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Abstract: In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using
the melt reaction method and the accumulative roll-bonding (ARB) technique. The microstructure
evolution of the composites with different deformation treatments was characterized using field
emission scanning electron microscopy (FESEM) and a transmission electron microscope (TEM).
The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and
microhardness tests. It was found that the distribution of reinforcement particles becomes more
homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great
improvement during the ARB process. The ultimate tensile strength (UTS) and microhardness of the
composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore,
the strengthening mechanism of the composite was analyzed based on its fracture morphologies.

Keywords: accumulative roll bonding (ARB); Al alloy matrix composites; mechanical properties;
microstructure

1. Introduction

Aluminum-based metal matrix composites (AMMCs) reinforced by ceramic particles have
received increasing attention due to their high specific strength, good wear resistance, excellent
dimensional stability and superior damping capacity [1,2]. A combination of these properties is not
available in a conventional material. AMMCs are a very important lightweight structural material
and are widely used in some critical components in the automobile and aerospace industries and for
other structural applications. The properties of AMMCs depend on the type, size, content, bonding
and spatial distribution of ceramic particles [3]. The fabrication process significantly affects these
properties of AMMCs. Generally, particle-reinforced aluminum composites are produced using several
conventional and specific methods; the liquid metallurgy route is widely preferred owing to its
simplicity, low cost, near net shape and mass production [4]. Using liquid metallurgy, particles are
either added externally or formed in the molten metal; the latter method is called in situ fabrication [5].
It is known that the particle-reinforced composites synthesized in situ have a clearer interface between
the matrix and particle reinforcements, and better interfacial thermodynamic stability, than those
synthesized with exogenously formed processes [6].
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Fine grain sizes in the matrix, uniform distribution of the reinforcement particles through the
matrix and strong bonding of reinforcement particles with the matrix certainly improve the mechanical
properties of the composites [7,8]. However, the major drawback of in situ composites is the segregation
of the reinforcement particles at the grain boundaries [9,10]. It is difficult to avoid segregation during
the formation and solidification of the composite melt. It has been found, however, that severe plastic
deformation (SPD) processes such as high-pressure torsion (HPT), equal channel angular pressing
(ECAP), and accumulative roll-bonding (ARB), can be used to make the distribution of reinforcement
particles more homogenous in the matrix [11–15].

In recent years, ARB has been used to fabricate laminated composite sheets with nanocrystalline
and ultrafine-grained structures. ARB consists of roll-bonding cleaned and stacked sheets while
reducing their thickness by 50%, cutting them into stacks, and then roll-bonding them again [16–18].
A number of studies have investigated the microstructures and mechanical properties of multilayered
composites produced by ARB such as Al/Cu, Al/Ni, Al/Mg, Al-SiC, Al-B4C, and Al-Al2O3-B4C [13,15,19–22].
However, few studies of the application of ARB on Al-TiB2/TiC in situ composites have been reported.
In this work, we fabricated Al-TiB2/TiC composites through an in situ melt reaction of Al-Ti and Al-B-C
alloys and used ARB to improve the mechanical properties of the resulting composites. TiB2 and TiC
ceramic particles are outstanding reinforcement particles in Al alloys, offering good thermodynamic
stability, high hardness, a high melting point, a high modulus, high corrosion resistance, and low
density [23–25].

2. Experimental Procedure

An Al-8B-2C master alloy supplied by Shandong Al&Mg Melt Technology Co. Ltd. (Jinan, China),
Ti sponge (99.8%), and commercial pure Al (99.7%) were used as raw materials for this study. Ti was
initially added to Al melts in a medium frequency furnace, then the Al-8B-2C alloy was added to
the Al-Ti melts, fabricating an Al-3.6Ti-1.12B-0.28C in situ composite. It was calculated that 3.6 wt %
TiB2 and 1.4 wt % TiC could be formed in the alloy, which we refer to as Al-5 wt % TiB2/TiC in the
following. A series of sheets (20 mm in length, and 10 mm in width and thickness) were cut from the
ingot of the composites for the rolling deformation and further ARB processes.

