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Abstract: The effect of low cycle fatigue (LCF) predamage on the subsequent very high cycle fatigue
(VHCF) behavior is investigated in TC21 titanium alloy. LCF predamage is applied under 1.8%
strain amplitude up to various fractions of the expected life and subsequent VHCF properties are
determined using ultrasonic fatigue tests. Results show that 5% of predamage insignificantly affects
the VHCF limit due to the absence of precrack, but decreases the subsequent fatigue crack initiation
life estimated by the Pairs law. Precracks introduced by 10% and 20% of predamage significantly
reduce the subsequent VHCF limits. The crack initiation site shifts from subsurface-induced fracture
for undamaged and 5% predamaged specimens to surface precrack for 10% and 20% predamaged
specimens in very high cycle region. Furthermore, the predicted fatigue limits based on the El
Haddad modified model for the predamaged specimens agree with the experimental results.
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1. Introduction

Titanium alloy is widely used for aeronautical structures because of its high specific strength,
toughness, and damage tolerance [1]. Throughout the ultra-long time service, the components are
subjected to high frequency, low amplitude, and cyclic load; thus, a very high cycle fatigue (VHCF)
of titanium alloys in the life regime beyond 107 cycles has been drawing a worldwide attention [2,3].
In practice, aeronautical structures may consist of low cycles fatigue (LCF) resulting from the takeoff
and dropdown of the aircraft, and VHCF generated by high-frequency vibrations. A “damage tolerant”
design for LCF would be to relate the remaining life based on crack propagation to an inspectable
flaw size. However, direct application of such an approach cannot work for “pure” VHCF because
the required inspection sizes are well below the state-of-the-art in nondestructive inspection (NDI)
techniques. Specially, fatigue damage occurred in specimen subsurface for VHCF is difficult to inspect
by the traditional NDI techniques. VHCF requires a relatively large fraction of life for initiation.
In addition, crack propagation times to failure could be extremely short due to the high frequencies
in VHCF, and the resultant inspection intervals would be too short to be practical. Thus, interest is
increasing not only in the capability of pure VHCF but also in that of VHCF combined with LCF
fatigue damage.

Recently, few studies have been devoted to the LCF/VHCF combined fatigue behavior of
titanium alloys. Hang [4,5] indicated that LCF load significantly decreased the VHCF strength of low
carbon-manganese steel, and developed continuum damage mechanics model to evaluate cumulative
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damage of LCF and VHCF. Mayer [6] showed that the deleterious influence of low load cycles below
constant amplitude fatigue limit was underestimated for very high cycle fatigue damage of 100Cr6
steel under variable amplitude (VA) loading condition. However, the effect of LCF load on VHCF
fracture mechanism for titanium alloys is not well understood. As for the low carbon-manganese steel,
the LCF and VHCF cracks are incline to initiate from the specimens surface, and the fatigue damage
accumulation under the LCF/VHCF combined fatigue accelerated the crack initiation. VHCF cracks of
high strength titanium alloys mainly induced from the heterogeneous microstructure, such as primary
α phase [7–9] as well as super grain (grain clusters with similar orientation) [10], whereas LCF cracks
are usually initiated from the specimen surface due to the surface machining flaws and persist slip
bands. The competition between the LCF damage and materials interior heterogeneous microstructure
is focused on LCF/VHCF combined fatigue of high strength titanium alloys.

A practical problem arises in designing against VHCF with the occurrence of high stress transients
(LCF loading), which may not lead to failure during the design life, but may degrade the capability of
the material regarding its VHCF resistance. Treating VHCF as pure failure modes in fatigue design
practice is nonconservative throughout ultra-long life service. In the past years, a Kitagawa–Takahashi
(K–T) diagram joined by the El Haddad model can be useful in evaluating the potential for a crack to
reduce the HCF capability of a material [11]. The investigations showed that the effect of LCF on HCF
limits is affected by not only LCF crack depth, but also the stress ratio R or the residual stress ahead of
the crack tip [12]. Cycling at high stress for up to 25% of life has little effect on the HCF strength for
Ti6Al4V. However, the HCF strength is reduced by an average of 19% when subjected to prior cycles
followed by a stress relief process. Recently, Zerbst [13] modified the El Haddad model based on the
cyclic R curve, which can be described by giving the fatigue crack propagation threshold as a function
of the crack extension. Compared to HCF, VHCF has lower fatigue limits at 109 cycles, and has lower
tolerance to materials defects. It is expected the LCF damage can significantly affect VHCF properties.

