

1 Article-Supporting Information

2 LaAlO₃:Mn⁴⁺ as near-infrared emitting persistent

3 luminescence phosphor for medical imaging: A

4 charge compensation study

5 Jiaren Du¹, Olivier Q. De Clercq¹, Katleen Korthout¹ and Dirk Poelman^{1,*}

6 ¹ LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Ghent, Belgium;

- 7 Jiaren.Du@ugent.be; Olivier.DeClercq@ugent.be; Katleen.Korthout@ugent.be
- 8 * Correspondence: Dirk.Poelman@ugent.be; Tel.: +32-9264-4367
- 9

10 Figure S1-S16; Table S1,S2

11

- 12 Figure S1. XRD pattern of LaAlO₃ synthesized through a solid-state reaction method. The synthesis
- 13 temperature is indicated next to the diffractograms. The intensities of the XRD patterns are normalized to 14 arbitrary units [0, 1].

16 Figure S2. Photoluminescence (PL) spectra of LaAlO3:2%Mn4+,2%Li+, LaAlO3:2%Mn4+,2%Na+, and

- 17 LaAlO₃:2%Mn⁴⁺,2%Cl⁻ phosphors. All the PL spectra (λ_{ex} = 335 nm) are in the range 660-780 nm and PL spectrum 18
- of LaAlO₃:2%Mn⁴⁺ phosphor is shown in black for comparison.

19

20 S3. Photoluminescence (PL) spectra of LaAlO3:2%Mn4+,2%Ge4+, LaAlO3:2%Mn4+,2%Si4+, Figure 21 LaAlO3:2%Mn⁴⁺,2%Ti⁴⁺,and LaAlO3:2%Mn⁴⁺,2%Zr⁴⁺ phosphors. All the PL spectra (λ_{ex} = 335 nm) are in the range

22 660-780 nm and PL spectrum of LaAlO3: 2%Mn4+ phosphor is shown in black for comparison.

Figure S4. Photoluminescence (PL) spectra of LaAlO₃:2%Mn⁴⁺,2%Ba²⁺, LaAlO₃:2%Mn⁴⁺,2%Ca²⁺,
LaAlO₃:2%Mn⁴⁺,2%Mg²⁺, and LaAlO₃:2%Mn⁴⁺,2%Sr²⁺ phosphors. All the PL spectra (λ_{ex}= 335 nm) are in the
range 660-780 nm and PL spectrum of LaAlO₃:2%Mn⁴⁺ phosphor is shown in black for comparison.

27

28 Figure S5. Persistent luminescence decay curves of LaAlO₃:0.5%Mn⁴⁺,ySr²⁺ (y= 0.5%, 1%, 2%, 3%, and 5%)

29 phosphors after 5 min of irradiation with a Xenon arc lamp. The red curve corresponds to LaAlO₃:0.5%Mn⁴⁺ as

30 an intensity benchmark of persistent luminescence.

32 Figure S6. Persistent luminescence decay curves of LaAlO₃:0.5%Mn⁴⁺,yGe⁴⁺ (y = 0.5%, 1%, 2%, 3%, and 5%)

- 33 phosphors after 5 min of irradiation with a Xenon arc lamp. The red curve corresponds to LaAlO₃:0.5%Mn⁴⁺ as
- 34 an intensity benchmark of persistent luminescence.

35

36 Figure S7. Persistent luminescence decay curves of LaAlO₃:0.5%Mn⁴⁺,yCa²⁺ (y = 0.5%, 1%, 2%, 3%, and 5%)

- $37 \qquad \text{phosphors after 5 min of irradiation with a Xenon arc lamp. The red curve corresponds to LaAlO_3: 0.5\% Mn^{4+} as$
- 38 an intensity benchmark of persistent luminescence.

40 Figure S8. Persistent luminescence decay curves of LaAlO₃:0.5%Mn⁴⁺,yBa²⁺ (y = 0.5%, 1%, 2%, 3%, and 5%)

phosphors after 5 min of irradiation with a Xenon arc lamp. The red curve corresponds to LaAlO₃: 0.5%Mn⁴⁺ as
an intensity benchmark of persistent luminescence.

43

44 Figure S9. Persistent luminescence decay curves of LaAlO₃:0.5%Mn⁴⁺,yCl⁻ (y = 0.5%, 1%, 2%, 3%, and 5%)

45 phosphors after 5 min of irradiation with a Xenon arc lamp. The red curve corresponds to LaAlO₃:0.5%Mn⁴⁺ as

46 an intensity benchmark of persistent luminescence.

48 Figure S10. Persistent luminescence decay curves of LaAlO₃:0.5%Mn⁴⁺,yNa⁺ (y = 0.5%, 1%, 2%, 3%, and 5%)

49 phosphors after 5 min of irradiation with a Xenon arc lamp. The red curve corresponds to LaAlO₃:0.5%Mn⁴⁺ as
50 an intensity benchmark of persistent luminescence.

51

Figure S11. Photoluminescence (PL) spectra of LaAlO₃:0.5%Mn⁴⁺,0.5%Ge⁴⁺, LaAlO₃:0.5%Mn⁴⁺,1%Ge⁴⁺,
 LaAlO₃:0.5%Mn⁴⁺,2%Ge⁴⁺, LaAlO₃:0.5%Mn⁴⁺,3%Ge⁴⁺ and LaAlO₃:0.5%Mn⁴⁺,5%Ge⁴⁺ phosphors. All the PL

54 spectra (λ_{ex}= 335 nm) are in the range 660-780 nm and PL spectrum of LaAlO₃:0.5%Mn⁴⁺ phosphor is shown in

55 red for comparison.