To begin, the as-cast composite sheets were preheated at 300 ◦C for 3 min in a resistance furnace
and rolled on the laboratory rolling mill to a 30% reduction in thickness. The process was repeated three
times, obtaining sheets of about 1 mm thickness (a thickness reduction of 90%), which were further
processed by ARB. Figure 1 illustrates the principle and procedures of ARB processing. After cleaning
and degreasing using acetone, and wire brushing with a circular stainless steel brush to break up thick
oxide and create a defined surface roughness of the sheet material, two primary sheets were stacked
and fastened together. After preheating at 300◦C using the procedure mentioned above, they were roll
bonded immediately to a reduction of 50% in thickness in a single cycle. Finally, the roll bonded sheet
was cut in half and the same procedures were repeated up to four cycles.

The microstructures of the composites were characterized using a field emission scanning electron
microscope (FESEM, Quanta 250F, FEI, Hillsboro, OR, USA) equipped with a energy dispersive
X-ray spectrometer (EDS, Oxford Instruments, Oxford, UK), X-ray diffraction (XRD, D8, Bruker,
Coventry, Germany) and a transmission electron microscope (TEM, Tecnai20, FEI). The tensile tests
were conducted at ambient temperature on the universal test machine (LFM-20, Walter +bai ag,
Löhningen, Switzerland) at an initial strain rate of 5.6 × 10−4 s−1. The tensile test specimens were
machined from the processed sheets oriented along the rolling direction (RD) in accordance with
the ASTM: E8M standard. Thus, the tensile direction of the specimen was parallel to the RD of the
sheets. A Vickers hardness experiment was carried out on the surface RD-TD plane of the multilayered
composite using a tester (HMV-G 21DT, Shimadzu, Tokyo, Japan) at a load of 0.49 N held for 15 s.
For each specimen, at least seven randomly selected indentations were tested to obtain a mean value
with a standard deviation error.
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Figure 1. Diagrammatic illustration of the accumulative roll-bonding (ARB) process. Figure 1. Diagrammatic illustration of the accumulative roll-bonding (ARB) process.

3. Results and Discussion

3.1. Microstructure Evolution of the Al-5 wt % TiB2/TiC Composites

The XRD pattern of the prepared Al-5 wt % TiB2/TiC in situ composites is shown in Figure 2a.
The XRD pattern shows that TiB2 and TiC phases were formed in these composites. Figure 2b shows
the microstructures of the composites, and many reinforcement particles can be observed in the matrix.
Notice that most of the reinforcement particles are distributed along the grain boundaries, and the
particle-agglomerated clusters formed long particle chains. Meanwhile, large particle-free zones
formed in the interior of the grains. In the magnified image (Figure 2c), the white particles are TiC
and the gray particles are TiB2 [26]. EDS experiments were also used to identify TiC and TiB2 particles,
as shown in Figure 2d,e. The TiB2 and TiC particles were in the range of 0.5–2 µm, and the small-sized
particles easily formed large agglomerated clusters due to their large surface-to-volume ratio and their
attractive Van der Waals interactions [27].
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reduction rolling in combination with one, two, and four ARB cycles, respectively. The distribution 
of the reinforcement particles in the matrix is more homogenous after ARB treatment than in the 
as-cast one, shown in Figure 2b. After the fourth cycle, the particle-free zone in the matrix became 
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Figure 4 demonstrates the SEM micrographs of the microstructures of Al-5 wt % TiB2/TiC 
composites after different deformation processes at a higher magnification. As shown in Figure 4a, 
some cracks appeared in the large close-packed particle clusters, formed by plastic deformation 
during rolling. We suggest that the large particles are actually composed of multiple smaller ones, 
due to their attractive Van der Waals interactions reducing the total surface energy in the melt. With 
increased deformation after multiple ARB cycles (Figure 4b,c), the large agglomerated particle 
cracked and was divided into several submicro-sized ones. By increasing the ARB processing up to 
four cycles, the number of small particles of submicro size was increased, due to the separation of the 

Figure 2. XRD pattern and FESEM micrographs of Al-TiB2/TiC in situ composites: (a) XRD pattern;
(b,c) Microstructures at low and high magnification; (d,e) EDS point analysis for the particles.