The effect of LCF predamage on VHCF behavior of TC21 titanium alloy was investigated in
the present work. The LCF up to various fractions of expect life was used to introduce predamage,
and then the VHCF behaviors were subsequently studied. This work aimed to enable fundamental
understanding of very high cycle fatigue fracture mechanism combined with LCF predamage.

2. Experimental Procedures

2.1. Materials

The material used in this study was TC21 titanium alloy with a nominal chemical composition of
Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb. Heat treatment was as follows: 900 ◦C for 2 h, air quenching, and then
600 ◦C for 4 h, air quenching. The heat-treated material had a high yield strength of 970 MPa and
tensile strength of 1070 MPa. A double lamellar basket weave microstructure was observed (Figure 1).
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section of specimen; a computer control system is necessary to control the load amplitude and 
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reaches the maximum in the middle section of the specimen, which produces the required high 
frequency fatigue stress. In addition, a compressed air cooling gun is necessary to be used to prevent 
the temperature increasing of specimen in the tests. 

Considering that the amplifier and the specimen must work at resonance, the specimen 
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2.2. Surface Treatment

The specimens underwent electropolishing (EP) to remove the machining layers to observe fatigue
damage morphology and eliminate its influence on fatigue behavior. Electropolishing was carried out
in 59% methanol, 35% n-butanol, 6% perchloric acid under −20 ◦C temperature and 20–25 V voltage.

2.3. Fatigue Test

2.3.1. Ultrasonic Fatigue Test

Fatigue tests were carried out using an ultrasonic fatigue test machine (20 kHz) at a constant load
ratio of R =−1. The ultrasonic fatigue testing method is an accelerated testing method with a frequency
far beyond that of conventional fatigue experiments, which brings advantages of effectiveness and
economy morphologies for very high cycle fatigue tests comparing with conventional tests method [14].
An ultrasonic generator transforms 50 or 60 Hz voltage signal into sinusoidal signal with 20 kHz;
a piezoelectric converter excited by the generator transforms the electrical signal into longitudinal
mechanical vibration with same frequency; an ultrasonic horn amplifies the vibration displacement in
order to obtain the required strain amplitude in the middle section of specimen; a computer control
system is necessary to control the load amplitude and acquire test data. The maximum displacement
amplitude measured by means of a dynamic sensor is obtained at the end of the specimen, while the
strain excitation in push–pull cycles (load ratio R = −1) reaches the maximum in the middle section of
the specimen, which produces the required high frequency fatigue stress. In addition, a compressed
air cooling gun is necessary to be used to prevent the temperature increasing of specimen in the tests.

Considering that the amplifier and the specimen must work at resonance, the specimen geometry
was designed using the elastic wave theory. Figure 2 shows the geometries of the fatigue specimens
and its dimensions.
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2.3.2. LCF Fatigue Tests

The specimen were tested in uni-axial reversed strain amplitude in a conventional hydraulic
fatigue machine (Instron 8801, Instron Company, Boston, MA, USA). Considering the dimensions
of ultrasonic fatigue test specimens (Figure 2), a LCF test was controlled under transverse diameter
deformation. The diameter deformation strain εdia can be converted to longitudinal plastic strain εp

and longitudinal total strain ε through the formulas below [4]:

εp = − 1
νp

(εdia + νe
σ

E
) (1)

ε =
σ

E
(1− νe

νp
)− 1

νp
εdia (2)

where E, σ, νe and νp are the Young modulus, longitudinal stress, elastic Poisson coefficient and plastic
Poisson coefficient and its value is always 0.5, respectively.

In all LCF tests, a reversed triangle strain waveform was submitted to the specimens. The failure
condition is set as its maximum stress decreasing 20% after its cyclic saturation. Figure 3 shows the
fatigue life is 1864 cycles at 1.8% strain amplitude. Furthermore, the fatigue damage morphology of
different stage fatigue were observed using a video microscope.
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2.3.3. LCF/VHCF Combined Fatigue Tests

In order to investigate the effect of LCF predamage on behavior of VHCF for TC21 titanium
alloy, specimens were submitted to a same prior 1.8% strain range (strain ratio: −1). LCF predamage
was applied onto ultrasonic fatigue specimens at 1.8% strain range for 90 cycles (5% of fatigue life),
180 cycles (10% of fatigue life), 360 cycles (20% of fatigue life), respectively. The subsequent VHCF
tests are performed by using ultrasonic fatigue test machine at R = −1, room temperature.

