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Abstract: As one of the most promising technologies for next-generation lighting and displays,
white organic light-emitting diodes (WOLEDs) have received enormous worldwide interest due
to their outstanding properties, including high efficiency, bright luminance, wide viewing angle,
fast switching, lower power consumption, ultralight and ultrathin characteristics, and flexibility.
In this invited review, the main parameters which are used to characterize the performance of
WOLEDs are introduced. Subsequently, the state-of-the-art strategies to achieve high-performance
WOLEDs in recent years are summarized. Specifically, the manipulation of charges and excitons
distribution in the four types of WOLEDs (fluorescent WOLEDs, phosphorescent WOLEDs, thermally
activated delayed fluorescent WOLEDs, and fluorescent/phosphorescent hybrid WOLEDs) are
comprehensively highlighted. Moreover, doping-free WOLEDs are described. Finally, issues and
ways to further enhance the performance of WOLEDs are briefly clarified.
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1. Introduction

Since the first organic light-emitting diode (OLED) reported by Tang et al. [1], OLEDs have
received enormous interest due to their outstanding merits, including excellent efficiency, bright
luminance, ultralight, ultrathin, wide viewing angle, fast switching, lower power consumption, and
their compatibility with flexible substrates [2–5]. To realize next-generation solid state lighting as
well as high-quality display technology, white OLEDs (WOLEDs) are urgently desired. After the
pioneering work conducted by Kido et al. in 1994, the development of WOLED technology has been
strikingly enhanced [6,7]. Over the past two decades, the power efficiency (PE) of WOLEDs has been
improved from 0.83 lm W−1 to >100 lm W−1 [8–12], demonstrating the great potential of WOLEDs for
applications in the lighting and display field.

With the efforts of worldwide researchers, the performance and theoretical study of WOLEDs
have been gradually enhanced. For display applications, WOLEDs can be used as the backlight
for flat panel displays. Furthermore, based on a white emitter with an RGB (red/green/blue)
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color-filter array, full-color RGBW OLED displays can be realized, which can reduce the number
of manufacturing steps and eliminate the need for color patterning [13,14]. In the case of lighting
applications, WOLEDs exhibit many advantages compared to conventional artificial lighting sources
(e.g., candles, incandescent bulbs, and fluorescent tubes) [15–17]. Even compared with the widely
used inorganic WLEDs, the property of less blue emission in WOLEDs renders WOLEDs able to
avoid the notorious effect of blue light on melatonin suppression, which is beneficial to safeguard
human health [18–20]. According to DisplaySearch, the market for OLED lighting applications in
2020 is predicted to reach 14 billion dollars [11]. To date, plenty of companies are pursuing WOLEDs
technology, such as LG Display, Samsung, Panasonic, Konica Minolta, OLED works, OSRAM, Visionox,
and so on [21]. As one example of many inspiring results, WOLEDs can simultaneously satisfy the
requirement of high efficiency (133 lm W−1 at 1000 cd m−2), long lifetime (150,000 h at 1000 cd m−2),
and high color rendering index (CRI, 84) at large-area lighting panels (100 cm2) [8].

To realize white emissions, the mixture of two complementary colors (i.e., blue and red, orange or
yellow) or three primary colors (i.e., blue, green, and red) is generally necessary. Considering that the
full wavelength at half-maximum of organic emitter is restricted (e.g., ~60 nm for 8-hydroxyquinoline
aluminum (Alq3), ~70 nm for tris(2-phenylpyridine)iridium (Ir(ppy)3)), multiple emitters are usually
adopted in one WOLED, which can broaden the spectral spans in the visible region (380–780 nm) [22–30].
Apart from the selection of excellent emitters, the careful manipulation of device engineering plays a
significant role in high-performance WOLEDs. Through furthering our understanding of WOLEDs,
a large number of strategies have been proposed to enhance device engineering thus far.

In this review, we first introduce the main parameters that are used to characterize the performance
of WOLEDs. Then, we summarize the state-of-the-art strategies to achieve high-performance WOLEDs
put forth recent years. Specifically, we comprehensively highlight the manipulation of charges
and excitons distribution in the four types of WOLEDs (i.e., fluorescent WOLEDs, phosphorescent
WOLEDs, TADF (thermally activated delayed fluorescent) WOLEDs, and fluorescent/phosphorescent
hybrid WOLEDs). Also, we describe doping-free WOLEDs. Finally, we clarify the issues and ways to
further enhance the performance of WOLEDs.

2. Parameters to Characterize WOLEDs

2.1. Emission Colors

In general, the emission colors of WOLEDs are characterized by the Commission International de
L’Eclairage (CIE) chromaticity coordinates, color stability, CRI, and correlated color temperature (CCT).
In 1931, the International Commission on Illumination defined the Standard Observer for Colorimetry
and the 1931 CIE System of Colorimetry. As shown in Figure 1, the vertexes of the triangle are the
CIE coordinates of three primary red, green, and blue colors. In the middle area, the white light
equal-energy point is (0.33, 0.33). In fact, as long as the CIE coordinates of OLEDs are located near
(0.33, 0.33), the colors are considered to be white (e.g., (0.26, 0.27), (0.47, 0.43), (0.54, 0.39), (0.49, 0.41),
(0.36, 0.50) and (0.39, 0.53)) [31–36].

For the color stability, it is an important parameter to evaluate the color changes of WOLEDs
with the driving voltage/luminance changing [37,38]. Since WOLEDs are usually composed of
multiple emitters, the recombination zone will be changed when the voltage is altered, leading
to the color shift. WOLEDs usually exhibit a blue-shifted color phenomenon with the voltage
increasing because the blue emitters are excited by the higher energy at higher electric field [39–42].
Moreover, due to the different lifetime of each emitter in WOLEDs, the color stability can be affected
with the operating time increasing (e.g., the lifetime of the blue phosphorescent emitter iridium(III)
bis[(4,6-difluorophenyl)-pyridinato-N,C2 ′ ] picolinate (FIrpic) is very short, <1 h) [11].
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Figure 1. Diagram of the Commission International de L’Eclairage (CIE) chromaticity. 

The parameter of CRI is required for lighting applications since it indicates how well lighting 
sources could render colors of objects they illuminate, although CRI is not critical for OLEDs in full-
color displays [43]. The CRI is a measure of the color shift that an object undergoes when illuminated 
by the light source as compared with the color of the same object when illuminated by a reference 
source of comparable color temperature [44]. In other words, the CRI is the relative ability of a light 
source to replicate colors generated by a reference light source of the same color temperature and is 
determined by the light source’s spectrum. Thus, CRI is a quantitatively measurable index rather 
than a subjective one [45]. A reference source, such as black body radiation, is defined as having a 
CRI of 100 (this is why incandescent lamps have a CRI of 100, as they are almost blackbody radiators), 
and the test source with the same color temperature is compared against this. The values of CRI range 
from 0 to 100, with 100 representing no shift in color. White light sources are referenced to daylight, 
with incandescent lamps and natural sunlight possessing a CRI of 100, tungsten halogen lamps near 
95, fluorescent bulbs having ratings between 60 and 99, mercury lamps near 50, high-pressure sodium 
lamps about 20, and low-pressure sodium vapor lamps, which are monochromatic, have a CRI that 
is nearly 0. For a source to be human eye-friendly, a WOLED with CRI ≥80 is needed [46]. Since 
D’Andrade et al. took the first step to demonstrate that the CRI of WOLEDs could be greatly 
enhanced from 50 to 83 in 2002 [47], a great deal of attention has been dedicated to the improvement 
of CRI, which is expected to meet commercial requirements. In recent years, in order to satisfy the 
demand of high-quality lighting systems, such as those used for surgery, photography, and 
exhibitions of museums, WOLEDs with very-high CRI (≥90) have become extremely desirable [48]. 
As a matter of fact, some efforts have been made in the pursuit of very high-CRI WOLEDs [49–56]. 

CCT, measured in degrees Kelvin (K), is a specification of the absolute temperature of a 
blackbody whose chromaticity most nearly resembles that of the light source. To distinguish 
WOLEDs, warm light is usually about 2700 K, moving to neutral white at about 4000 K, and to cool 
white at 5000 K or more. As a matter of fact, warm-white and cool-white WOLEDs have been 
extensively reported [57–61]. Furthermore, to mimic sunlight, WOLEDs should exhibit a wide CCT 
span (2500–8000 K), since the sun possesses a time-changing CCT at different regions and times on 

Figure 1. Diagram of the Commission International de L’Eclairage (CIE) chromaticity.

The parameter of CRI is required for lighting applications since it indicates how well lighting
sources could render colors of objects they illuminate, although CRI is not critical for OLEDs in
full-color displays [43]. The CRI is a measure of the color shift that an object undergoes when
illuminated by the light source as compared with the color of the same object when illuminated by a
reference source of comparable color temperature [44]. In other words, the CRI is the relative ability of
a light source to replicate colors generated by a reference light source of the same color temperature
and is determined by the light source’s spectrum. Thus, CRI is a quantitatively measurable index
rather than a subjective one [45]. A reference source, such as black body radiation, is defined as having
a CRI of 100 (this is why incandescent lamps have a CRI of 100, as they are almost blackbody radiators),
and the test source with the same color temperature is compared against this. The values of CRI range
from 0 to 100, with 100 representing no shift in color. White light sources are referenced to daylight,
with incandescent lamps and natural sunlight possessing a CRI of 100, tungsten halogen lamps near 95,
fluorescent bulbs having ratings between 60 and 99, mercury lamps near 50, high-pressure sodium
lamps about 20, and low-pressure sodium vapor lamps, which are monochromatic, have a CRI that
is nearly 0. For a source to be human eye-friendly, a WOLED with CRI ≥80 is needed [46]. Since
D’Andrade et al. took the first step to demonstrate that the CRI of WOLEDs could be greatly enhanced
from 50 to 83 in 2002 [47], a great deal of attention has been dedicated to the improvement of CRI,
which is expected to meet commercial requirements. In recent years, in order to satisfy the demand
of high-quality lighting systems, such as those used for surgery, photography, and exhibitions of
museums, WOLEDs with very-high CRI (≥90) have become extremely desirable [48]. As a matter of
fact, some efforts have been made in the pursuit of very high-CRI WOLEDs [49–56].

CCT, measured in degrees Kelvin (K), is a specification of the absolute temperature of a blackbody
whose chromaticity most nearly resembles that of the light source. To distinguish WOLEDs, warm light
is usually about 2700 K, moving to neutral white at about 4000 K, and to cool white at 5000 K or more.
As a matter of fact, warm-white and cool-white WOLEDs have been extensively reported [57–61].
Furthermore, to mimic sunlight, WOLEDs should exhibit a wide CCT span (2500–8000 K), since the
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sun possesses a time-changing CCT at different regions and times on the earth (e.g., 2500 K at sunset,
3250 K at sunrise, and 5500 K at noon or 8000 K at noon in high-latitude countries) [20].

2.2. Emission Efficiency

In OLEDs, the emission efficiency can be analyzed by the EQE (external quantum efficiency),
CE (current efficiency), and PE. For EQE (ηext), it is expressed as [23]:

ηext = ηout · r · q · γ (1)

where ηout is the outcoupling factor, r is the fraction of excitons that can potentially radiatively decay, q
is the photoluminescence quantum efficiency (PLQY) of emitters, and γ is the charge balance (γ ≤ 1).
If emitters are set, the r and q will be decided. Moreover, the electronic procedure occurring inside the
device usually has no influence on ηout. Thus, from the perspective of device engineering, the ηext is
mostly sensitive to γ. On the other hand, the CE (ηL) is defined as [11]:

ηL = L/J = (LS)/I (2)

where L is the luminance, S is the emission area, and I is the current. Moreover, assuming the emission
pattern is the Lambertian type, the PE (ηP) is described as [11]:

ηP = (πηL)/U (3)

where U is the driving voltage. The connection between EQE and PE can be expressed as:

ηP ∝
ηext

U
(4)

Simply, PE is expressed as:

ηP ∝
γ

U
(5)

Therefore, to achieve high PE, γ should be high while U should be low. Due to the unfavorable
energy barriers between different layers together with the fact that electrons are minor charges in
organic materials, charges balance and transport are usually unsatisfactory [62–66]. Therefore, charges
should be not only well balanced but also effectively transported.