In order to make the distribution of TiC and TiB2 reinforcement particles more uniform in the
Al matrix, the composites was processed by rolling deformation after preheating. Figure 3a shows
the microstructures of rolled Al-5 wt % TiB2/TiC composites after reducing their thickness by 90%;
it can be seen that the size of the particle-free zone and the amount of agglomerated reinforcement
particles became smaller. The composites after rolling for a 90% reduction were further processed
using ARB. Figure 3b–d show the microstructures (in the RD-TD planes) of the composites with 90%
reduction rolling in combination with one, two, and four ARB cycles, respectively. The distribution of
the reinforcement particles in the matrix is more homogenous after ARB treatment than in the as-cast
one, shown in Figure 2b. After the fourth cycle, the particle-free zone in the matrix became smaller
and the particle distribution in the matrix became more uniform.
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Figure 4 demonstrates the SEM micrographs of the microstructures of Al-5 wt % TiB2/TiC
composites after different deformation processes at a higher magnification. As shown in Figure 4a,
some cracks appeared in the large close-packed particle clusters, formed by plastic deformation during
rolling. We suggest that the large particles are actually composed of multiple smaller ones, due to their
attractive Van der Waals interactions reducing the total surface energy in the melt. With increased
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deformation after multiple ARB cycles (Figure 4b,c), the large agglomerated particle cracked and
was divided into several submicro-sized ones. By increasing the ARB processing up to four cycles,
the number of small particles of submicro size was increased, due to the separation of the particle
clusters, and almost all the resulting particles were smaller than 1 µm. Furthermore, the distribution of
reinforcement particles in the matrix became more homogenous, as shown in Figure 4d.
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(a) Rolling for 90% reduction; (b–d) Following one, two and four ARB cycles, respectively.

The microstructures of the Al-5 wt % TiB2/TiC composites following increasing ARB cycles in
the RD-ND plane were also investigated, and are shown in Figure 5. After the first cycle (Figure 5a,b),
the particle chains in the original sample almost disappeared and a few elongated agglomerated
particle clusters existed along the rolling direction. In the magnified image in Figure 5b, it can be
seen that the reinforcement particle clusters were broken by the stress of rolling and most of them
separated from each other. With increasing ARB cycles, the distribution of particles in the matrix
became much more uniform as shown by Figure 5c,d. As the ARB process progressed up to four
cycles, a microstructure with uniformly distributed TiB2 and TiC reinforcement particles was obtained
(Figure 5e,f). This phenomenon is attributed to the high deformability of the Al matrix under the stress
of rolling. Furthermore, compared with Figures 3 and 4, the microstructure shows that the uniformity
of the RD-ND plane was much better that of the RD-TD plane [28].
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3.2. Grain Structures of the Al-5 wt % TiB2/TiC Composites

The grain structures of the composites were shown by the polarized light optical micrograph after
electroetching the polished specimens. The as-cast Al-TiB2/TiC composite has an average grain size
of 30.6 µm, as shown in Figure 6a. After rolling for 90% reduction, the grains of the Al matrix were
elongated and many grains were refined significantly due to the fragmentation of the elongated grains
during the rolling process, as shown in Figure 6b. With ARB processing, the Al grains were further
refined after one cycle, as illustrated in Figure 6c.Materials 2017, 10, 109  7 of 12 
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The TEM micrographs of the Al-TiB2/TiC composites with different deformation histories are
shown in Figure 7. Figure 7a,b give the microstructures of the Al-TiB2/TiC composite after its thickness
was reduced by 90% by rolling: the matrix Al grains were elongated and many dislocation cells were
formed. Furthermore, a number of dislocation lines can be clearly seen at the higher-magnification
dark field image shown in Figure 7b. After treatment by one ARB cycle, grain size decreased and the
number of dislocation tangles in the grains also decreased, as shown in Figure 7c. The most prominent
microstructural change after one ARB cycle was a drastic decrease in the dislocation density when
compared with the 90%-reduced rolled sample. The dislocation cell size also became finer (Figure 7d),
suggesting dislocation rearrangement during the ARB treatment. Moreover, contours can be seen
mostly near the boundaries, reflecting the internal stress existing in the grains.
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For the microstructures after deformation by two ARB cycles, shown in Figure 7e, an obvious
decrease of grain size was observed, and the interior of most grains was very clean. The boundaries of
most grains were very sharp, suggesting the misorientation angles between the grains were increased
and high angle boundaries were formed. The dislocation density inside the grains was very low in
comparison with that observed after one ARB cycle, indicating that the annihilation of dislocations
inside the grains occurred, which is in accordance with the fact that the development of fine structures
during SPD is accompanied by a decrease in dislocation density at large strains. After four ARB cycles,
more grains were refined and some ultrafine equiaxed grains were formed, as shown in Figure 7f.

