ability of two touching
surfaces to transmit heat through their contact interface. Heat flux across the contact area of two
spherical, smooth particles is given by:

Qmn = 2amnkmn(Tm − Tn) (7)

where kmn is the arithmetic mean of the thermal conductivities of two conforming particles and amn is
the Hertzian contact area. These are defined as:

kmn =
1
2

[
1

km +
1
kn

]−1
(8)

amn =
√

γmnRmn (9)

The total heat flow to an individual particle, Equation (2), is calculated by adding the heat flow,
Equation (7), across each contact surface shared with its neighboring particles. Thermal contact models
introduced in the literature [2,4], Equation (2), assume that the resistance to heat transfer inside the
particle is significantly smaller than the resistance between the particles, i.e., a Biot number much less
than one:

2kmnamn

kmn A/Rm � 1 (10)

where A is the cross-sectional area, A = π(Rm)2. This assumption was applied by several authors in
earlier studies [34,38], which also enforces the condition of amn � Rm, i.e., of small-strain deformation
of elastic bodies in contact.

Referring to the previous experimental studies on regular and random packing of granular media,
Walton points out that although the regular packing models are founded on strict assumptions, they are
capable of capturing the vast majority of the characteristics of a real granular media [33]. In the present
study, we consider a simple cubic packing of identical elastic spheres, which are constrained between
parallel planes of infinite extent. A compression load and a temperature gradient are applied along
the major and finite direction. Stress and heat flux are defined to depend only on externally-applied
thermal and mechanical loads, and the weight of the particles is neglected. For such regular packings,
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each layer of the arrangement is isothermal normal to the direction of applied load. Furthermore, since
these transversely-oriented particles are, at most, at the contact point, for each particle there is only
one pair of contact areas aligned with the direction of applied thermal and mechanical load. Due to the
symmetry of the problem, it is sufficient to consider a single column of a square cross-section containing
the longitudinally-compressed spheres together. The above-described set of concepts regarding regular
packings is also encountered in the early work of Chan and Tien [2] and Kaganer [3]. Based on these
assumptions, the specified granular media can be visualized as a chain of elastic particles compressed
between two walls, which are maintained at different temperatures, as seen in Figure 1. Details of the
particle mechanics approach adopted in this study can also be found in detail in our earlier work [39].

Figure 1. Particle and continuum mechanics approaches.

2.2. Conventional Continuum Mechanics Approach

There has been considerable research directed towards describing the macroscopic behavior of
compacted granular materials by using various homogenization techniques and postulating continuum
constitutive laws [40]. Some of the previous studies on mathematical modeling of transport properties
are aimed at estimating elastic-plastic mechanical properties, thermal and electrical conductivity
of ordered and disordered arrangements. In addition to the particle-level approach, we also
focus on a small-strain thermoelasticity model of continuum scale description that integrates the
previously-proposed effective mechanical and thermal properties for granular beds under compaction.
In this study, we refer to the particle mechanics approach and the conventional continuum mechanics
approach as PMA and CMA, respectively.

The governing field equations of motion and energy of the analogous problem defined at the
continuum scale are the following: div (σ) = 0 and div [k grad (T)] = 0, where Cauchy’s stress, σ, is
formulated as a combination of classical linear elasticity theory and simple linear thermal expansion,
that is:

σ = λtr(ε)I + 2µε− (3λ + 2µ)α(T − Tre f )I (11)

where I is the identity matrix. The solution for the basic one-dimensional steady state thermoelastic,
continuum problem, where body forces are neglected, depends linearly on elastic constants, λ, µ,
thermal expansion and conduction coefficients, α and k, respectively. Since ε22 = ε33 = 0 holds, ε11 is
referred as ε(x), and it is defined positive for compression. The system of questions then reduces to:

σ(x) = (λ + µ)ε(x) + α(3λ + 2µ)(T(x)− Tre f ),

with σ(x) positive for compression, and q = k∂T/∂x.
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Effective mechanical properties of granular beds are of great interest for numerous theoretical
studies, some of which focuses on: (a) the principal elastic modulus for vertical compression of
spherical particles without any lateral extension (Walton [33]); (b) finite and incremental elasticity of
random packing of identical particles using energy methods (Norris and Johnson [41]); (c) enhancement
of the derived formulas based on the pressure dependence of the elastic moduli of granular
packings (Makse et al. [28,29]). The effective medium approach proposes the following elastic effective
properties, λ̃ and µ̃:

Cn = 4
µ

1− ν
= 4

E
2(1 + ν)

1
1− ν

=
2E

1− ν2 (12)

λ̃ + 2µ̃ =
3

20π
Cn(φsZ)2/3

(
6πσ

Cn

)1/3
(13)

3λ̃ + 2µ̃ =
1

4π
Cn(φsZ)2/3

(
6πσ

Cn

)1/3
(14)

where Cn is the actual stiffness that depends on the bulk mechanical properties: Young’s modulus,
E, and Poisson’s ratio, ν. φs is the packing fraction, and Z is the coordination number.

The effective thermal conductivity of a granular bed is substantially sensitive to the thermal and
elastic properties of individual particles. In this study, we adopt Batchelor and O’Brien’s [4] solution
for effective thermal conductivity coefficient:

k̃ = k
(

6σ

Cn

)1/3
(15)

It has been shown that the above-mentioned thermal contact models provide accurate results in
estimating steady and average temperature profiles for ordered granular packings [42].

After implementing the effective mechanical and thermal properties in the resembling continuum
description, the equation of stress becomes:

σ = φsZCn

(
3

32π2

)1/2 [
ε

3
5
+ α

(
Tw

2 + Tw
1

2
− Tre f

)]3/2

+
(16)

where Tw
1 and Tw

2 are the temperature at the constraining walls, and ε is the compaction strain
along the principle direction. The overall compaction force can simply be expressed as F = σ4R2

re f ,
where [.]+ = max{.,0} (notice that since σ(x) and ε(x) are assumed to be positive for compressive stress
and strain, the above equation is valid for positive values of the expression in the parentheses).

2.3. Comparison of the Particle Mechanics Approach and the Conventional Continuum Mechanics Approach

According to the Hertz theory [43], the collinear contact force between the compressed elastic
particles is a nonlinear function of the overlap, which is formed under the effect of the external
load acting on the particles. For the case of thermally-assisted compaction of a granular system,
such dependency is altered under the effect of an applied thermal gradient. To illustrate this influence,
we work on the analytical solutions proposed in PMA and CMA for a system of stainless steel spherical
particles. 304 stainless steel has the following bulk properties: E = 193 GPa, k = 15 W/mK, ν = 0.29
and α = 17.3 10−6 1/K. The packing fraction is taken as φs = π/6(1− ε), and the coordination number
as Z = 6.

In Figures 2 and 3, we aim to compare the analytical solutions generated in the particle mechanics
approach and in the conventional continuum mechanics approach under varying boundary conditions
for the relevant thermally-assisted compaction simulation. The compaction force and the heat
transferred that are calculated by these two approaches are shown in the ratio. Figures 2 and 3
reflect a discrepancy between PMA and CMA particularly for the deformation range of high thermal
load and low mechanical load.
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Figure 2. Comparison of compaction force calculated in PMA and CMA under varying thermal and
mechanical loading conditions.
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Figure 3. Comparison of heat transfer calculated in PMA and CMA under varying thermal and
mechanical loading conditions.

3. Derivation of the Effective Thermal Expansion Coefficient for Thermally-Assisted Compaction
of Granular Beds

Similar in spirit to earlier studies, the multi-scale approach discussed in this work is used to link the
particle level information to the continuum level description of the thermally-assisted compaction process.
We present a methodology to derive an effective thermal expansion coefficient for confined granular
systems. The superscript mn is used to refer to the particle interactions at the contact of individual particles
m and n. In this section, the quantities defined at the particle-level description and the continuum-scale
description are denoted slightly different. For instance, stress and heat flux are defined as σmn and qmn in
PMA and σ(xmn) and q(xmn) in CMA.