2.3.4. Fatigue Precrack Propagation

Fatigue precrack was obtained by LCF at 1.8% strain range and the ratio of −1. The propagation
of precrack under subsequently low stress amplitude were observed using a video microscope.
Fatigue crack propagation rate was expressed as follows:

da/dN =
∆a
∆N

=
ai+1 − ai

Ni+1 − Ni
(3)

where ai is crack depth at cycle number Ni, which is supposed to be equal to 0.8c [15], and a surface
crack with length 2c was obtained using the video microscope.

3. Results

3.1. LCF Damage of TC21 Titanium Alloy

The LCF surface damage evolution of TC21 titanium alloy under 1.8% strain amplitude is shown
in Figure 4. No surface crack is observed in 90 cycles (5% of LCF life) until the number of cycles increase
to 180 cycles (about 10% of LCF life). However, the number of microcrack significantly increase in
360 cycles (about 20% of LCF life), then these microcrack were expanded to merge until the specimen
is broken.

The fracture surfaces of specimens under 1.8% strain range, Nf = 1864 cycles are shown in Figure 5.
LCF cracks initiate from multiple sites on the sample surface, and a radial ridge pattern parallel to
the crack propagation direction is observed on the fracture surface (Figure 5a). Some small elliptical
planes have traces of friction at the fatigue crack initiation site (Figure 5b,c), indicating that these small
cracks were expanded to merge to fracture, in accordance with Figure 4d. Cleavage morphology is
observed near the small planes (Figure 5c) and typical fatigue striation is displayed on fatigue crack
steady propagation (Figure 5d).
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3.2. S-N Curves After Fatigue Predamage

Figure 6 shows that the S-N curve of undamaged specimens exhibit a stepwise shape, which is
similar to the references [16,17]. However, in the predamaged specimens, there is a knee of horizontal
lines for their S-N curves in the regime above 105 cycles. Five percent of LCF predamage insignificantly
affects the fatigue limit but remarkably decreases fatigue life above fatigue limit compared with
undamaged specimens. Fatigue life at 500 MPa stress amplitude is reduced by two orders of magnitude
after 5% of LCF predamage. Fatigue limits for 10%, 20% and 50% of the expected life predamage
decrease from 430 MPa to 350 MPa, 250 MPa and 230 MPa for the undamaged specimens, respectively,
and the fatigue limit of 20% predamage decreases up to 42%, indicating that treating VHCF as pure
failure modes in fatigue design practice is nonconservative throughout ultra-long life service. It is
should be noted that the decrease effect due to LCF for TC21 titanium alloy is stronger than its for A42
steel [4,5] in VHCF, which can be attributed to the stronger decrease effect in VHCF for high strength
titanium alloys [9]. However, it was reported that the LCF predamage with high R value insignificantly
affects fatigue limit because of its overloading effect [18,19]. In this paper, residual compressive stress
is introduced at the precrack tip because of tensile overload; however, the precrack that acts as a blunt
notch yields a residual tensile stress due to the high compression overload for a stress ratio of −1.
Thus, the overloading effect of the alloy is significantly reduced by the residual tensile stress.Materials 2017, 10, 1384  7 of 14 
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3.3. SEM Observation of the Fracture Surface

As is showed in Figure 7, fatigue crack of TC21 titanium alloy in the less than 106 cycles region
initiates from the sample surface. However, subsurface crack initiation occurs in longer than 106 cycles.
α/β lamellar morphology are observed at the crack initiation site where fine granular area (FGA) is
found along the α lamellar (Figure 8). The FGA morphology of TC21 titanium alloy are similar to
those of high-strength steels [20], although nonmetallic inclusions are not observed at the FGA center.
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at the crack initiation site. The crack-propagation morphology is associated with α/β lamellar 
microstructure generated by the subsequent low stress fatigue (Figures 11b, 12b and 13b), rather 
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site is supposed to be formed from fatigue precracks. 

Figure 8. Fatigue fracture surface of TC21 titanium alloy at σ = 480 MPa and N = 6.86 × 106 cycles:
(a) fatigue crack initiation site, and (b) high magnification morphology of crack initiation site.

The typical fatigue fracture surfaces of the 5% predamaged specimens are shown in Figures 9
and 10. Fatigue crack initiates from the specimen surface at 470 MPa stress amplitude (Figure 10),
while the fatigue crack tends to initiate from the specimen subsurface for an undamaged specimen
(Figure 8). Radial ridge pattern parallel to the crack propagation direction is displayed on the fracture
surface. However, fatigue crack initiates from the specimen subsurface at VHCF limit stress amplitude
(430 MPa), and a fine granular area is observed at the crack initiation site (Figure 10), which has similar
crack initiation morphology to undamaged specimens.