Generally, the formation of ultrafine structures in the highly strained materials was regionally
inhomogeneous because of the friction between the rolls and the strip surfaces [29]. The grain
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refinement mechanism during the SPD process has been explored extensively by researchers [30],
who have found that fine dislocation cell structures with low-angle grain boundaries are first created
firstly at a small strain, after which the cell structures become finer and their misorientation angle
increases [31,32]. Finally, a fine grain structure with distinguished high angle boundaries is generated
at a higher plastic strain.

3.3. Mechanical Properties of the In Situ Al-5 wt % TiB2/TiC Composites

The typical engineering stress-strain curves of different Al-TiB2/TiC composites and commercial
pure Al (CPAl) are shown in Figure 8a. Compared with commercial pure Al, the tensile strength of the
in situ Al-TiB2/TiC composite was enhanced greatly by the reinforcement particles. Meanwhile, the
composites with 90% reduction rolling and after subsequent ARB cycles showed higher strength and
lower ductility compared to the as-cast one. The composites’ variation of yield strength (σy), ultimate
tensile strength (UTS), and elongation to failure (ε) under different deformation treatments, obtained
from the engineering stress-strain curves, are presented in Figure 8b.
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Compared with those of the as-cast composite, the σy and UTS of the composites after rolling
for 90% reduction were significantly increased, from 38.5 and 77.2 MPa to 182.8 and 185.9 MPa,
respectively. However, ductility had a dramatic decrease. After further treatment with one ARB cycle,
both the σy and UTS of the composite were decreased, to 137.6 and 147.3 MPa, respectively. They were
slightly increased to 155.7 and 173.1 MPa after the second ARB cycle. After the fourth ARB cycle, σy

was almost unchanged and the UTS deceased slightly. Generally, the elongation of the composites
decreased dramatically after the first ARB treatment, was slightly increased with further ARB cycles,
and exceeded 8.5% after the fourth ARB cycle treatment.

Furthermore, the microhardness of the Al-TiB2/TiC composites after rolling and subsequent ARB
cycles was also measured on the surface of RD-ND planes, and is shown in Table 1. The variations in
hardness were similarto those of the tensile strength. The hardness of the composite rapidly increased
after rolling and the initial ARB cycles, showing a lower rate of increase after further ARB treatment.
After 90% reduction rolling, the composite’s hardness was 59.9 Hv, 35.5% higher than that of the as-cast
composite, 44.2 Hv. It reached its maximum value of 63.3 Hv after the second ARB cycle, and decreased
slightly after the fourth ARB cycle.

It is known that strain hardening or dislocation strengthening plays the main role in the
composite’s increased strength after the initial rolling and ARB cycles [33–35]. After 90% reduction
rolling, a high density of dislocations was formed in the grains, as shown in Figure 7a,b. Therefore,
the increase in the σy and UTS for the composites after 90% reduction rolling could be attributed to
the increased dislocation density (strain hardening). Meanwhile, work hardening leads to a quick
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decrease of the ductility of the composites. However, with increased strain through one ARB cycle,
more dislocations were annihilated and the dislocation density decreased in the grains, leading to the
decrease of the σy and UTS of the composites. Once the dislocation density saturates due to the dynamic
balance between dislocation generation during plastic deformation and dislocation annihilation through
recovery processes, strength is determined by the grain size. After the second ARB cycle treatment, the grain
size was obviously refined in comparison to that after one ARB cycle treatment, leading to increased σy and
UTS. In addition, the microstructures shown in Figures 3 and 5 indicate that with increasing ARB cycles,
the distribution of the reinforcement particles in the aluminum matrix became more uniform and the
average size of the particles was reduced to less than 1.0 µm. Thus more particles became suitable
reinforcements for Orowan strengthening [33], which can also contribute to increased tensile strength
and ductility [7,8,15,34]. In the same way deformation promotes grain refinement, we suppose that
a high temperature could promote boundary mobility at higher strains. Therefore, we suggest that
the matrix grain size could slightly increase after the fourth ARB cycle, leading to a slight decrease in
the UTS and an increase in elongation. In addition, we suspect microcracks formed in the samples at
higher strain, which can also decrease the UTS of the composites.