Considering the case of an infinite chain of identical particles, we assume that: (i) the temperature
difference between consecutive pairs is negligible compared to the change with respect to the reference
temperature (i.e.,

∥∥∥(Tm − Tn)/(Tmn − Tre f )
∥∥∥� 1 ); and (ii) the particles are locally subject to uniform

compaction. Moreover, we consider an average porosity for the resembling systems of particle-scale
and continuum scale analysis; therefore, φs for a given compaction strain ε is calculated as π/6(1− ε).
Based on the above assumptions, the average stress calculated in PMA can be expressed as:
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σmn =
Fmn

4R2
re f

=
Cn

6

[
1+ α

(
Tmn − Tre f

)]1/2
(

γmn

2Rre f

)3/2

(17)

whereas the continuum-level approach predicts the particular compression stress as (valid for
compressive stresses σ(xmn) > 0):

σ(xmn) = (λ̃ + µ̃)ε(xmn) + α̃(3λ̃ + 2µ̃)(T(xmn)− Tre f )

= φsZCn

(
3

32π2

)1/2
[

ε(xmn)
3
5
+ α̃

(
T(xmn) + Tre f

2
− Tre f

)]3/2

+

(18)

where α̃ is the effective thermal expansion coefficient. Next, we enforce stress and heat flux expressions
in both descriptions to be equal, that is σ(xmn) = σmn and q(xmn) = qmn. xmn, T(xmn) and ε(xmn) are:

xmn =
xm + xn

2
(19)

T(xmn) =
Tm + Tn

2
(20)

ε(xmn) = 1− ||x
m − xn||
2Rre f

=
γmn

2Rre f
(21)

Finally, the equivalence of Equations (17) and (18) provides the following continuum level effective
thermal expansion expression that is dependent on the applied mechanical and thermal load, σ and
T− Tre f , as well as the bulk thermal expansion property of the solid.

α̃(σ, T) =
3
5

α +
4π

T− Tre f

(
σ

CnφsZ(6π)1/2

)2/3
1−

(
1

1+ α(T− Tre f )

)1/3
 (22)

The first order approximation of the above expression is:

α̃(σ, T) =
3
5

α +
4π

3(CnφsZ)2/3(6π)1/3 σ2/3α

[
1− 2

3
α(T− Tre f )

]
(23)

To quantify the overall effect of this approximation, we implement both equations,
Equations (22) and (23), in the continuum-scale solution, and we compare the required stress and heat
flux particularly for the previously discussed deformation range. It is found that the two compared CMA
solutions differ less than 1% under these conditions.

An Application of the Proposed Effective Thermal Expansion Coefficient

Along with the effective mechanical properties and effective thermal conductivity (listed in
Section 2.2), we implement the first order approximation of the proposed thermal expansion coefficient,
Equation (23), to solve the described thermally-assisted compaction problem. The analytical solution is
given in the following set of equations:

T(x) =
∆Tw

Li
x + Tw

1 (24)

u(x) = αx
[

∆Tw

2Li
x +

(
Tw

1 − Tre f

)]
− 10πLi

α∆Tw

(
σ

CnφsZ(6π)1/2

)2/3
×{[

1+ α

(
∆Tw

Li
x + Tw

1 − Tre f

)]2/3
−
[
(1+ α(Tw

1 − Tre f )
]2/3

}
(25)
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where Li is the initial length of the system, and σ is given by:

σ2/3 =
α∆Tw

10π

(
CnφsZ(6π)1/2

)2/3

[
α
(

Tw
1 +Tw

2
2 − Tre f

)
+ ε
]
+[

1+ α(Tw
2 − Tre f )

]2/3
−
[
1+ α(Tw

1 − Tre f )
]2/3 (26)

It is also worth noting that in the limiting case, when there is no thermal load, the derived
solution for stress, Equation (26), approaches the solution given in conventional continuum mechanics
approach, Equation (16).

4. Results and Discussion

In order to evaluate the effect of the proposed effective thermal expansion coefficient on the
continuum-scale approach, we compare the three analytical solutions discussed in this study: (i) PMA;
(ii) conventional CMA, where effective mechanical properties and effective thermal conductance are
implemented; (iii) an improved continuum mechanics solution, where also the proposed thermal
expansion coefficient is included, the Improved-CMA (also given in Equations (24)–(26)). We focus
on four critical boundary conditions in detail; high/low thermal load and high/low mechanical
deformation ranges.