2.3. Lifetime

The lifetime of OLEDs usually means the time when the luminance decays to its half value. Kodak
company first proposed an equation to describe the lifetime [67]:

L0 × t1/2 = C (6)

where L0 is the initial luminance, t1/2 is the half-life and C is a constant. Although this equation is not
very accurate and many different equations have been proposed to characterize the lifetime, these
reported equations are still somewhat similar since they have the same conclusion that the higher
initial luminance will result in a shorter half-life. Currently, the most widely used and relatively
accurate equation is [68–70]:

L0
n × t1/2 = C (7)

where n is the acceleration coefficient. n depends on the materials set, device architectures, and
emission colors [71–73]. For practical uses, WOLEDs need to possess a long lifetime ≥10,000 h at
a high brightness ≥1000 cd/m2 as well as the fluorescent lamp efficiency (40–70 lm W−1). So far,
although a large number of companies have claimed that they are able to develop long-lifetime and
high-efficiency WOLEDs, detailed information of such products has not been released. In the published
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literature, long-lifetime WOLEDs are usually achieved by using conventional fluorescent emitters,
while no long-lifetime phosphorescent WOLED has been documented since there are no stable blue
phosphorescent emitters to date [74,75].

3. Fluorescent WOLEDs

3.1. Fluorescence and Phosphorescence

Based on adopted emitters, four types of WOLEDs have been usually reported, such as fluorescent,
phosphorescent, TADF, and hybrid WOLEDs. Due to the effect of spin statistics, when holes injected
from the anode meet electrons injected from the cathode, singlet and triplet excitons will be formed
with a ratio of 1:3 [76–78]. For conventional fluorescent emitters, only the singlet excitons (25%) can
emit light since the radiative decay of triplet excitons (75%) is spin forbidden, as shown in Figure 2a.
For phosphorescent emitters, they can not only harvest triplet excitons via the triplet-triplet energy
transfer, but can also harvest singlet excitons via the singlet-triplet intersystem crossing process (ISC)
due to the heavy-atom effect, leading to a maximum internal quantum efficiency (IQE) of 100% [79–81],
as shown in Figure 2a. In TADF emitters, triplet excitons can be harvested as delayed fluorescence
through their up-conversion from a lowest triplet state to the lowest singlet state by inducing efficient
reverse intersystem crossing (RISC) [82–84], as shown in Figure 2c. The molecular design of TADF
materials requires a small energy gap between the lowest triplet state and lowest singlet state, typically
less than 0.2 eV, to enhance thermal up-conversion [85]. On the other hand, triplet-triplet annihilation
(TTA, also known as triplet fusion) is important as it makes dark triplet states accessible for the
emission of p-type DF [86–89], as shown in Figure 2d. TTA is a bimolecular process that occurs
between two molecules in their lowest triplet excited state, which form one higher excited singlet,
triplet, or quintet state. If the formed excited state is a singlet, the TTA process can result in p-type
DF (a minimum of two triplet states to produce one singlet excited state). In a word, the maximum
theoretical IQE of fluorescent, phosphorescent, TADF, and TTA emitters are 25%, 100%, 100%, and
62.5% (25% + 75%/2), respectively.
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Figure 2. Exciton energy diagram and the possible decay ways of singlet and triplet excitons. T1, S1

and S0 represent the triplet energy, singlet energy, and ground state, respectively. (a) Fluorescence in
conventional fluorescent emitters; (b) Phosphorecence in phosphorescent emitters; (c) Fluorescence
and (thermally activated delayed fluorescence) TADF emitters; (d) Fluorescence and p-type delayed
fluorescence in triplet-triplet annihilation (TTA) based emitters.
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3.2. Device Architectures

Despite their different molecular weights, both polymer and small-molecule organic materials
can be used to develop WOLEDs. The solution-processed technique is required for polymer
WOLEDs [90–93], while the solution-processed and vacuum evaporation techniques can be applied to
small-molecule WOLEDs [94–96]. Herein, we mainly focused on small-molecule WOLEDs.

So far, a large number of device architectures have been designed to fabricate WOLEDs. According
to the number of emitting layers (EMLs), the device architectures can be simply classified into two
kinds, namely single-EML and multi-EML WOLEDs, as shown in Figure 3a–c. For single-EML
WOLEDs, two methods are usually adopted to generate the white emissions [97–99]. On one hand,
by managing the incomplete energy transfer from hosts to guests in EMLs, the host materials can
also function as the blue emitters to produce blue emissions, in which the concentration of guests
is generally low (e.g., <1%) to ensure the white emissions. On the other hand, the energy transfer
from hosts to guests is complete only where various-color guests are combined to generate the white
emissions. For multi-EML WOLEDs, their structures, fabrication procedures, and device engineering
methods are more complicated than single-EML WOLEDs. However, their performance is usually
more satisfactory, such as low turn on voltage, high efficiency, and desired white CIE coordinates.
Generally, all of these structures can be used to develop any type of WOLED. Therefore, the careful
manipulation of charges and excitons distribution in WOLEDs is key to the high performance.

For other structures (e.g., microcavity WOLEDs, down-conversation WOLEDs, and tandem
WOLEDs), attention is mainly devoted to other aspects besides the manipulation of charges and
excitons distribution. For example, the main issue for microcavity WOLEDs (Figure 3d) is how
to avoid the narrow and angular dependent emission characteristics, since the commonly used
thin metal layers as the electrodes play a detrimental role in these two factors [100–105]. For
down-conversation WOLEDs (Figure 3e), the main issue is how to develop an efficient blue OLED,
since the down-conversation layer only can be excited by absorbing the blue emission [106–109]. For
tandem WOLEDs (Figure 3f), the main focus is how to design an effective charge generation layer
(CGL), since the CGL plays a significant role in ensuring high efficiency and long lifetime [110–119].
Based on these facts, we would like to only briefly introduce these structures in this review.
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Figure 3. Schematic diagram of device architectures of WOLEDs. HIL is the hole injection layer,
HTL is the hole transport layer, ETL is the electron transport layer, EIL is the electron injection layer,
DC-EML is the down-conversation EML, B is blue, G is green, and R is red. (a) Single-EML WOLEDs;
(b) Double-EML WOLEDs; (c) Triple-EML WOLEDs; (d) Microcavity WOLEDs; (e) Down-conversation
WOLEDs; (f) Tandem WOLEDs.
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3.3. High-Efficiency Fluorescent WOLEDs

Although the theoretical maximum EQE for conventional fluorescent emitters is 5%, there are
some strategies that can break this limitation in fluorescent WOLEDs, achieving high efficiency.
A representative strategy was proposed by Yang et al. for their device, in which they employed
a deep blue-emitting beryllium complex bis(2-(2-hydroxyphenyl)-pyridine)beryllium (Bepp2)
doped with a wide-bandwidth orange-emitting fluorescent dye 4-(dicyanomethylene)-2-methyl-6-
(4-dimethylaminostyryl)-4-H-pyran (DCM) through incomplete energy transfer from the blue host to
the orange dopant [120]. They first fabricated a single-EML WOLED with the structure of ITO/4,4-
bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPB, 400 nm)/Bepp2: DCM (0.5%, 45 nm)/LiF/Al.
However, with an increase in blue-emission intensity, brightness-dependent electroluminescent (EL)
spectra became more obvious than the orange dopant as the brightness increased. Since the EL of this
device originated from the uniformly doped layer, the relative change in EL intensity for blue and
orange emissions was partly attributed to the requirement of higher energy excitation for blue light.
Besides, the competition between efficient energy transfer from the blue host to the orange dopant and
exciton formation on the orange dopant (DCM) by charge trapping would have a considerable effect
on the relative emission intensity. To achieve a WOLED with stable colors, a device was fabricated and
designed by decreasing the doping concentration from 0.5 to 0.2 wt % within 3 nm of EML adjacent
to the HTL/EML interface and by maintaining the total thickness of the doped EML at 45 nm. The
structure is ITO/NPB (400 nm)/Bepp2: DCM (0.2 wt %, 3 nm)/Bepp2: DCM (0.5 wt %, 42 nm)/LiF/Al.
Within the luminance of 10–10,000 cd/m2, the device shows a very pure-white and stable color with the
CIE coordinates of (0.334 ± 0.002, 0.337 ± 0.007), close to the white-equivalent point of (0.333, 0.333),
as shown in Figure 4. The CRI is as high as 79–81, with a CCT between 5400 and 5600 K. Moreover,
the device gave the maximum forward-viewing EQE and PE of 5.6% and 9.2 lm W−1, respectively,
thus ranking among the best fluorescent WOLEDs fabricated to date.
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3.4. Long-Lifetime Fluorescent WOLEDs

Despite the fact that fluorescent WOLEDs exhibit low efficiencies [121,122], long-lifetime devices
are usually reported by fluorescent structures due to the stable fluorophorees, particularly for blue
fluorophorees. In fact, the lifetime of organic devices remains a major challenge that must be overcome
prior to the wide application of WOLEDs technology. In 2011, Duan et al. presented a strategy to
achieve WOLEDs with an extremely long lifetime by the wise control of the recombination zone [123].
In their device, a blue EML of 6,6′-(1,2-ethenediyl)bis(N-2-naphthalenyl-Nphenyl-2-naphthalenamine
(ENPN) doped 9-(1-naphthyl)-10-(2-naphthyl)-anthracene (α,β-ADN) was deposited on top of the
mixed host blue EML to prevent hole penetration into the ETL and to attain better confinement of
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carrier recombination. Therefore, the utilization of double blue EMLs can stabilize the blue emission,
which is the key feature to their device. Figure 5a depicts the structure: ITO/2-TNATA 100 nm/NPB
20 nm/78% α,β-ADN 20% NPB 2% 3,11-Diphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene
(DDAF) 10 nm/78% α,β-ADN: 20% NPB: 2% ENPN10 nm/98% α,β-ADN: 2% ENPN 15 nm/Alq3

20 nm/LiF/Al, where the 10 nm mixed-host blue EML (78% α,β-ADN: 20% NPB: 2% ENPN) was
utilized to broaden the recombination zone and dilute the concentration of any degradation related
quenching species, the second 15 nm blue EML (98% α,β-ADN: 2% ENPN) was then deposited
onto the mixed-host blue EML to achieve better charge confinement, and a mixed-host yellow EML
(78% α,β-ADN 20% NPB 2% DDAF) was combined to furnish the white emission. As a result, the
WOLED showed a maximum CE of 14.7 cd A−1 (Figure 5b). Remarkably, a lifetime of over 150,000 h
at an initial brightness of 1000 cd m−2 was obtained (Figure 5c), which is the longest value among
WOLEDs in the published literature so far. Furthermore, the EL spectra of the WOLED showed almost
no color-shifting after accelerated aging (Figure 5d).
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4. Phosphorescent WOLEDs

4.1. Single-EML Phosphorescent WOLEDs

4.1.1. Single-EML Phosphorescent WOLEDs with Unipolar Hosts

Similar to fluorescent WOLEDs, phosphorescent WOLEDs can also be generally classified into
single-EML and multi-EML phosphorescent WOLEDs. However, unlike single-EML fluorescent
WOLEDs, there is usually only one approach to realize single-EML phosphorescent WOLEDs, namely
using various-color guests to generate the white emissions (the energy transfer from hosts to guests
is complete).