Table 1. The average hardness of Al-TiB2/TiC composites after rolling and different ARB cycles.

Samples Hardness/Hv

as cast 44.2
90% 59.9
1st 56.6
2nd 63.3
4th 61.8

Figure 9 shows the fracture surfaces of the Al-TiB2/TiC composites after tensile tests were
performed to investigate the failure mechanisms and bonding characteristics of the composites.
A typical ductile fracture with a large number of dimples and shear zones can be seen in the as-cast
Al-TiB2/TiC composite (Figure 9a); porosities (indicated by arrows) were also found. After the first
ARB cycle, the size of the dimples at the fracture surface was much smaller, as shown by Figure 9b.
Meanwhile, it can be seen that during the tensile test for the composites, debonding started in the
interface between the two layers formed during the first ARB cycle (Figure 9b). Note that some areas at
the interface were also bonded tightly with no cracks, indicating that the two layers were well bonded.
It is known that new interfaces form continuously during the ARB process. With increasing cycles,
as shown in Figure 9c, total debonding between layers occurred during the tensile test, and in the
second cycle, microcracks developed at the newer interface, while the interface formed in the first
cycle cannot be seen clearly. The interfaces formed in the first cycle were bonded together tightly in
the second cycle, and good bonding between the composite layers can be obtained. By increasing to
the fourth cycle, the composite sheet consisted of 16 layers, and only one separated interface could be
seen on the fracture surfaces, which are similar with that seen in Figure 9c. In fact, total separation
between layers happened at the newest interface formed in the fourth cycle, as shown in Figure 9d.
Therefore, we consider that separation in the last cycle will decrease the strength of the composites to
some extent. We also assume that further rolling can be applied to the fourth ARB cycle sample to
improve the bonding between layers.

The fracture surfaces at higher magnification are shown in Figure 10. The as-cast composite
exhibits a typical ductile facture with deep equiaxed dimples, and most of the reinforcement particles
are distributed in the dimples (Figure 10a). It is known that ductile fracture occurs by the nucleation of
microvoids, followed by their growth and coalescence [36]. The presence of particles at the bottom
of some dimples can be considered as evidence for the nucleation of voids from the particle-matrix
interfaces [37]. After one ARB cycle, the size of the dimples decreased significantly, as shown in
Figure 10b, and the dimple size decreased slightly more with increased ARB cycles. It has been found
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that the presence of the particles can change the morphology of dimples so that the dimples nucleated
at the particle sites are deeper and larger than those nucleated in other regions. As shown in Figure 5,
the reinforcement particles were uniformly distributed in the matrix after four ARB cycles. Therefore,
shallow and small dimples were found at the fracture surfaces of the composites treated by more ARB
processes (Figure 10b–d).
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4. Conclusions

In summary, Al-TiB2/TiC composites were fabricated by an in situ melt reaction and subsequent
rolling and ARB processes. Our main conclusions are:

(1) The in situ TiC and TiB2 were formed by the reaction of Al-8B-2C and Al-Ti melts. The TiB2 and
TiC particles, ranging from 0.5 to 2 µm in size, agglomerated along the grain boundary in the
as-cast composites.

(2) The large particle agglomerations in the composites were effectively reduced after subsequent
rolling and ARB processes. The distribution of TiB2 and TiC reinforcement particles in the matrix
became more uniform with increased ARB cycles.

(3) The mechanical properties of the Al-TiB2/TiC in situ composites were significantly improved by
the ARB process. The UTS and microhardness of the composites were increased to 173.1 MPa and
63.3 Hv, respectively, after the second ARB cycles. However, ductility was dramatically decreased,
from 23.4% to 8.5%.

(4) The fracture surface of Al-TiB2/TiC composites showed many dimples, indicating ductile-type
fracture. Most of the TiB2 and TiC reinforcement particles were located in the centers of
the dimples.
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