Fatigue fracture surfaces of 10%, 20% and 50% predamaged specimens at low stress amplitude are
shown in Figures 11–13. Fatigue crack initiates from the specimen surface, and a small elliptical plane
with traces of friction is observed at the fatigue crack initiation site (Figures 11a, 12a and 13a), similar
to that of LCF crack. The depth of the small plane is approximately 14.7 µm, 41.5 µm and 49.3 µm,
respectively. Moreover, crack-propagation morphology is observed outside the small plane at the crack
initiation site. The crack-propagation morphology is associated with α/β lamellar microstructure
generated by the subsequent low stress fatigue (Figures 11b, 12b and 13b), rather than the cleavage
morphology generated by LCF. Therefore, the small plane at the crack initiation site is supposed to be
formed from fatigue precracks.
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Figure 13. Fracture surface for 50% predamaged specimens at σ = 230 MPa and N = 4 × 105 cycles:
(a) crack initiation morphology; and (b) crack propagation morphology.

4. Discussion

4.1. Effect of LCF Predamage on VHCF Fracture Mechanism

As for TC21 titanium alloy, the fatigue crack initiates from α lamellar (Figure 8) in the sample
interior above 106 cycles. However, the VHCF crack initiation mechanism of TC21 titanium alloy
with LCF predamage is depended on the LCF predamage and the subsequent stress amplitude in
VHCF. For 5% of predamage, the fatigue precrack is not formed by the fatigue predamage, however,
it reduces the crack initiation phase and then decreases its fatigue life. As for the 1.8% strain amplitude,
the corresponding stress can be approached to yield stress, and plastic deformation accumulation
takes place during the LCF predamage. Thus, the slip systems can be activated by plastic deformation
accumulation [21,22]. According to the weaken chain theory, a fatigue predamage site is a weak point,
and then high cycle fatigue cracks can initiate from the predamage site due to the activating slip
systems. However, a fatigue crack initiates from the specimen subsurface at low stress amplitude for
5% predamage specimens, indicating that fatigue early damage does not promote the surface crack
initiation at low stress amplitude.
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As precracks are introduced by LCF predamage, afatigue crack can be initiated from the precracks
under subsequent low stress amplitude. In other words, the precracks can be restarted under low
stress amplitude (Figures 11–13). The effect of precracks on the fatigue limits can be estimated by El
Haddad model. Recently, Zerbst [13] modified the El Haddad model and the Kitagawa–Takahashi
diagram. The endurance limits stress range ∆σ is obtained as:

∆σ =
∆Kth(∆a)

Y(ai + ∆a)
√
π(ai + ∆a)

(4)

which is the mathematical description of the K–T diagram. ∆σ is the stress amplitude range.
In ultrasonic fatigue with a mean load equal to zero (R = −1), only the tensile part of the cycle
has a predominant effect on the fatigue crack propagation [23]. ∆σ is replaced by stress amplitude σa.
The geometry factor Y is equal to 0.728 for small semicircular surface cracks [13]. ai and ∆a are the
initial closure-free crack size and the crack, and fatigue crack a = ai + ∆a.

El Haddad’s ∆Kth(∆a) equation has to be modified by adding an additional term a∗:

∆Kth(∆a) = ∆Kth,LC

√
∆a + a∗

∆a + a∗ + a0
(5)

The additional a∗ is simply determined by:

a∗ = a0
(∆Kth,e f f /∆Kth,LC)

2

1− (∆Kth,e f f /∆Kth,LC)
2 (6)

The intrinsic fatigue propagation threshold, ∆Kth,e f f , can be estimated by ∆Kth,e f f = E
√

b [24].
The term a∗ is introduced to fulfill the condition that ∆Kth = ∆Kth,e f f for ∆a = 0. The intrinsic crack
length a0 is given by [11]:

a0 =
1
π
(

∆Kth,LC

Y∆σe
)

2
(7)

In the absence of large defects, the initial closure-free crack ai can be referred as the arrested
microstructurally short crack d1, which is given as:

d1 =
1
π
(

∆Kth,e f f

Y∆σe
)

2

(8)

The intrinsic fatigue propagation threshold, ∆Kth,e f f of TC21 alloy is calculated as 2.2 MPa
√

m.
The long crack propagation threshold of TC21 alloy is estimated about 2.8 MPa

√
m [25], which is

approach to the crack propagation threshold of Ti6Al4V [23]. It should be noted that ∆Kth is not much
higher than ∆Kth,e f f , which can be explained by the very small closure effect when only the tensile
part of the cycle load is considered at R = −1.