Materials 2017, 10, 1378 9 of 57

A strategy to achieve single-EML phosphorescent WOLEDs is using n-type hosts doped with
various-color guests. For example, D’Andrade et al. co-doped bis(4′,6′-difluorophenylpyridinato)
tetrakis(1-pyrazolyl)borate (FIr6, blue phosphor), Ir(ppy)3 (green phosphor), and iridium(III)
bis(2-phenyl quinoly-N,C2′) acetylacetonate (PQIr, red phosphor) into the n-type host p-bis(triphenylsilyly)
benzene (UGH2) with a wide energy gap, developing a triple-doped single-EML WOLED, as shown
in Figure 6 [124]. The WOLED can exhibit a maximum total PE of 42 lm W−1, which was the highest
among WOLEDs at that time. The high performance can be attributed to: (1) the use of a thin EML
(9 nm), which can reduce the voltage, enhancing the PE; (2) 4,4′,4′ ′-tri(9-carbazoyl) triphenylamine
(TCTA) and 2,2′,2′ ′-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) functioning as the
HTL and ETL, respectively, forming a charge/exciton structure. This is because the lowest unoccupied
molecular orbital (LUMO) of TCTA is≥0.3 eV higher than that of the host and guests in the EML, while
the highest occupied molecular orbital (HOMO) of TPBi is 0.2 eV higher than FIr6. Also, the energy
gap of TCTA and TPBi are 3.4 and 3.5 eV, respectively, which are much higher than those of FIr6.
Thus, the combined TCTA and TPBi effectively prevent the charges and excitons transporting from the
EML to HTL or ETL. Finally, (3) charges can be directly injected into FIr6 and then formed excitons,
eliminating the energy transfer from the host UGH2 to the guest FIr6, which can reduce the loss of
exchange energy in the host-guest energy transfer process.
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Another strategy to achieve single-EML phosphorescent WOLEDs is using p-type hosts doped
with various-color guests. Wang et al. incorporated FIrpic (blue phosphor) and bis(2-(9,9-diethyl-9H-
fluoren-2-yl)-1-phenyl-1H benzoimidazole-N,C3)iridium(acetylacetonate) [(fbi)2Ir(acac), orange phosphor]
into the p-type host 1,3-bis(9-carbazolyl)benzene (mCP), constructing a high-efficiency single-EML
WOLED, as shown in Figure 7 [125]. The device could exhibit a maximum total PE of 72.2 lm W−1,
which was the highest among single-EML WOLEDs at that time. At 500 cd m−2, the total efficiency
qA 32.3 lm W−1. In addition, a CRI of 71 could be obtained at 13 V. The key feature is the careful
manipulation of two exciton-formation modes, namely host-guest energy transfer for FIrpic and direct
exciton formation for (fbi)2Ir(acac), within an energetic, well-like, single-emissive region. The energy
on mCP can be easily transferred to FIrpic, reducing the unfavorable energy loss by the mCP emission.
Particularly, the multifunctional orange dopant (fbi)2Ir(acac) (serving as either hole-trapping site
or electron-transporting channel) is essential to this concept, as it can make an improved charge
balance and broaden the recombination zone in the p-type host mCP-based EML. Thus, there are
two parallel pathways to channel the overall excitons to both dopants within the EML, leading to an
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improved charge balance and further reduction of the unfavorable energy losses. Hence, an extremely
high-efficiency WOLED with nearly 100% IQE was realized. Subsequently, they combined this efficient
WOLED as the single unit and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP): Li/MoO3 as the
CGL, developing a high-efficiency tandem WOLED with a maximum PE of 45.2 lm W−1 and a CE of
110.9 cd A−1 [126].
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4.1.2. Single-EML Phosphorescent WOLEDs with Bipolar Hosts

Although single-EML phosphorescent WOLEDs with unipolar hosts have been demonstrated
to show high efficiency, poor color-stability and serious efficiency roll-off are commonly difficult
to avoid [127–130]. The unsatisfactory performance can be attributed to the intrinsic quality of
unipolar hosts, since they usually only transport holes or electrons, resulting in charge accumulation/
recombination occurring close to the EML/ETL or HTL/EML interface. Thus, narrow recombination
zones and then TTA, triplet-polaron quenching (TPQ), and exciton diffusion may occur, which would
be detrimental to the performance.

To solve these issues, the introduction of single-EML WOLEDs employing bipolar hosts is one
of the most ideal strategies [131]. As bipolar materials facilitate both hole and electron transport,
more balanced charges and broader recombination regions within the EMLs can be guaranteed,
resulting in devices with the potential of higher efficiency, lower efficiency roll-off, and more stable
color. For example, Liu et al. built a single-EML WOLED by co-doping FIrpic and bis(2-phenyl-4,5-
dimethylpyridinato)[2-(biphenyl-3-yl)pyridinato] iridium(III) [(Ir(dmppy)2(dpp)] into 2,6-bis(3-
(carbazol-9-yl)phenyl)pyridine (26DCzPPy), simultaneously achieving simplicity, extreme efficiency,
reduced efficiency roll-off, and excellent color-stability [132]. The configuration of their WOLED was
as follows: ITO/MeO-TPD (N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine): F4-TCNQ (tetrafluoro-
tetracyanoqino dimethane) (100 nm, 4%)/TAPC (1-bis[4-[N,N-di(4-tolyl)amino]phenyl]-cyclohexane,
20 nm)/26DCzPPy: FIrpic: Ir(dmppy)2(dpp) (11 nm, 1: 22.5%: 1.1%)/TmPyPB (1,3,5-tri(m-pyrid-3-yl-
phenyl)benzene, 50 nm)/LiF/Al. The device exhibited total efficiencies of 111.7 cd A−1 and
75.5 lm W−1 at 1000 cd m−2, as shown in Figure 8a. Besides, a maximum CE and PE of 113.6 cd A−1 and
92.5 lm W−1 were obtained, respectively, only slightly decreasing to 101.3 cd A−1 and 58.8 lm W−1 even
at 5000 cd m−2, indicating a low efficiency roll-off. Additionally, the color variation in the whole range
of luminances was (0.00, 0.00), thus representing the first single-EML WOLED with an extremely stable
color (Figure 8a inset). Factors for the high performance were discussed: (1) Two-complementary
color WOLEDs can show higher efficiency compared with three-color WOLEDs; (2) The bipolar
host 26DCzPPy plays a vital role due to its high T1 (2.71 eV), similar hole and electron mobility
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(~10−5 cm2/(V s)), and suitable HOMO and LUMO; (3) A carrier/exciton-confining structure was
used; (4) The appropriate thickness of EML (11 nm) was optimized; (5) Both hole and electron
transport was greatly reduced due to the two multifunctional guests, resulting in the recombination
ratio remaining unchanged with the raising luminance, which is beneficial to obtain stable colors.
This is because the charge transport can be slowed down by the host-guest energy level discrepancy
in the EML, and the recombination ratio can be constant, greatly stabilizing the color (Figure 8b).
By replacing Ir(dmppy)2(dpp) with iridium(III) diazine complexes [(MPPZ)2Ir(acac)], which has a
HOMO of 5.31 eV and a LUMO of 3.13 eV, the device showed an unstable color. This is because
(MPPZ)2Ir(acac) cannot lower the hole mobility due to a low concentration (1.1%) together with the
fact that (MPPZ)2Ir(acac) has a similar HOMO with TAPC. Besides, by replacing Ir(dmppy)2(dpp) with
tris(1-phenylisoquinolinolato-C2,N) iridium(III) [Ir(piq)3], which has a HOMO of 5.0 eV and a LUMO
of 2.7 eV, an unstable color was obtained. This is because Ir(piq)3 cannot lower the electron mobility
owing to the low concentration (1.1%) and Ir(piq)3 has a similar LUMO with TmPyPB. Therefore,
the harness of charges and excitons distribution by using multifunctional guests is crucial for stabilizing
the color.
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4.1.3. Single-EML Phosphorescent WOLEDs with Solely Exciplex Hosts

Apart from the abovementioned unipolar or bipolar hosts, the mixture of p-type and n-type
materials to form exciplex hosts is also an effective strategy to demonstrate high-performance
single-EML phosphorescent WOLEDs. This is because the charge injection barrier issue can be
nearly eliminated and give an efficient TADF up-conversion due to the intermolecular donor-acceptor
construction and sufficiently small S1-T1 splitting (<0.1 eV). Furthermore, the relatively high T1 of
exciplex will reduce the energy back-transfer (i.e., from T1, guest to T1, host) rate constant, preventing
the exciton leakage [12]. Hence, exciplex hosts can possibly make a tradeoff among the 100% IQE,
low voltage, and good exciton confinement in the EML.

Wu et al. reported a single-EML WOLED by using donor mCP and acceptor 4,6-bis[3,5-
(dipyrid-4-yl)phenyl]-2-methylpyrimidine (B4PyMPM) as the solely exciplex host, obtaining a
forward-viewing PE of 105.0 lm W−1, CE of 83.6 cd A−1, and EQE of 28.1% [12]. The configuration for
this WOLED is as follows: ITO (110 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/mCP: 50 wt %
B4PyMPM: 15 wt % FIrpic: 0.2 wt % (acetylacetonato)bis[2-(thieno[3,2-c]pyridin-4-yl)phenyl]iridium(III)
(PO-01) (20 nm)/B4PyMPM (50 nm)/Liq (0.8 nm)/Al (120 nm). The high performance can be explained
as follows: (1) The exciplex was exclusively employed as the host and at the same time co-doped it
with two-color phosphors, prohibiting the shortcomings of low efficiency and pronounced efficiency
roll-off; (2) By using energy level matching HTL and ETL, the structural heterogeneity was reduced.
Moreover, high hole carrier mobility of mCP (5× 10−4 cm2 V−1 s−1) and electron mobility of B4PyMPM
(1 × 10−4 cm2 V−1 s−1) were used. Hence, low voltages were realized (e.g., 1 cd m−2 at 2.5 V);
(3) The perfectly confined excitons fully eliminated the exciton leakage from the emission zone,
enhancing the efficacy. As shown in Figure 9 left, if acceptor molecules with low T1 were employed,
some of the excitons from the exciton formation zone would be trapped by the acceptor (transfer
mode I). Hence, excitons transferred to the acceptor molecules would decay via a nonradiative path
owing to their rather low photoluminescence quantum yields (<20%), thereby causing undesirable
exciton leakage and accordingly low efficiency. As shown in Figure 9 right, if acceptor molecules with
high T1 were employed, the leakage phenomenon would be suppressed (transfer mode II). Hence, all
excitons are transferred only to the emitter molecules via either long-range dipole-dipole coupling
(Förster energy transfer) or short-range exchange interaction (Dexter energy transfer). Thus, the emitter
molecules can utilize all the excitons and consequently deliver a 100% IQE.
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4.2. Multi-EML Phosphorescent WOLEDs

4.2.1. Carrier- and Exciton-Confining Structure

For multi-EML phosphorescent WOLEDs, a great deal of efficient device structures have been
reported. One of the most successful strategies is the adoption of a carrier- and exciton-confining
structure in WOLEDs by Su et al., in which the device showed high efficiency and reduced efficiency
roll-off [133]. The WOLED had the configuration of ITO/MCC-PC (20 nm)/bis(m-di-p-tolylaminophenyl)-
1,10-biphenyl (3DTAPBP, 20 nm)/TCTA: FIrpic (4.75 nm)/TCTA: PQIr (0.25 nm)/DCzPPy:
PQIr (0.25 nm)/DCzPPy: FIrpic (4.75 nm)/1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPB,
50 nm)/LiF/Al, as shown in Figure 10a. Without the use of any outcoupling techniques, the device
showed a PE of 53 lm W−1 at 100 cd m−2 in the forward direction, and rolled off slightly to 44 lm W−1

at 1000 cd m−2, which were the highest values ever observed for WOLEDs at that time. Factors
contributing to the efficient white-light emission are: (1) To obtain low operating voltage, thin EMLs
(10 nm) and a stepped progression of the HOMO and LUMO energy levels of the HTL (3DTAPBP), EML
[TCTA: FIrpic (5 nm)/DCzPPy: FIrpic (5 nm)], and ETL (BmPyPB) were employed, ensuring a high
PE; (2) A double-EML and a bipolar host DCzPPy were employed to broaden the exciton-formation
zone, and thus reduce efficiency roll-off; (3) The HTL (3DTAPBP) had a wide energy gap of 3.57 eV
and high-lying LUMO of 2.13 eV, while the ETL (BmPyPB) possessed a wide energy gap of 4.05 eV and
low-lying HOMO of 6.67 eV, which could effectively confine carriers and triplet excitons, as shown in
Figure 10b. By optimizing the device structure, a FIrpic-based blue OLED exhibited a PE of 46 lm W−1

at 1000 cd m−2, which was the highest PE achieved for a blue electrophosphorescent device at that
time. After obtaining the efficient blue device, they inserted two ultrathin orange EMLs TCTA: PQIr
(0.25 nm)/DCzPPy: PQIr (0.25 nm) between the double EMLs of the blue OLED, generating the white
emission. Moreover, the CIE coordinates were (0.341, 0.396) at 100 cd m−2, with a shift slightly to
(0.335, 0.396) at 1000 cd m−2, indicating a stable color.
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4.2.2. Combining Blue EML Surrounded by Green/Red EML Structure and Outcoupling Technology

In general, the exciton energy levels (T1 and S1) of blue phosphors are higher than those of green
or red phosphors. Hence, the energy on blue phosphors can be transferred to low-energy green or red
phosphors. In this way, the blue host-guest system is positioned at the main exciton formation region
and then surrounded by green/red EMLs, which can completely harvest the generated excitons.