In Figure 4a,b, the force needed to compress the system up to a compaction strain, ε, of 5% is
traced under two different thermal load conditions. When the temperature difference between the
two boundary walls is only 40 K, Improved-CMA overlaps with the conventional continuum solution,
as expected; whereas under high thermal load such as Tw

2 − Tw
1 = 1000 K, and particularly at low

compaction strain, it is seen in Figure 4b that Improved-CMA has a better estimation of compaction
force in terms of converging the PMA solution.
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Figure 4. Compaction force versus strain, ε, under different thermal gradients applied at:
(a) Tw

2 − Tw
1 = 40 K; (b) Tw

2 − Tw
1 = 1000 K.

Moreover, we evaluate the effect of thermal load on the compaction force (Figure 5a,b). Figure 5a
shows that the proposed expression for the effective thermal expansion coefficient significantly
improves the continuum-scale solution in predicting the compaction force. Under high mechanical
load, Figure 5b suggests that Improved-CMA shows a trend in compaction force similar to the one
predicted by PMA. However, there exists a difference between continuum-scale solutions and the
particle-level solution at zero thermal load. The authors claim that this discrepancy stems from the
calculation of the effective mechanical properties, which is also discussed in detail in the earlier study
of Makse et al. [28].
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Figures 6a,b and 7a show a good agreement in terms of the heat transferred between particle-scale
and continuum-scale models. Even though Figure 7b indicates that there is a difference between these
two modeling approaches under varying compaction strains, it is worth noting that the maximum
difference between Improved-CMA and PMA is 6%.

In our previous study, we also focused on the position of individual particles under the
thermally-assisted compaction process [39]. For a one-dimensional chain of particles, we noted that
the relative difference in estimating the nodal position compared to the particle position between the
conventional continuum mechanics approach and particle mechanics approach is up to 40% under high
thermal and low mechanical load conditions. Therefore, in the current study, we plot the displacement
versus the initial position of each node/particle in Figure 8a,b. It is assumed that the node in contact
with the non-moving boundary is placed at x = 0. We conclude that the implementation of the
proposed effective thermal expansion coefficient significantly improves the conventional continuum
solution in terms of predicting the displacement of the individual particle.
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Figure 6. Heat flux versus thermal gradient, Tw
2 − Tw

1 , evaluated at different compaction strains:
(a) ε = 0.005; (b) ε = 0.05.
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Figure 7. Heat flux versus compaction strain, ε, evaluated under different thermal gradients imposed
at the boundary walls. (a) Tw

2 − Tw
1 = 40 K; (b) Tw

2 − Tw
1 = 1000 K.
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Figure 8. Comparison of the displacement profile of each node/particle; (a) Tw
2 − Tw

1 = 1000 K and
ε = 0.005; (b) Tw

2 − Tw
1 = 1000 K and ε = 0.05.

5. Conclusions

The present work centers on a multi-scale approach to bridge the gap between discrete and
finite-scale solutions of a thermo-mechanically-coupled problem while introducing an effective thermal
expansion coefficient. The response of a granular system under thermally-assisted compaction shows
a high dependence on the thermal expansion of the particles. A discrete-system solution based
on a particle mechanics approach carries out this relationship, and it successfully shows nonlinear
effects on thermal strains due to thermal expansion. Despite the fact that effective medium theory
enhances the conventional continuum mechanics model to a large extent, there still exists a notable
discrepancy between these two approaches. In this study, we address this gap by incorporating a
previously-suggested methodology to identify the effective thermal expansion property of granular
materials. It is shown that the implementation of the proposed effective thermal expansion coefficient
significantly improves the conventional continuum mechanics analysis, thereby resulting in better
accuracy in predicting particle-level characteristics of the thermally-assisted compaction problem.
The extension of the proposed approach to other multi-physics phenomena appearing in granular
systems in multi-dimensional analysis is a worthwhile direction for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

PMA Particle Mechanics Approach
CMA Continuum Mechanics Approach
Symbol
Em Young’s modulus of the individual particle m
νm Poisson’s ratio of the individual particle m
km Thermal conductivity of the individual particle m
αm Thermal expansion coefficient of the individual particle m
Tm Temperature of the individual particle m
Rm Radius of the individual particle m
amn Hertzian contact area between the particles m and n
γmn Overlap at the contact of the particles m and n
Tw Temperature at the wall surface
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