The term of di, a0, a∗ are calculated as 15.4 µm, 25.4 µm and 40.98 µm, respectively. The K–T
diagram is shown in Figure 14. The precrack with the approximately 14.7 µm, 41.5 µm and 49.3 µm
depth are introduced by 10%, 20% and 50% fatigue damage. According to Equation (4), the fatigue
limit of TC21 alloy with 50% and 20% of predamage is about 230 MPa and 250 MPa, which well
agrees with the experimental data (Figure 14). For 10% of predamage, the fatigue limit is estimated
as 326 MPa with 6.8% error compared with the experimental data. This finding suggests that fatigue
precrack plays a significant role in the reduction of fatigue strength. It is also indicated that the crack
depth for the transition between short and long cracks is about 270 µm.
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Figure 14. Kitagawa–Takahashi diagram of TC21 titanium alloy with predamage.

Furthermore, the cyclic plastic zone at the applied load level, andω* can be estimated by Tirosh
and Peles [26]:

ω∗ =
1

30π
(

KI
σy

)
2

(9)

For 10% of predamage, the stress intensity factor under stress amplitude 375 MPa is about
3.02 MPa

√
m, and the plastic zone is 100 nm, which is smaller than the size of lamellar basketweave.

This suggest that fatigue early crack growth is significantly influenced by the microstructure
(Figure 12b), and fatigue crack is prone to grow towards the most preferred direction.

4.2. Effect of Fatigue Predamage on Fatigue Life

Fatigue precrack was obtained by LCF at 1.8% strain range and the ratio of−1. The propagation of
precrack under a subsequently low stress amplitude were observed using a video microscope showed
in Figure 15. The precrack propagation under a low stress amplitude follows Paris law (Figure 16) can
be expressed as:

da/dN = 8.64× 10−13(∆K)5.066 (10)
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The precrack propagation life under a low stress amplitude can be estimated as:

Np =
(a1−m/2

f r − a1−m/2
0 )

[1− (m/2)]C(Y∆σ
√
π)

m (11)

where a f r is the size of the fatigue fracture zone. C and m can be obtained by Equation (10).
The fatigue precrack acted as a small crack has a higher propagation rate than that of a long

crack with the same nominal stress intensity factor range. An intrinsic crack length a0 is added to the
actual length of crack to unify the differences in the crack propagation rates between small and long
cracks [26]. The crack propagation rate independent of crack size can be calculated by linear elastic
fracture mechanics.

According to Equation (11), the crack propagation life of TC21 alloy for 5%, 10% and 20% LCF of
predamage are shown in Table 1. The precrack propagation lives for 10% and 20% of LCF predamage
samples account for a major portion of the expected life, which also indicate that the precrack directly
propagate under subsequent stress amplitude. The number of cycles to failure for 10% predamage
specimens under 350 MPa is about 2 × 105 cycles, which shows that crack propagation times to
failure could be extremely short due to the high frequencies in VHCF. Furthermore, the effect of high
frequencies and low stress cannot be ignored for the structure with LCF predamage, although the
stress amplitude is much lower than VHCF limits, which is consistent with Mayer’s research [6].

Table 1. Estimation of fatigue crack-propagation life.

Predamaged
Specimens

Stress Amplitude,
MPa N, Cycles a0, µm afr, µm Np, Cycles Np/N, %

0% 460 1.590 × 107 27.56 1487 8.008 × 104 0.50
5% 460 3.320 × 105 27.56 1487 8.008 × 104 24.12

10% 350 1.920 × 105 42.26 2427 1.440 × 105 74.99
20% 300 2.000 × 105 69.06 2650 1.706 × 105 85.30

For 5% of LCF predamage specimens, where precracks are not introduced by LCF predamage,
more than 20% of the expected life is consumed in the crack-propagation life. Considering that less than
1% of the expected life is consumed in the crack-propagation life for TC21 alloy without predamage.
It is indicated that 5% of LCF predamage promote the initiation of fatigue crack.
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5. Conclusions

The effect of low cycle fatigue (LCF) predamage on the subsequent very high cycle fatigue (VHCF)
behavior is investigated in TC21 titanium alloy. The S-N curves of predamaged specimens exsit a knee
of horizontal lines for 105~109 cycles. The crack initiation site shifts from subsurface-induced fracture
for undamaged and 5% predamaged specimens to surface precrack for 10% and 20% predamaged
specimens. Five percent predamage insignificantly affects the VHCF limit due to the absence
of precrack, but decreases the subsequent fatigue crack initiation life estimated by the Pairs law.
Ten percent and 20% predamage samples account for a major portion of the expected propagation
life. Furthermore, the precracks introduced by 10% and 20% predamage significantly reduce the
subsequent VHCF limits, which are well-predicted based on the El Haddad modified model.
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