In 2009, Reineke et al. combined this rational strategy and outcoupling technology, demonstrating
a WOLED with fluorescent tube efficiency for the first time [134]. Figure 11a depicts the structure:
ITO/MeO-TPD: NDP-2 (60 nm)/NPB (10 nm)/TCTA: 10% Ir(MDQ)2(acac) (6 nm)/TCTA (2 nm)/TPBi:
20% FIrpic (4 nm)/TPBi (2 nm)/TPBi: 8% Ir(ppy)3 (6 nm)/TPBi (10 nm)/Bphen: Cs/Al, where
Bphen is 4,7-diphenyl-1,10-phenanthroline, and Ir(MDQ)2(acac) is iridium(III) bis(2-methyldibenzo[f,h]
quinoxaline) (acetylacetonate). The high performance could be attributed to the following factors:
(1) The blue phosphor was positioned within the EML and its combination with a carefully chosen
host material, leading to the exciton formation region being at the interface of a double-EML structure;
(2) The blue host-guest system was surrounded by red and green sublayers of the EML to harvest
unused excitons; (3) Holes and electrons were injected without facing any energy barrier into the
EML from NPB to TCTA: Ir(MDQ)2(acac) and from TPBi to TPBi: Ir(ppy)3, respectively, which kept
the operating voltage low; (4) The outermost layers in contact with the electrodes were chemically
p- and n-doped, which reduced ohmic losses to a negligible level; (5) 2 nm TCTA and 2 nm TPBi were
used as the thin intrinsic interlayers to separate the different sublayers, decoupling the sublayers from
unwanted Förster energy transfer. Therefore, excitons created in the blue region on host or dopant
had various decay channels. Without outcoupling enhancement, 30 and 33 lm W−1 were achieved in
a forward direction of 1000 cd m−2, respectively, which corresponds to 13.1% EQE for a device with
low-refractive-index glass substrates (CRI = 80, CIE: (0.45, 0.47)) and 14.4% EQE for a device with
high-refractive-index substrates (CRI = 80, CIE: (0.44, 0.46)).

For the different efficiency, it can be attributed to the fact that high-refractive-index substrates can
substantially increase the amount of light coupled from the organic layers into the glass substrate (up to
80%), as shown in Figure 11b left. This is because light will partly be reflected because of total internal
reflection at the organic (refractive index n: 1.7–1.9)/substrate (n: 1.51) interface (i.e., organic modes)
and substrate/air (n: 1) interface (i.e., substrate modes), if a low-refractive-index substrate is used.
By increasing n of the substrate to 1.78, the index mismatch between organic materials and substrate
vanishes, enhancing light coupling into the high-refractive-index glass. Therefore, all photons guided
to organic modes by total internal reflection at the organic/glass interface in the low-refractive-index
case are entering the glass substrate. To further enhance the efficiency, shaped substrates have been
used (i.e., a pattern of pyramids with period of 0.5 mm achieved by cutting 90◦ grooves into a high
index glass, Figure 11b right), which enables the coupling of light under high angles of incidence
(to the substrate surface normal). As a consequence, device with high-refractive-index substrates
achieves 26% EQE and 63 lm W−1. Moreover, to avoid plasmonic losses to the metal (i.e., the emitting
dipoles couple to surface plasmons of the reflective metal), the efficiency can be increased further by
placing the EML further away from the reflective cathode. This is because plasmonic losses are the
dominating loss channel when the emission takes place in the proximity of the metal. This impact
decreases with greater distances between the EML and cathode, and drops to a negligible level for
distances >200 nm. Besides, if the EML is placed in the second antinode of the reflective metal
cathode, OLEDs exhibit a more direct emission, which makes the light outcoupling of substrate modes
easier. Hence, 205 and 200 nm ETLs have been prepared to best fit the second outcoupling maximum.
Taking the three outcoupling strategies into account (i.e., reducing the organic modes, substrate
modes, and plasmonic losses), 90 lm W−1 (34% EQE, CRI = 69, CIE: (0.41, 0.49)) and 87 lm W−1 (34%
EQE, CRI = 72, CIE: (0.43, 0.49)) are achieved at 1000 cd m−2 for a device with high-refractive-index
substrates comprising 205 and 210 nm ETLs, respectively. Therefore, compared with the WOLED
without outcoupling technology, the efficiency of the WOLED with outcoupling technologies shows
~300% enhancement. In a word, by using the blue EML surrounded by a green/red EML structure and
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outcoupling technology, for the first time, WOLEDs with efficiencies approaching 100 lm W−1 even at
high brightness are possible.

Materials 2017, 10, 1378  15 of 56 

 

 
Figure 11. (a) Device structure of the WOLED and the proposed energy level. (b) Left: a cross-section 
of an OLED to illustrate the light propagation. Solid lines indicate modes escaping the device to the 
forward hemisphere; dashed lines represent trapped modes. Right: a large half-sphere and a 
patterned surface can be applied to increase light outcoupling. Reproduced from Reference [134]. 

4.2.3. Single-Host System Structure 

Since the synthesis of universal hosts is still a challenge, several different hosts are usually 
needed for multi-EML phosphorescent WOLEDs (e.g., three hosts for blue, green, and red guests). 
As a consequence, more structural heterogeneity, more evaporation sources, longer fabrication 
processes, and more device engineering methods are necessary. Therefore, the introduction of a 
single host is an alternative strategy that can alleviate these difficulties.  

Wang et al. used mCP as the single host, arranged the place of three primary-color emitters and 
manipulated the charges and excitons distribution, developing two high-efficiency, high-CRI, and 
stable-color WOLEDs [135]. As displayed in Figure 12, the first WOLED has a “blue-green-red” 
structure: ITO/MoO3/NPB/mCP: 7% bis(2,4-diphenylquinolyl-N,C2’)iridium(acetylacetonate) 
[(PPQ)2Ir(acac), 7.5 nm)]/mCP: 8.5% Ir(ppy)3 (8.5 nm)/mCP: 8% FIrpic (4 nm)/TAZ/LiF/Al, while the 
second WOLED has a “blue-green/red” structure: ITO/MoO3/NPB/mCP: 8.5% Ir(ppy)3: 1% 
(PPQ)2Ir(acac) (11 nm)/mCP: 8% FIrpic (4 nm)/TAZ/LiF/Al. The first white device exhibited a 
maximum forward-viewing PE of 41.3 lm W−1, EQE of 20.1%, CRI of 85, and small CIE variation of 
(0.01, 0.01) during 500–10,000 cd m−2. The second white device showed a maximum forward-viewing 
PE of 37.3 lm W−1, EQE of 19.1%, CRI of 80, and no color shift of (0.00, 0.00) during 500–10,000 cd m−2. 
The reasons for the high performance can be explained as follows: (1) The distribution of different 
emitters in multiple regions within a single-host system reduces structural heterogeneity and 
facilitates charge injection and transport between different emissive centers. Moreover, it allows 
flexible manipulation of each emissive centers as well as precious control of the exciton or charge to 
enhance the EL performance; (2) Placing the high-energy blue phosphor closest to the main 
recombination zone, followed by the long and longer wavelength phosphors, ensures that the 
excitons formed can diffuse throughout the emissive region to produce a desired output color 
balance. Additionally, the exciton-formation region can be broadened, and thus enhance the device 

Figure 11. (a) Device structure of the WOLED and the proposed energy level. (b) Left: a cross-section
of an OLED to illustrate the light propagation. Solid lines indicate modes escaping the device to the
forward hemisphere; dashed lines represent trapped modes. Right: a large half-sphere and a patterned
surface can be applied to increase light outcoupling. Reproduced from Reference [134].

4.2.3. Single-Host System Structure

Since the synthesis of universal hosts is still a challenge, several different hosts are usually needed
for multi-EML phosphorescent WOLEDs (e.g., three hosts for blue, green, and red guests). As a
consequence, more structural heterogeneity, more evaporation sources, longer fabrication processes,
and more device engineering methods are necessary. Therefore, the introduction of a single host is an
alternative strategy that can alleviate these difficulties.

Wang et al. used mCP as the single host, arranged the place of three primary-color emitters and
manipulated the charges and excitons distribution, developing two high-efficiency, high-CRI, and
stable-color WOLEDs [135]. As displayed in Figure 12, the first WOLED has a “blue-green-red”
structure: ITO/MoO3/NPB/mCP: 7% bis(2,4-diphenylquinolyl-N,C2 ′ )iridium(acetylacetonate)
[(PPQ)2Ir(acac), 7.5 nm)]/mCP: 8.5% Ir(ppy)3 (8.5 nm)/mCP: 8% FIrpic (4 nm)/TAZ/LiF/Al, while
the second WOLED has a “blue-green/red” structure: ITO/MoO3/NPB/mCP: 8.5% Ir(ppy)3: 1%
(PPQ)2Ir(acac) (11 nm)/mCP: 8% FIrpic (4 nm)/TAZ/LiF/Al. The first white device exhibited a
maximum forward-viewing PE of 41.3 lm W−1, EQE of 20.1%, CRI of 85, and small CIE variation of
(0.01, 0.01) during 500–10,000 cd m−2. The second white device showed a maximum forward-viewing
PE of 37.3 lm W−1, EQE of 19.1%, CRI of 80, and no color shift of (0.00, 0.00) during 500–10,000 cd m−2.
The reasons for the high performance can be explained as follows: (1) The distribution of different
emitters in multiple regions within a single-host system reduces structural heterogeneity and facilitates
charge injection and transport between different emissive centers. Moreover, it allows flexible
manipulation of each emissive centers as well as precious control of the exciton or charge to enhance
the EL performance; (2) Placing the high-energy blue phosphor closest to the main recombination
zone, followed by the long and longer wavelength phosphors, ensures that the excitons formed can
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diffuse throughout the emissive region to produce a desired output color balance. Additionally,
the exciton-formation region can be broadened, and thus enhance the device efficiency by lowering
the local triplet accumulation; (3) For the first WOLED, due to the high concentration of red phosphor
(7%), (PPQ)2Ir(acac) could easily trap the charges. Hence, with the voltage increasing, (PPQ)2Ir(acac)
could harvest more excitons to generate a red emission, leading to the red-shifted color. To stabilize the
color, the low concentration (1%) (PPQ)2Ir(acac) was doped into the green EML in the second WOLED,
forming a mixed green/red WML. As a result, the red emission generated by the self-charge-trapping
effect of (PPQ)2Ir(acac), obtaining stable colors.
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4.2.4. Triplet Exciton Conversion Structure

For multi-EML phosphorescent WOLEDs, the careful management of the energy transfer
between the adjacent EMLs is necessary for achieving high performance, since the high-energy
excitons on phosphors with shorter wavelengths are readily transferred to low-energy phosphors
with longer wavelengths. In 2003, Chang et al. proposed a triplet exciton conversion strategy
to develop four-color WOLEDs, in which the emission efficiency of yellow and red phosphors
is determined by the green phosphor [136]. In their device, the key for the high efficiency was
the effective exciton gathering by the green phosphor followed by efficient energy transfer to an
emitter with a lower energy. Figure 13 depicts the WOLED architecture: ITO/MoO3 (1 nm)/CBP:
Ir(MDQ)2(acac): iridium(III) bis(2-phenylpyridine)-(acetylacetonate) [Ir(ppy)2(acac), 17 nm]/CBP:
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iridium(III) bis(2 phenylbenzothiozolato N,C2 ′ )(acetylacetonate) [Ir(BT)2(acac)]: Ir(ppy)2(acac)
(3.5 nm)/CBP: Ir(ppy)2(acac) (3 nm)/CBP: FIrpic (20 nm)/TPBi (55 nm)/LiF/Al. The device exhibited
an EQE of 24.5% at 1000 cd m−2 with a CRI of 81, and an EQE of 20.4% at 5000 cd m−2 with a CRI
of 85. The high performance can be explained as follows: (1) The main exciton generation zone was
located near the CBP/TPBi interface; in addition, both CBP and TPBi possess a wide energy gap as
well as high T1, confining excitons within emitters; (2) Since FIrpic has the closest energy levels to
CBP and TPBi, direct exciton formation on FIrpic is unlikely, and it is critical to place FIrpic closest
to the CBP/TPBi interface to harvest excitons first; (3) Lower-energy green, yellow, and red emitters
were placed sequentially next to FIrpic to harvest excitons in a cascaded fashion in the single CBP host.
Hence, only a single site for exciton generation and recombination was available, as no other barrier
layers that could induce charge accumulation were introduced, avoiding TPQ and polaron-polaron
quenching; (4) Since there was no interlayer between adjacent EMLs, surplus excitons readily diffused
into the adjacent layer with a lower energy emitter, maximizing the efficiency.
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4.2.5. Incorporating Outcoupling Technology with Energy Cascade Structure

Since there is a limit to improving the material efficiency and fabrication technology,
the incorporation of outcoupling technology with an efficient structure is an effective strategy.
Therefore, it is very important to improve the light extraction efficiency by improving outcoupling
from the conventional device, because the light outcoupling is only ~20% in the conventional OLED
architecture [137–140]. In general, the majority of internally generated light is confined in the substrate
and waveguide modes due to the index mismatch of multiple layers, or is lost by absorption and
surface plasmon polaritons of metal electrodes [141–146].