 $57 \qquad \textbf{Figure S12.} \ \ Photoluminescence \ \ (PL) \ \ spectra \ \ of \ \ LaAlO_3: 0.5\% Mn^{4+}, 0.5\% Ba^{2+}, \ \ LaAlO_3: 0.5\% Mn^{4+}, 1\% Ba^{2+}, \ \ aad about a barbox and a barbox$

- $58 \qquad LaAlO_{3}:0.5\%Mn^{4+},2\%Ba^{2+}, \\ LaAlO_{3}:0.5\%Mn^{4+},3\%Ba^{2+} \\ and \\ LaAlO_{3}:0.5\%Mn^{4+},5\%Ba^{2+} \\ phosphors. \\ All \\ the PL \\ spectral \\ and \\ bare \\ ba$
- 59 (λ_{ex} = 335 nm) are in the range 660-780 nm and PL spectrum of LaAlO₃:0.5%Mn⁴⁺ phosphor is in red for
- 60 comparison.

61

Figure S13. Photoluminescence (PL) spectra of LaAlO₃:0.5%Mn⁴⁺,0.5%Sr²⁺, LaAlO₃:0.5%Mn⁴⁺,1%Sr²⁺,
LaAlO₃:0.5%Mn⁴⁺,2%Sr²⁺, LaAlO₃:0.5%Mn⁴⁺,3%Sr²⁺ and LaAlO₃:0.5%Mn⁴⁺,5%Sr²⁺ phosphors. All the PL spectra
(λ_{ex}= 335 nm) are in the range 660-780 nm and PL spectrum of LaAlO₃:0.5%Mn⁴⁺ phosphor is in red for

65 comparison.

- 69 spectra (λ_{ex} = 335 nm) are in the range 660-780 nm and PL spectrum of LaAlO₃:0.5%Mn⁴⁺ phosphor is in red for
- 70 comparison.

71

Figure S15. Photoluminescence (PL) spectra of LaAlO₃:0.5%Mn⁴⁺,0.5%Na⁺, LaAlO₃:0.5%Mn⁴⁺,1%Na⁺,
LaAlO₃:0.5%Mn⁴⁺,2%Na⁺, LaAlO₃:0.5%Mn⁴⁺,3%Na⁺ and LaAlO₃:0.5%Mn⁴⁺,5%Na⁺ phosphors. All the PL spectra (λ_{ex}= 335 nm) are in the range 660-780 nm and PL spectrum of LaAlO₃:0.5%Mn⁴⁺ phosphor is in red for

75 comparison.

Figure S16. Photoluminescence (PL) spectra of LaAlO₃:0.5%Mn⁴⁺,0.5%Cl⁻, LaAlO₃:0.5%Mn⁴⁺,1%Cl⁻,
LaAlO₃:0.5%Mn⁴⁺,2%Cl⁻, LaAlO₃:0.5%Mn⁴⁺,3%Cl⁻ and LaAlO₃:0.5%Mn⁴⁺,5%Cl⁻ phosphors. All the PL spectra
(λ_{ex}= 335 nm) are in the range 660-780 nm and PL spectrum of LaAlO₃:0.5%Mn⁴⁺ phosphor is in red for

- 80 comparison.
- 81
- 82

Table S1. Ionic radius of some common dopant cations for the substitution on Al³⁺ site

Dopant	Coordination Number (Substitut	ion Ionic Radius	$ R_{DC^{2+}-R_{Al^{3+}}} /R_{Al^{3+}} $
Cations	on Octahedral Al ³⁺ Site)	(pm)	(%)
Li +	VI	76	42.05
Na ⁺	VI	102	90.65
K +	VI	138	157.94
Rb+	VI	152	184.11
Cs+	VI	167	212.14
Ag^+	VI	115	114.95
Au+	VI	137	156.07
Be ²⁺	VI	45	15.88
Mg^{2+}	VI	72	34.57
Ca ²⁺	VI	100	86.91
Sr ²⁺	VI	118	120.56
Ba ²⁺	VI	135	152.33
Cu^{2+}	VI	73	36.44
Zn^{2+}	VI	74	38.31
Cd^{2+}	VI	95	77.57
Hg ²⁺	VI	102	90.65
Sc ³⁺	VI	74.5	39.25
Y ³⁺	VI	90	68.22
B ³⁺	VI	27	49.53

Nanomaterials 2017, 7, x FOR PEER REVIEW

Ga ³⁺	VI	62	15.88
In ³⁺	VI	80	49.53
Ti ⁴⁺	VI	60.5	13.08
Zr^{4+}	VI	72	34.57
Mn ⁴⁺	VI	53	0.93
Si ⁴⁺	VI	40	25.23
Ge4+	VI	53	0.93
Sn ⁴⁺	VI	69	28.97

Table S2. Ionic radius of some common dopant cations for the substitution on La³⁺ site

Dopant	Coordination Number (Substitu	ition Ionic Radius	R _{DC²⁺-R_{La³⁺} /R_{La³⁺}}
Cations	on La ³⁺ Site)	(pm)	(%)
Na+	XII	139	2.20
K +	XII	164	20.58
Rb+	XII	172	26.47
Cs^+	XII	188	38.23
Ca ²⁺	XII	134	1.47
Sr ²⁺	XII	144	5.88
Ba ²⁺	XII	161	18.38
Cd ²⁺	XII	131	3.67

85