Ou et al. used a novel approach for broadband quasi-omnidirectional light extraction with
reduced energy loss during electron-photon conversion [9]. As shown in Figure 14a, both sides of
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the ITO glass substrate were patterned with deterministic aperiodic nanostructures (DANs). Then,
organic layers and the metal electrode were deposited onto the substrate. Therefore, the key feature
is using DANs with long-range disorder and short-range order that significantly reduce the optical
confinement without spectral distortion. When utilizing the nanostructured ITO glass with DANs,
a higher value on transmittance with ~7% enhancement was yielded over the entire visible spectrum.
This is because the broad distribution of periodicity and the gradient refractive index profiles of the
sub-wavelength DAN pattern can fully interact with incident light and enable the reduced reflection
loss. For the function of DANs, the internal DAN promotes the outcoupling of the waveguide-mode
light from the organic layers and ITO electrode into the glass substrate, while the external DAN enables
the extraction of light trapped in glass due to the total internal reflection. As a result, this outcoupling
technology can greatly enhance the efficiency (2.31 times).

Further, they proposed a multilayer energy cascade structure of ITO/PEDOT: PSS/TAPC
(40 nm)/TCTA(5 nm)/FIrpic: mCP (8 wt %, 19 nm)/PO-01: mCP (6 wt %, 1 nm)/TmPyPB (25 nm)/LiF:
TmPyPB (25 wt %, 30 nm)/LiF (0.7 nm)/Al (100 nm), as shown in Figure 14b. For this structure,
the insertion of an ultrathin TCTA and an n-doped EIL (LiF: TmPyPB) was crucial to the device
performance. Moreover, the multilayer emitter was nearly barrier-free with the reduction of ohmic
losses on a negligible level, which can energetically facilitate hole transport from TAPC to FIrpic:
mCP and electron transport through TmPyPB to PO-01: mCP, respectively. Without the outcoupling
enhancement, the WOLED exhibited the EQE and PE of 23.6% and 60.0 lm W−1 at 1000 cd m−2

(<4 V), respectively. By incorporating the novel outcoupling technology with the efficient structure,
the WOLED exhibited the EQE and PE of 54.6% and 123.4 lm W−1 at 1000 cd m−2, respectively, which
represents the most efficient WOLED in the revealed literature so far. Moreover, this OLED structure
offers an extremely small efficiency roll-off at high luminance and superior angular color stability over
the visible wavelength range.
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5. TADF WOLEDs

5.1. WOLEDs with All TADF Emitters

Similar to phosphorescent WOLEDs, TADF WOLEDs show promise in achieving high
performance, since TADF emitters can (i) harness triplet excitons; (ii) exhibit excellent efficiency;
(iii) have intrinsically advantages in obtaining high T1 because of the decreased singlet-triplet splits;
(iv) usually show broad emission spectra with a rather large full width at half-maximum of about
100 nm, which is wider than that of conventional fluorescent materials because of their charge-transfer
nature [147–155].

To develop TADF WOLEDs, a rational strategy is the combination of blue, green, and red TADF
emitters. In 2014, Adachi et al. used this strategy to realize a high-efficiency TADF WOLED [156].
Figure 15 depicts the device structure: ITO/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile
(HAT-CN, 10 nm)/9,9′,9′ ′-triphenyl-9H,9′H,9′ ′H-3,3′:6′,3′ ′-tercarbazole (Tris-PCz, 35 nm)/10 wt %
1,2,3,4-tetrakis(carbazol-9-yl)-5,6-dicyanobenzene (4CzPN): 3,3-Di(9H-carbazol-9-yl)biphenyl (mCBP,
green EML) (x nm)/6 wt % 4CzPN: 2 wt % 41,4-dicyano-2,3,5,6-tetrakis(3,6-diphenylcarbazol-9-yl)
benzene (CzTPN-Ph): mCBP (red EML) (y nm)/10 wt % 9-(3-(9H-carbazol-9-yl)-9-(4-(4,6-diphenyl-
1,3,5-triazin-2-yl)phenyl)-9H-carbazol-6-yl) -9H-carbazole (3CzTRZ): 2,8-bis(diphenylphosphoryl)
dibenzo-[b,d] thiophene (PPT, blue EML) (z nm)/PPT (50 nm)/LiF/Al. By optimizing the charge
generation zone via the adjustment of different EML thicknesses (the total thickness was set to be
x + y + z = 15 nm), the WOLED achieved a maximum EQE of over 17% with CIE coordinates of
(0.30, 0.38).
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5.2. WOLEDs with TADF and Conventional Fluorescent Emitters

Given that TADF can harvest triplet excitons, the combination of TADF and conventional
fluorescent emitters in WOLEDs has potential to achieve 100% IQE. In this strategy, a TADF molecule
acts as a triplet harvester for other-color fluorescent emitters to achieve white emission [157–159].

For example, Li et al. reported high-efficiency and high CRI WOLEDs with the chromaticity-adjustable
yellow TADF emitter 2-(4-phenoxazinephenyl)thianthrene-9,9′,10,10′-tetraoxide (PXZDSO2) [160].
By combining the conventional deep-blue-fluorescence emitter NI-1-PhTPA and PXZDSO2, the two-color
WOLED showed a maximum EQE of 15.8% (device W3). Then, since the chromaticity of the EML
containing PXZDSO2 could be tuned to yellowish green, they introduced a deep-red-fluorescence
emitter DBP (dibenzo{[f,f′]-4,4′,7,7′-tetraphenyl}diindeno[1,2,3-cd:1′,2′,3′-lm]perylene) to fabricate
a three-color WOLED, achieving the most efficient ever EQE of 19.2% with a CRI of 68 (device
W4), and the highest ever CRI of 95 with an EQE of 15.6% (device W6). The configurations are



Materials 2017, 10, 1378 20 of 57

ITO/HATCN/TAPC/EMLs/TmPyPB/LiF/Al, in which device W3 has an EML of CBP: 8 wt %
NI-1-PhTPA (10 nm)/CBP (3 nm)/CBP: 6 wt % PXZDSO2 (15 nm)/CBP (3 nm)/CBP: 8 wt %
NI-1-PhTPA (10 nm), device W4 has an EML of CBP: 7 wt % NI-1-PhTPA (10 nm)/CBP (3 nm)/CBP:
3 wt % PXZDSO2 (5 nm)/CBP: 5 wt % PXZDSO2: 0.3 wt % DBP (5 nm)/CBP: 3 wt % PXZDSO2
(5 nm)/CBP (3 nm)/CBP: 7 wt % NI-1-PhTPA (10 nm), and device W6 has an EML of CBP: 10 wt %
NI-1-PhTPA (10 nm)/CBP (3 nm)/CBP: 5 wt %PXZDSO2: 0.35 wt % DBP (15 nm)/CBP (3 nm)/CBP:
10 wt % NI-1-PhTPA (10 nm). The device working mechanisms are described as follows. For device
W3, (1) since NI-1-PhTPA is a deep-blue-fluorescence emitter and CBP: 6 wt % PXZDSO2 emit yellow
light with a broad spectrum, high-performance two-color WOLEDs were realized; (2) given the almost
equal T1 level of NI-1-PhTPA and PXZDSO2, efficiency roll-off occurred if they were in direct contact
due to triplet exciton quenching by NI-1-PhTPA; (3) the efficiency roll-off could be further induced
as the formed triplet excitons of NI-1-PhTPA cannot be utilized by PXZDSO2; (4) to stabilize the
recombination zone that occurs in whole EMLs since NI-1-PhTPA/CBP are bipolar and to avoid
triplet exciton quenching by NI-1-PhTPA, two 3-nm CBPs were inserted between the blue and yellow
EMLs, restraining the inevitable Förster energy transfer from NI-1-PhTPA to PXZDSO2; (5) to reduce
the triplet exciton energy loss via a nonradiative transition process, blue-fluorescence emitter was
dispersed in CBP for blue emission, leading to most excitons being generated at CBP; (6) triplet energy
transferred from CBP gives most triplet excitons of PXZDSO2 since triplet excitons typically have long
diffusion lengths (≈100 nm), as shown in Figure 16a. Hence, an EQE of 15.8% was achieved for device
W3. For device W4, (1) a deep-red-fluorescence emitter DBP was conceived to be used; (2) PXZDSO2
was an assistant host for DBP to realize red light emission due to the efficient energy transfer from the
S1 of PXZDSO2; (3) the doping concentration of PXZDSO2 was decreased to reduce intermolecular
aggregation and thus blue shifted emission (20 nm), achieving green emission, complementary to
emissions of NI-1-PhTPA and DBP; (4) a red EML of CBP: 5 wt % PXZDSO2: 0.3 wt % DBP was
inserted between the two green EMLs of CBP: 3 wt % PXZDSO2 to receive singlet exciton energy
transferred from the PXZDSO2 molecules in both sides to give both green and red emissions; (5) the
two doped blue EMLs and CBP interlayers were located at the both sides of the green EMLs to give
blue emission and to confine the PXZDSO2 triplet excitons, respectively, as shown in Figure 16b. Thus,
an EQE of 19.2% was achieved for device W4. Furthermore, an EML consisting of improved DBP
doping concentration was utilized instead of the green and red EMLs for candle-style warm WOLEDs
(device W6), achieving a high CRI of 95.
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6. Hybrid WOLEDs

6.1. Types of Hybrid WOLEDs

By combining blue fluorophores and yellow/orange or green-red phosphors, hybrid WOLEDs
can be developed. In 2003, Li et al. reported the first hybrid WOLED [161]. Since then, more and more
attention has been paid to this type of WOLED due to its utilization of blue fluorophores and high
exciton-harvesting efficiency. As a matter of fact, most available products in the WOLED market have
now adopted the hybrid WOLED technology.

For hybrid WOLEDs, realizing 100% exciton-harvesting efficiency is the main focus. On one
hand, for hybrid WOLEDs with conventional blue fluorophores, singlets should be harvested by
fluorescent emitters while triplets should be harvested by phosphorescent emitters, as shown in
Figure 17a,b. On the other hand, for hybrid WOLEDs with TADF or p-type blue fluorophores, since
blue fluorophores can harvest both singlet and triplet excitons, excitons can be readily harvested by
either blue fluorophores or the complementary phosphors, as shown in Figure 15c,d.Materials 2017, 10, 1378  22 of 56 
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the first groundbreaking hybrid WOLED with high performance was designed via the use of a CBP 
interlayer [184]. Figure 18a depicts the WOLED structure: ITO/NPD (40 nm)/CBP: 5% 4,4′-bis(9-ethyl-
3-carbazovinylene)-1,1’-biphenyl (BCzVBi)/CBP (4 nm)/CBP: 4% iridium(III) bis(2-phenyl quinolyl-
N,C2’)acetylacetonate (PQIr)/CBP: 5% Ir(ppy)3/CBP (6 nm)/CBP: 5% BCzVBi/ETLs/LiF/Al. The 
WOLED function mechanism can be summarized as follows: (1) Excitons were firstly generated onto 
a CBP host, then singlet excitons were transfered to BCzVBi via the Förster procedure; (2) For unused 
triplet excitons on host CBP, they would diffuse to phosphorescent EMLs because of the ~100 nm 
diffusion lengths and then transfer to phosphorescent emitters Ir(ppy)3 and PQIr; (3) As displayed in 
Figure 18b, the energy could not be directly transferred from BCzVBi to Ir(ppy)3 or PQIr, because the 
interlayer CBP was set to be thicker than the Förster radius of ~3 nm. Thus, singlets and triplets could 
be harnessed via totally independent channels, in which singlet excitons could be harnessed by 

Figure 17. Emission mechanisms for different hybrid WOLEDs and the possible methods of decay of
singlet and triplet excitons. (a) Hybrid WOLEDs with low-T1 blue fluorophores; (b) Hybrid WOLEDs
with high-T1 blue fluorophores; (c) Hybrid WOLEDs with TADF blue fluorophores; (d) Hybrid
WOLEDs with p-type blue fluorophores. S1,F and T1,F represent the singlet and triplet energy
of fluorophores, respectively. S1,P and T1,P represent the singlet and triplet energy of phosphors,
respectively. S0 represents the ground state. DF is delayed fluorescence. Förster and Dexter represent
the Förster and Dexter energy transfer between fluorophores and phosphors, respectively.

The T1 of fluorescent emitters has a significant influence on hybrid WOLEDs, because it will affect
the design of device structures and the selection of materials, particularly for hybrid WOLEDs with
conventional blue fluorophores [162–171]. Simply, based on the T1 of blue fluorophores, two types
of hybrid WOLEDs are classified. For the first one, the T1 of blue fluorescent emitters is below



Materials 2017, 10, 1378 22 of 57

the T1 of phosphors (Figure 17a). By inserting interlayers (also known as spacers) between the
fluorescent and phosphorescent EMLs, (1) the Förster energy transfer from the fluorescent EMLs
to phosphorescent EMLs is prevented; (2) Dexter energy transfer from phosphorescent EMLs to
fluorescent EMLs is eliminated, thus preventing triplet excitons from being quenched by fluorophores;
(3) emission colors can be tuned (e.g., adjusting the thickness of interlayers, changing the cooping
ratio of mixed interlayers); and (4) the lifetime can be prolonged [172–174]. For the latter one, the T1

of blue fluorescent emitters is above the T1 of phosphors (Figure 17b) [175–178]. In this case, blue
fluorescent EMLs are generally located near the exciton generation zone. As a result, singlet excitons
are harnessed via fluorescent EMLs for blue light. For these unutilized triplet excitons, they will
be harnessed by nearby phosphors via the diffusion mechanism, because triplet excitons possess a
much longer lifetime as well as a longer diffusion distance compared with singlet excitons. Thus,
despite having no interlayers, 100% exciton-harvesting efficiency can be realized via the manipulation
of charges and excitons distribution, leading to the unity IQE. In the case of hybrid WOLEDs with
TADF blue fluorophores (Figure 17c), triplet excitons formed onto blue TADF fluorophores can be
readily harvested either by phosphors via the Dexter energy transfer due to the high T1 of blue TADF
fluorophores, or by the emitting singlet state via the RISC process. For hybrid WOLEDs with p-type
blue fluorophores (Figure 17d), triplet excitons formed onto p-type blue fluorophores are harnessed
by the emitting singlet state via the TTA procedure. Moreover, even regarding triplet excitons on
phosphors trapped by p-type blue fluorophores with a low T1, these triplet excitons can be recycled
via the TTA procedure.

6.2. Low-T1 Fluorophore-Based Hybrid WOLEDs

6.2.1. Bipolar Interlayer-Based Hybrid WOLEDs

In the case of low-T1 fluorophore-based hybrid WOLEDs, introducing bipolar interlayers between
fluorescent and phosphorescent EMLs is an efficient strategy to prevent mutual exciton quenching,
ensuring high performance. For bipolar materials that can function as the interlayers, their hole and
electron mobility should be almost the same. Besides, the T1 of bipolar materials should be high
enough, otherwise excitons could be quenched by the interlayers.

To date, CBP is the most popular bipolar interlayer, because (1) its electron mobility
(10−4 cm2 V−1 s−1) is almost similar to its hole mobility (10−3 cm2 V−1 s−1); and (2) its T1 is as
high as 2.56 eV, which is high enough for green phosphorescent emitters (~2.4 eV), prohibiting exciton
quenching [179–183]. In fact, the first groundbreaking hybrid WOLED with high performance was
designed via the use of a CBP interlayer [184]. Figure 18a depicts the WOLED structure: ITO/NPD
(40 nm)/CBP: 5% 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1’-biphenyl (BCzVBi)/CBP (4 nm)/CBP: 4%
iridium(III) bis(2-phenyl quinolyl-N,C2 ′ )acetylacetonate (PQIr)/CBP: 5% Ir(ppy)3/CBP (6 nm)/CBP:
5% BCzVBi/ETLs/LiF/Al. The WOLED function mechanism can be summarized as follows:
(1) Excitons were firstly generated onto a CBP host, then singlet excitons were transfered to BCzVBi via
the Förster procedure; (2) For unused triplet excitons on host CBP, they would diffuse to phosphorescent
EMLs because of the ~100 nm diffusion lengths and then transfer to phosphorescent emitters Ir(ppy)3

and PQIr; (3) As displayed in Figure 18b, the energy could not be directly transferred from BCzVBi to
Ir(ppy)3 or PQIr, because the interlayer CBP was set to be thicker than the Förster radius of ~3 nm.
Thus, singlets and triplets could be harnessed via totally independent channels, in which singlet
excitons could be harnessed by BCzVBi for blue emission while triplet excitons could be harnessed by
Ir(ppy)3 and PQIr for green and red light, respectively. As a result, the WOLED exhibited a total EQE
and PE of 18.7% and 37.6 lm W−1, respectively.
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The use of co-doped bipolar interlayers is also an effective strategy to manipulate the charge
and exciton distribution, guaranteeing high performance. By co-doping p-type materials with
n-type materials at an appropriate ratio, the performance of a hybrid WOLED can be optimized.
In addition, considering that lots of high-T1 p-type or n-type materials have been reported,
the use of co-doped bipolar interlayers is very flexible [185–192]. For instance, by co-doping
the p-type material TAPC with the n-type material TmPyPB, a co-doped bipolar interlayer was
used to organize the high-performance hybrid WOLEDs by Liu et al. [193]. The device structure
of two-color WOLEDs is as follows: ITO/HAT-CN (100 nm)/NPB (15 nm)/TAPC (5 nm)/NPB:
Bepp2: Ir(dmppy)2(dpp) (25 nm)/interlayer (4 nm)/9,10-Bis[4-(1,2,2-triphenylvinyl)phenyl]anthracene
(BTPEAn, blue aggregation-induced emission (AIE) fluorophores, 10 nm)/Bepp2 (40 nm)/LiF/Al,
in which different co-doping ratios of TAPC: TmPyPB interlayer were used. Two-color devices can
show (1) highly efficient and stable pure-white color (32.0 lm W−1); (2) 38.9 lm W−1 as well as reduced
efficiency roll-off; or (3) a very high efficiency of 70.2 cd A−1 and 43.4 lm W−1 at a very high luminance
of 10,000 cd m−2. The influence of the co-doped bipolar interlayer TAPC: TmPyPB was studied to
unveil the factors necessary for excellent performance. As shown in Figure 19a, in the case of device



Materials 2017, 10, 1378 24 of 57

W21 with TAPC:TmPyPB = 1:0, holes are readily transported to fluorescent EML due to the p-type
property of TAPC. However, relatively few electrons are transported to phosphorescent EML by virtue
of the tunneling effect. As a result, the pure-white color is obtained because of the same yellow and
blue intensity. As shown in Figure 19b, in the case of W22 with TAPC:TmPyPB = 0.8:0.2, electrons are
more easily transported to phosphorescent EML, leading to the stronger yellow intensity. As shown
in Figure 19c, for W23 with TAPC:TmPyPB = 0.5:0.5, it becomes difficult for holes to cross this layer,
resulting in excitons being easily recombined in the phosphorescent region. As a result, white emissions
can be produced only when the voltage is high enough to provide the high energy. The reason for
the stronger yellow emission can be further explained as follows: (1) The fluorescent EML is set to be
thinner than the phosphorescent one; and (2) Charges are readily trapped by Ir(dmppy)2(dpp) due
to this material’s higher HOMO and lower LUMO compared with those of NPB and Bepp2 hosts,
as displayed in Figure 19d. Furthermore, the sunlight-like color is realized by the three-color device
possessing a CCT span of 2328–10,690 K.
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Figure 20a depicts the WOLED architecture: ITO/MeO-TPD: F4-TCNQ (100 nm, 4%)/NPB (20 nm)/2-
methyl-9,10-di(2-naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl) (DSA-ph,  
20 nm, 7%)/interlayers (0 or 3 nm)/bis(10-hydroxybenzo[h]quinolinato)beryllium complex (Bebq2): 
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Figure 19. The WOLEDs’ function mechanism. IL is interlayer. F-EML is fluorescent EML. P-EML is
phosphorescent EML. (a) TAPC:TmPyPB = 1:0; (b) TAPC:TmPyPB = 0.8:0.2; (c) TAPC:TmPyPB = 0.5:0.5;
(d) Charge trapping effect of Ir(dmppy)2(dpp). Reproduced from Reference [193].

6.2.2. Unipolar Interlayer-Based Hybrid WOLEDs

Based on different device architectures, interlayers should be managed accordingly in order
to yield high performance. Hence, unipolar materials (n-type and p-type) can be more efficient for
manipulating the charges and excitons distribution in some structures compared with their bipolar
counterparts, if the EMLs possess unipolar transporting properties [194].

The introduction of n-type interlayers was demonstrated to be an effective strategy to develop
high-performance hybrid WOLEDs [195–197]. For example, the influence of n-type interlayers
was investigated by Liu et al. [198]. In their devices, the n-type material bis(2(2′-hydroxyphenyl)
pyridine)beryllium (Bepp2) was used as the interlayer, obtaining a long lifetime. Figure 20a depicts
the WOLED architecture: ITO/MeO-TPD: F4-TCNQ (100 nm, 4%)/NPB (20 nm)/2-methyl-9,10-di(2-
naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl) (DSA-ph, 20 nm, 7%)/interlayers
(0 or 3 nm)/bis(10-hydroxybenzo[h]quinolinato)beryllium complex (Bebq2): Ir(MDQ)2(acac), 9 nm,
5%)/Bebq2 (25 nm)/LiF/Al, where the interlayers correspond to none, Alq3, bis(2-methyl-8-
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quinolinato)-4-phenylphenolate aluminum (BAlq), Bebq2, TPBi and Bepp2, respectively. The influence
of these n-type interlayers can be briefly summarized. (1) Bebq2 was the host for phosphor
Ir(MDQ)2(acac), which confined triplets within EMLs due to its higher T1 (2.25 eV); (2) Structural
heterogeneity at the EML/ETL interface was eliminated since Bebq2 was also the ETL, improving the
lifetime as well as efficiency; (3) 3-nm interlayers can prohibit the Dexter transfer. As a result, only the
n-type materials with high T1 (TPBi (2.74 eV), Bepp2 (2.6 eV)) are effective to ensure white emissions,
since they prevent mutual exciton quenching between the fluorophore and phosphor. Particularly,
as displayed in Figure 20b, the hybrid WOLED with the Bepp2 interlayer shows a lifetime as long as
>30,000 h at 1000 cd m−2.
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6.2.3. Interlayer-Free Hybrid WOLEDs

Avoiding the use of interlayers is possible to simplify low-T1 fluorophore-based hybrid WOLEDs,
which is more desirable for practical applications. However, it still remains a big challenge [199,200].
In 2004, a novel strategy to loosen the bottleneck was reported by Sun et al. [201]. In their devices,
although the blue fluorophore N,N′-di-1-naphthalenyl-N,N′-diphenyl-[1,1′:4′,1′ ′:4′ ′,1′ ′ ′-quaterphenyl]-
4,4′ ′ ′-diamine (4P-NPD) exhibited a lower T1 (2.3 eV) compared with the phosphorescent emitter
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Ir(ppy)2(acac) (2.4 eV), no interlayer was required between the fluorescent and phosphorescent
EMLs. This was mainly because the fluorescent EML was constructed by introducing bipolar mixed
hosts. As a result, the peak forward-viewing PE of 41.7 lm W−1 was achieved, slightly decreased to
34.3 lm W−1 at 1000 cd m−2, with a CRI as high as 82. Figure 21 depicts the EML structure: TCTA:
4% Ir(MDQ)2(acac) (3.5 nm)/TCTA: 8% Ir(ppy)2(acac), 5 nm)/TCTA: TmPyPB: (4P-NPD, 73%: 25%:
2%, 7 nm). The working mechanism can be briefly summarized as follows: (1) The blue emission
was produced since the singlet excitons were almost all harvested by 4P-NPD; (2) Given that the
peak EQE was as high as 19%, red and green emission were strengthened since there was almost no
triplet excitons decay non-radiatively onto the blue fluorophoree 4P-NPD; (3) Red and green emission
were further enhanced via direct exciton formation onto guests Ir(ppy)2(acac) and Ir(MDQ)2(acac);
(4) The exciton generation zone was widened due to the bipolar mixed hosts, which could reduce the
efficiency roll-off.
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6.3. High-T1 Fluorophores Based Hybrid WOLEDs

6.3.1. Basic Concept of High-T1 Blue Fluorophore-Based Hybrid WOLEDs

As mentioned above, avoiding the use of an interlayer can make the device structure of hybrid
WOLEDs more simplified. To this end, the introduction high-T1 blue fluorophores is a very effective
strategy. For high-T1 blue fluorophore-based hybrid WOLEDs, aside from considering the effect of
the interlayer, all generated excitons can be harvested, ensuring the high exciton-harvesting efficiency.
In terms of multi-EML structures, a key feature is that phosphorescent emitters can efficiently harness
triplet excitons generated in the blue region since singlet and triplet excitons possess different diffusion
lengths [202–204]. Thus, a 100% IQE could be achieved.

6.3.2. Triplet-Harvesting Structure

Schwartz et al. designed a triplet-harvesting structure to realize hybrid WOLEDs, which exhibited
a total PE of 57.6 at 100 cd m−2 and 37.5 lm W−1 at 1000 cd m−2 [205]. Figure 22 depicts the EML
structure: N,N’-di(naphthalen-1-yl)-N,N’-diphenyl-benzidine (α-NPD): Ir(MDQ)2(acac)/4P-NPD/
TPBi: Ir(ppy)3. The emission mechanism can be summarized as follows.
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(1) Due to different transporting properties (e.g., the hole transporting property of α-NPD and
4P-NPD, as well as the electron transporting property of TPBi), the exciton generation zone is located
near the 4P-NPD/TPBi: Ir(ppy)3 interface; (2) Ir(ppy)3 can harvest all the excitons generated on the
TPBi: Ir(ppy)3 EML for green emission; (3) Singlet excitons are either harvested by 4P-NPD for blue
emission or transferred to the green EML to further enhance the green intensity by dint of the Förster
transfer; (4) Due to high T1 of 4P-NPD (2.3 eV), triplet excitons can diffuse into the adjacent α-NPD:
Ir(MDQ)2(acac) EML to be harvested by Ir(MDQ)2(acac) for orange emission. Therefore, a very efficient
hybrid WOLED was obtained.
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6.3.3. Double Blue EMLs Structure

To simplify the device structure and achieve high performance, Liu et al. introduced the double
blue EMLs to develop three-layer hybrid WOLEDs, obtaining a total efficiency of 89.3 lm W−1 at
100 cd m−2 and 65.1 lm W−1 at 1000 cd m−2 [206]. Moreover, very low voltages were achieved (e.g.,
2.4 V at 1 cd m−2). Figure 23 depicts the device structure: ITO/HAT-CN (100 nm)/NPB (20 nm)/NPB:
Ir(dmppy)2(dpp) (35 nm, 15%)/NPB (4.5 nm)/Bepp2 (35 nm)/LiF/Al. A key factor for the high
performance was using double multifunctional blue EMLs. The 4.5 nm NPB blue EML (B-E-I) is
bridge-like, since an amount of electrons can readily go across it to the orange region. Afterwards,
these electrons could meet holes to form excitons on phosphorescent guest sites by dint of the charge
trapping effect. Thus, the charges and excitons distribution is effectively broadened. On the other
hand, the Bepp2 blue EML (B-E-II) was employed as the ETL, leading to reduced heterojunction at the
EML/ETL interface. The emission mechanisms can be summarized as follows. (1) The main exciton
generation zone was situated near NPB/Bepp2 interface via the use of p-type material NPB and n-type
material Bepp2; (2) The generated singlet excitons could be harnessed by NPB or Bepp2 for blue
emission; (3) Unutilized triplet excitons could be diffused into phosphorescent EML and harnessed for
orange emission by Ir(dmppy)2(dpp); (4) B-E-I could confine electrons at the NPB/Bepp2 interface,
guaranteeing the location of the main exciton generation.
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6.3.4. Single-EML Hybrid WOLEDs

Compared with multi-EML hybrid WOLEDs, single-EML hybrid WOLEDs possess some unique
merits, including a simple architecture, simplified fabricating procedure, reduced heterojunction,
and decreased cost [207–210]. Therefore, the use of a single-EML structure is an effective strategy to
achieve high-performance hybrid WOLEDs. One of the most inspiring single-EML hybrid WOLEDs
was realized by Peng et al. in 2011, as their device showed a maximum EQE as high as 27.8% [207].
To develop high-performance single-EML hybrid WOLEDs, a key feature is selecting materials that
can simultaneously act as hosts for phosphorescent emitters and fluorophores for furnishing blue
emissions. As a result, the T1 of the selected materials should be higher than that of phosphors, leading
to the triplet excitons on the selected materials being effectively harnessed by phosphors rather than
decaying non-radiatively.

By doping 0.1% tris(2-phenylquinoline)iridium(III) (Ir(2-phq)3) into the host 2,8-di[4-(diphenylamino)
phenyl] dibenzothiophene-S,S-dioxide (DADBT), an efficient single-EML hybrid WOLED was reported
by Ye et al. in 2012 [211]. In their device, a maximum total EQE of 26.6% could be achieved.
The WOLED architecture is ITO/NPB (30 nm)/TCTA (10 nm)/0.1 wt % Ir(2-phq)3: DADBT
(30 nm)/TPBI (30 nm)/LiF/Al. The emission mechanisms can be summarized as follows. (1) Due to
the bipolar property of DADBT and low concentration of Ir(2-phq)3, excitons were formed in whole
EML and distributed onto the fluorescent molecules; (2) As displayed in Figure 24a, because singlet
excitons have a much shorter diffusion length (~3 nm) than triplet excitons (~100 nm), excitons would
decay according to the different guest concentration; (3) As displayed in Figure 24b,e, singlet excitons
were harvested by the fluorophore host to produce blue light while triplets could be transferred to
phosphor to give off complementary light, if the guest concentration was low enough (e.g., 0.1%).
In this situation, a part of host fluorescent molecules could not meet the phosphorescent molecules
in the neighborhood (3 nm), but phosphorescent molecules were placed at 100 nm. As a result,
singlets and triplets decayed separately, leading to warm-white emission and 100% IQE. In particular,
as displayed in Figure 24d, if too low guest concentrations were used, fluorescent molecules could not
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meet the phosphorescent molecules in their neighborhood (100 nm), and only blue emission would
be obtained since triplet excitons would non-radiatively decay. Also, as displayed in Figure 24c,f, if a
high guest concentration was utilized (e.g., 10%), phosphorescent molecules would heavily surround
the host fluorescent molecules in the 3-nm areas, leading to both singlets and triplets being consumed
by the phosphor. Hence, only phosphorescent emissions could be produced.
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6.3.5. TADF Hybrid WOLEDs

Blue TADF emitters usually exhibit high T1, which can be introduced to construct
high-performance hybrid WOLEDs [212–214]. In 2014, a TADF hybrid WOLED was firstly developed
by Zhang et al., obtaining a peak efficiency as high as 47.6 lm W−1 [215]. Figure 25 depicts the WOLED
architecture: ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/mCP: 4,5-bis(carbazol-9-yl)-1,2-
dicyanobenzene (2CzPN, 11 nm, blue EML)/TAZ: 4 wt % PO-01 (4 nm, orange EML)/TAZ
(40 nm)/LiF/Al. The high performance can be explained as follows. (1) Since mCP possesses a
large energy gap as well as a T1 as high as 3.0 eV, it was selected as a host of the blue TADF emitter
2CzPN; (2) 2CzPN was situated closest the exciton generation area, leading to excitons being diffused
into the whole EML for balanced emissions; (3) Triplet excitons generated onto the blue TADF emitter
were harnessed via Dexter transfer to the phosphorescent emitter or by the RISC process to the emitting
singlet state; (4) By dint of the charge trapping effect of 2CzPN, the recombination zone was stable
with increasing voltages, obtaining an excellent color-stability.
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6.3.6. p-Type Delayed Fluorescence Hybrid WOLEDs

To prevent T1 loss, the trapped T1 should be recycled in hybrid WOLEDs in order to achieve high
performance. Different from the TADF mechanism, another possible triplet up-conversion mechanism
is TTA or p-type delayed fluorescence. Based on such a strategy, hybrid WOLEDs also show the
potential to achieve high performance. Since such a kind of hybrid WOLED is unlike low-T1 blue
fluorophore-based hybrid WOLEDs, in which the fluorophores cannot harvest triplets, we classified
p-type delayed fluorescence hybrid WOLEDs in this section.

Zhang et al. used this strategy, obtaining a maximum EQE of 19.1%, PE of 49.3 lm W−1, together
with a CRI of 88 and a lifetime of over 10,000 h at 1000 cd m−2 [216]. The WOLED architecture is as
follows: ITO/96% 2-TNATA: 4% F4TCNQ (150 nm)/BPAPF (20 nm)/97% BPAPF: 3% Ir(MDQ)2acac
(15 nm)/42.5% BPAPF: 42.5% SBFK: 15% Irppy3 (10 nm)/50% BPAPF: 50% SBFK (5 nm)/95%
α,β-ADN: 5% DACrs (30 nm)/9,10-bis(4-(2-phenyl-1Hbenzo[d]imidazol-1-yl)phenyl)anthracene
(BPBiPA, 15 nm)/LiF/Al, where BPAPF is 9,9-bis(4-(di(p-biphenyl)-aminophenyl)) fluorene, SBFK is
bis(9,9′-spirobifluorene-2-yl) ketone and DACrs is 6,12-bis(di(3,4-dimethylphenyl)amino)chrysene.
The high performance can be explained as follows. (1) The mixed host of green phosphorescent
EML as well as the spacer could enlarge the recombination zone and reduce the triplet concentration
near the blue fluorophores; (2) Blue fluorophore with TTA was adopted to recycle the trapped T1;
(3) An electron transport material with both high electron mobility and good exciton confinement
ability, namely, BPBiPA, was used to boost the TTA efficiency. Consequently, the trapped triplets by
the blue fluorophores were greatly reduced. What is more, once being trapped, the triplet excitons
could also be recycled by the TTA process, as can be seen from Figure 26.
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7. Doping-Free WOLEDs

Compared with doping technologies, the doping-free technique possesses many advantages, such
as avoiding hosts, simplifying device architectures, shortening fabrication procedures, and reducing the
cost. Therefore, doping-free WOLEDs have great potential for practical applications [217–225]. So far,
although it is still challenging to achieve high-performance doping-free WOLEDs, some strategies
have been reported to alleviate these difficulties.

Wang et al. described a doping-free phosphorescent WOLED via the use of a neat metal-organic
Pt(II)-pyridylazolate phosphor bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) [Pt(ptp)2] possessing
a nearly unity quantum yield and excellent electron-transporting ability, achieving a PE of
approximately 50 lm W−1 [226]. Their device has the architecture of ITO/TAPC/mCP (10 nm)/FIrpic
(8 nm)/Pt(ptp)2 (90 nm)/LiF/Al. The reason for the high PE can be explained by the following.
(i) Eliminating host materials that possess high energy gaps allows a direct charge recombination on
the molecular sites of phosphorescent dyes, which reduces the host-guest exchange energy loss in
PE; (ii) the high quantum yield of neat Pt(ptp)2 assures that the electrically generated excitons can be
utilized efficiently by radiative decay; (iii) using a single Pt(ptp)2 layer as a homogeneous EML/ETL is
one determining factor for voltage reduction, which can enhance the PE. The operational principles of
the doping-free WOLED are described in Figure 27. In this device, FIrpic was used as an an ambipolar
material. Therefore, excitons could be generated on both edges of the FIrpic layer (46% vs. 54%), and
then harvested by FIrpic and Pt(ptp)2 molecules, respectively, in an independent manner.
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The doping-free technique can not only be applied to achieve phosphorescent WOLEDs, but also
be used to realize high-performance hybrid WOLEDs. By employing <1 nm EMLs, high-performance
doping-free hybrid WOLEDs were achieved by Liu et al. [227]. Low voltage, bright luminance,
good color-stability, as well as excellent PE (~40 lm W−1) could be obtained in their two-color
device. Besides, the CCT range could be as broad as 2325–8011 K and the CRI was as high as
91.3 in their three-color device. Two-color devices have the device structure of ITO/HAT-CN
(100 nm)/NPB (15 nm)/TAPC (5 nm)/EMLs/TmPyPB (35 nm)/LiF/Al, in which the EMLs were
formed by Ir(dmppy)2(dpp) (0.9 nm)/TAPC (3.5 nm)/DSA-ph (0.5 nm) and DSA-ph (0.5 nm)/Bepp2

(3.5 nm)/Ir(dmppy)2(dpp) (0.9 nm) for devices W21 and W22, respectively. The working mechanism
of device W21 is explained below. (1) As displayed in Figure 28a, excitons were mainly formed on
DSA-ph as well as DSAph/TmPyPB and TAPC/DSAph interfaces; (2) Blue emission was produced
by singlet excitons directly recombined on DSA-ph; (3) Blue emission was further increased due
to singlet excitons transferred from TAPC and TmPyPB by the Förster process; (4) Yellow emission
was generated by excitons recombined in the phosphorescent EML, since some electrons could pass
though this 3.5-nm interlayer TAPC to meet holes; (5) Yellow emission was further enhanced since
triplet excitons diffused from the exciton formation zone were harnessed by the phosphor (Figure 28c).
The working mechanism of device W22 is explained below. (1) As displayed in Figure 28b, excitons
were mainly formed on DSA-ph as well as DSA-ph/Bepp2 and TAPC/DSAph interfaces; (2) Blue
emission was not only produced by singlet excitons directly recombined on DSA-ph, but also increased
due to singlets transferred from TAPC and Bepp2; (3) Yellow emission was not only generated by
excitons recombined in the phosphorescent EML, since some holes could pass though this 3.5-nm
interlayer Bepp2 to meet electrons, but also enhanced since triplet excitons diffused from the exciton
formation zone were harnessed by the phosphor (Figure 28d).
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In general, blue molecular emitters are the key to the development of hybrid WOLEDs. To avoid
considering the effect of blue molecular emitters in addition to taking advantage of the doping-free
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technology, it is beneficial to achieve blue molecular emitter-free and doping-free hybrid WOLEDs
(BMEF/DFH-WOLEDs). Luo et al. developed BMEF/DFH-WOLEDs WOLEDs via the manipulation
of exciplex and electroplex emissions [228]. For the BMEF/DFH-WOLED with a single yellow
molecular emitter, it exhibited the maximum total EQE and PE of 16.8% and 56.4 lm W−1, respectively.
At 1000 cd m−2, the PE was still as high as 40.0 lm W−1. For the two-molecular-emitter BMEF/
DFH-WOLED, it could exhibit a CRI of 92.1, a CCT of 2319 K, an EQE of 15.1%, and a PE of 28.2 lm W−1.
Single-molecular-emitter WOLEDs have the structure of ITO/HATCN/TAPC (25 nm)/TmPyPB
(10 nm)/Ir(dmppy)2(dpp) (0.3 nm)/TmPyPB/Cs2CO3/Al. Two-molecular-emitter WOLEDs have
the structure of ITO/HATCN (100 nm)/TAPC (22 nm)/Ir(piq)3 (0.3 nm)/TAPC (3 nm)/TmPyPB
(20 nm)/Ir(dmppy)2(dpp) (0.3 nm)/TmPyPB (35 nm)/Cs2CO3/Al. The emission mechanisms can
be explained as follows. As shown in Figure 29a, for single-molecular-emitter WOLEDs, the blue
emission originated from the exciplex/electroplex system, the yellow emission resulted from (i) the
exciplex/electroplex system, since the exciplex/electroplex emission occurs at all luminances, although
it is hard to distinguish its emission from Ir(dmppy)2(dpp); (ii) triplets formed on TAPC, TmPyPB
as well as the exciplex/electroplex system via the diffusion process; and (iii) singlet and triplet
excitons directly formed on Ir(dmppy)2(dpp) due to the tunneling effect. As shown in Figure 29b,
for two-molecular-emitter WOLEDs, the blue and yellow emission mechanisms are almost the same
as those of single-molecular-emitter WOLEDs. However, the amount of excitons harvested for the
blue and yellow emissions is less, since some excitons were harvested by Ir(piq)3 for red emission.
On the other hand, for the red emission, as Ir(piq)3 is closer to the exciton generation zone than
Ir(dmppy)2(dpp), both singlets and triplets in the exciton generation zone were easily harvested
by Ir(piq)3.
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Exciplexes have small exchange energies since the compact electron densities from the LUMO
and HOMO of the charge-transfer complex are separated by a relatively long distance [229–234].
Due to the broad band of exciplex emission, the mixing of phosphorescent and exciplex emissions
is another strategy to achieve high-performance WOLEDs. Cherpak et al. developed a unique
doping-free WOLED by combining the blue emission from FIrpic (470 nm) and a broad delayed
fluorescence induced by thermal activation (i.e., TADF emission, 570 nm) with additional direct
phosphorescence from the triplet exciplex (635 nm) formed at the star-shaped hole transporting
compound tri(9-hexylcarbazol-3-yl)-amine (THCA) and FIrpic interface, achiveing a maximum EQE of
5%, luminance of 38,000 cd m−2, and low voltages (e.g., 2 cd m−2 at 2.3 V) [235]. The device architecture
is ITO/CuI (8 nm)/THCA (40 nm)/FIrpic(9 nm)/3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole (TCz1,
10 nm)/Ca (50 nm)/Al (200 nm). As shown Figure 30, there are high-energy barriers for electron
(0.92 eV) and for hole (1.17 eV) transfer between THCA and FIrpic. Hence, the exciplex formation
by the two compouds is possible, where THCA is an electron donor and FIrpic serves as an electron
acceptor. For the exciplex, both S1 and T1 states of the THCA/FIrpic aggregates are quasi-degenerate
with a very small positive S1-T1 splitting, leading to the fact that the T1 state can be populated by the
RISC process through a thermally activated up-conversion mechanism at room temperature. In other
words, the S1 state of the exciplex could be populated by the thermal activation from the triplet exciplex
produced by electron-hole recombination in the EML with a 3:1 ratio (triplets/singlets), achieving
the TADF emission. Therefore, an up-conversion from the nonradiative triplet state to the radiative
singlet state due to the exciplex formation between THCA and FIrpic is achieved. Besides, the triplet
exciplex provides its own radiative activity because of the large spin-orbit coupling contribution at
the metal center. Thus, the wide EL spectrum is obtained; both states provide emissions with slightly
different lifetimes.
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8. Summary and Outlook

In this review, the strategies for achieving high-performance WOLEDs are described. However,
it must be pointed out that the presented state-of-the-art strategies can be also helpful to achieve
other kinds of LEDs (e.g., polymer LEDs, quantum-dot LEDs, nanoplatelet LEDs, and perovskite
LEDs) [236–245] and related optoelectrical devices [246–248]. Besides, since luminescence is a type
of cold body radiation caused by external stimuli (e.g., electric field), the strategies, particularly
for the outcoupling strategies, are also useful to obtain luminescence from other types of external
stimuli (e.g., mechanical stress, photoabsorption, and chemical reactions) [249–256]. The chemical
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structures of organic compounds as the emitters, hosts, and other part of WOLEDs are presented in
Appendix A (Table A1). The representative device structures and their detailed performance at each
class of WOLEDs are shown in Table 1.

Table 1. Summary of the performances of WOLEDs with representative device structures.

Devices a Von/V1000
b

(v)
EQEmax/EQE1000

c (%)
CEmax/CE1000

d

(cd A−1)
PEmax/PE1000

e

(lm W−1) CIE1000
f CRI g

Ref. [120] h 3.0/- 5.6/- 14.0/- 9.2/- (0.334, 0.337) 81
Ref. [123] h -/- 6.3/- 14.7/- -/- (0.335, 0.355) -
Ref. [124] i 3.3/5 12/- -/- 42/- (0.43, 0.45) 80
Ref. [125] i -/- 19.3/- -/- 72.2/- (0.33, 0.39) 71
Ref. [132] i -/- -/- 113.6/111.7 92.5/75.5 (0.288, 0.485) -
Ref. [12] i 2.5/3.6 28.1/21.5 83.6/61.0 105/59.5 (0.40, 0.48) -

Ref. [133] i 2.83/3.79 -/25 -/- /44 (0.335, 0.396) 68
Ref. [134] i -/3 -/34 -/- -/90 (0.41, 0.49) 69
Ref. [135] i -/- 20.1/- -/- 41.3/- (0.38, 0.45) 85
Ref. [136] i -/- -/24.5 -/57.7 -/33.8 (0.44, 0.46) 81

Ref. [9] i -/<4 56.1/54.6 -/142 132.8/123.4 (0.339, 0.458) -
Ref. [156] j 3.6/7.8 17/8.5 45.6/20.6 34.1/8.3 (0.33, 0.41) -
Ref. [160] j 3.4/5.4 19.2/14.2 51.4/37.3 47.5/21.8 (0.348, 0.457) 69
Ref. [184] k -/- 18.7/- -/- 37.6/- (0.40, 0.41) 85
Ref. [193] k -/- -/- 70.2/- 43.4/- (0.44, 0.50) 46
Ref. [198] k 2.8/- -/- 20.6/19.0 20.9/11.9 (0.277, 0.354) 73
Ref. [201] k 3.1/- 32.3/28.9 76.8/68.9 70.9/58.3 (0.43, 0.43) 83
Ref. [205] k ~2.5/3.46 -/16.1 -/- -/37.5 (0.44, 0.47) 86
Ref. [206] k 2.4/3.1 -/- 84.5/- 106.3/65.1 (0.43, 0.48) 47
Ref. [211] k 2.4/- 26.6/21.2 53.5/42.6 67.2/33.5 (0.46, 0.44) -
Ref. [215] k -/- 38.4/26.2 -/- 80.1/37.5 (0.45, 0.48) -
Ref. [216] k -/- 19.1/17.6 49.6/- 49.3/- (0.43, 0.46) 80
Ref. [226] l 2.4/- -/- -/- 49.5/30.0 (0.44, 0.47) 65
Ref. [227] l 2.5/- 11.6/- 32.5/- 39.3/18.2 (0.42, 0.48) -
Ref. [228] l -/- 16.8/- 49.6/- 56.4/40.0 (0.42, 0.51) 56
Ref. [235] l 2.2/- 5/- 15/- -/- - -

a The structures are mentioned before. b The turn-on voltage (1 cd/m2) and the voltage at 1000 cd/m2. c Maximum
total EQE and the EQE at 1000 cd/m2. d Maximum total CE and the CE at 1000 cd/m2. e Maximum total PE
and the PE at 1000 cd/m2. f CIE coordinates at about 1000 cd/m2. g Maximum CRI. h Fluorescent WOLEDs.
i Phosphorescent WOLEDs. j TADF WOLEDs. k Hybrid WOLEDs. l Doping-free WOLEDs.

Despite the fact that the performance of WOLEDs has been enhanced via various effective
strategies, some challenges still need to be overcome before the wholesale commercialized productions
are realized, including maximizing efficiency, lifetime, and as cost. Since the theoretical limitation
for the efficiency is 248 lm W−1, more efforts are required to further enhance the performance [257].
In general, the PLQY of emitters, charge balance, as well as the outcoupling factor are the key to
determining the efficiency. As a result, the selection of excellent materials, the careful manipulation of
charges and excitons distribution, and the utilization of outcoupling techniques are crucial [258–262].

To effectively enhance the lifetime, an alternative strategy is developing tandem WOLEDs.
In addition, the introduction of advanced encapsulation technology is another effective strategy
to achieve long lifetime. This is because both oxygen and moisture are detrimental to the stability of
OLEDs. Without encapsulation, OLEDs can degrade easily. Hence, to obtain the ideal encapsulating
barriers (10−6 g/m2/day), encapsulation technology should also be enhanced.

So far, the high cost is one of the main obstructions for the mass production of OLEDs. To meet
the requirement of consumers, the price needs to be under 20 $/m2. Besides, OLED displays are
more expensive (>150%) than the mainstream LCDs. To reduce the cost, the solution-processed
technique is conducive, although the performance of solution-processed WOLEDs is still not high
enough. Additionally, doping-free WOLEDs are promising to lower the cost, since they naturally
exhibit simple characteristics. Moreover, new fabrication ways, simplified architectures, and excellent
yet cheap materials deserve to be considered. With continue efforts from both industrial and academic
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researchers, the performance of WOLEDs is believed to be high enough to satisfy the demand of
consumers in the near future.
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