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Abstract: We investigated the electrical and optoelectronic properties of a magnesium zinc oxide
thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap
MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated
device demonstrated a threshold voltage of 3.1 V, on–off current ratio of 105, subthreshold swing
of 0.8 V/decade, and mobility of 5 cm2/V·s in a dark environment. As a UV photodetector, the
responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a gate bias of −5 V
under 290 nm illumination.
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1. Introduction

In recent years, ultraviolet photodetectors have attracted much attention for their potential
in medical, commercial, and military applications [1–5]. The thin-film transistor (TFT) has been
intensively researched for its application to switching devices in large-area display panels (active
matrix liquid crystal displays (AMLCDs) and organic light-emitting diodes). A number of different
materials are utilized for TFT fabrication. Many groups have used ZnO-based semiconductors as the
TFT channel layer, owing to their high field mobility, low temperature processing, and nontoxicity.
Oxide TFTs with photosensitive metal oxide semiconductor materials are promising candidates that
can act as photodetectors. Bae et al. reported the fabrication of a ZnO-based phototransistor [6].
Zan et al. reported on an amorphous IGZO (a-IGZO) visible-light photodetector with a polymeric light
absorption layer [7]. Chiu et al. reported the fabrication of deep-UV-sensitive a-IGZO TFTs with a
Ta2O5 gate dielectric [8]. However, the electrical properties and material characteristics of the TFT’s
active layer strongly influence the device’s transfer characteristics. TFTs with a ZnO active layer exhibit
n-type conductivity owing to the oxygen vacancies and zinc interstitials. Thus, defect density control
is the key to the performance of ZnO-based TFTs [9–12]. Magnesium zinc oxide is emerging as a TFT
active layer candidate because its large bandgap can decrease donor-like defects [13,14]. In addition,
the strong bonding energy between magnesium and oxide reduces oxygen vacancies, which makes Mg
a good candidate for doping into ZnO for the TFT active layer. In several studies, TFTs with MgZnO
have been fabricated with various processing methods, such as radio frequency-sputtering with a
5% Mg target [15], e-beam evaporation with 1% Mg content [16], and atomic layer deposition with
10% Mg content [17]. Because of its wide direct bandgap, the MgZnO material system is an excellent
choice for optoelectronic devices in the UV portion of the spectrum. MgZnO also possesses unique
figures of merit such as intrinsic visible blindness and radiation hardness that are crucial for practical
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optoelectronic devices. Hullavarad et al. reported that the UV/visible rejection ratio—defined as
the ratio of the photoresponse at 310–800 nm—is 104 for Mg0.15Zn0.85O on Al2O3 and 103 on quartz
substrates. In addition, solar or visible–blind MgxZn1−xO photodetectors have been fabricated on
sapphire, glass, and silicon substrates [18]. Photodetectors fabricated on Mg0.68Zn0.32O/SrTiO3/Si
have demonstrated the peak photoresponse at 225 nm and a UV/visible rejection ratio that is only one
order of magnitude [19]. Prototype MgxZn1−xO UV photodetectors with different Mg contents have
been fabricated with high photoresponsivities and sharp cutoffs at ~375, ~350, ~315, and ~300 nm for
x values of 0, 0.10, 0.26, and 0.34, respectively [20]. Magnesium doping suppresses the subthreshold
current. Furthermore, the magnesium atom also exists at interstitials in the crystal and forms impurity
scattering centers, which leads to poor TFT mobility and a large threshold voltage. Nonetheless, there
have been few studies related to MgZnO TFTs, let alone their fabrication via radio frequency-sputtering.

In this work, we investigated the properties of MgZnO TFTs that are fabricated by radio
frequency-sputtering with different oxygen flow ratios, and then generalized the optimized conditions.
We extended the application of the TFTs to a phototransistor to combine the photoelectrical properties of
MgZnO and the transistor to increase the responsivity. Under the optimal parameters, the MgZnO TFT
can operate normally, and the device has high mobility, a fast on–off transition, and high responsivity
under deep UV illumination.

2. Materials and Methods

First, to fabricate MgZnO TFTs, 2 cm × 2 cm glass substrates were cleaned with acetone,
isopropyl alcohol, and deionized (DI) water. Figure 1 shows the cross-section of the MgZnO TFT.
The aluminum bottom gate was thermally deposited on a quartz substrate (Sunmei Glass Company,
Taiwan, China). Next, a 200 nm thick SiO2 layer—which acted as a dielectric—was deposited by using
the plasma-enhanced chemical vapor deposition (PECVD) process (PD-220NA, SAMCO, Kyoto, Japan).
The 10-nm-thick MgZnO channel was fabricated from a MgZnO (MgO = 10 wt%, ZnO = 90 wt%)
target (GfE Gesellschaft für Elektrometallurgie mbH: GfE, Nürnberg, Germany). During channel
layer sputtering, the chamber pressure was kept at 10 mTorr, the sputtering power was fixed at
100 W, and the substrates were rotated at a speed of 20 rpm. The oxygen flow ratio was varied from
0% to 21% in increments of 7% (i.e., 0%, 7%, 14%, and 21%). After the channel layer deposition,
the samples were placed in a furnace for annealing for 30 min at 300 ◦C. This was done to incorporate
the magnesium atoms into the crystal lattice. The source and drain electrodes were deposited on the
MgZnO active layer by thermal evaporation. The width/length (W/L) of the active layer was fixed
at 1000 µm/100 µm. The current-voltage (I–V) characteristics of the fabricated TFTs were measured
in the dark at room temperature and atmospheric pressure with a B1500 semiconductor parameter
analyzer (Agilent Technologies, Santa Clara, CA, USA). The parameters of the TFTs were calculated by
using Equation (1).

The mobility of our TFTs was determined in the saturation region. In the saturation region, the
drain current can be represented by

ID =
W
2L

Cµ(VG − Vt)
2, (1)

where C is the capacitance of the dielectric layer (~16.8 nF·cm−2); W is the channel width; L is the
channel length; Vt and VG are the threshold voltage and gate voltage respectively; and µ is the
field-effect mobility. We used the gate width-length (W/L) ratio of 10. The subthreshold swing (S.S.) is
defined as

S.S. =
∂VG

∂ log ID
, (2)

where VG and ID are the gate voltage and drain current respectively. The small value of
S.S. was attributed to both the high gate capacitance density and high interface charge density.
The photoresponsivity of the fabricated device was measured with a 250 W Xe lamp dispersed
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by a monochromator as the light source. The monochromatic light, which was calibrated with a
UV-enhanced Si diode and optical power meter, was modulated by a mechanical chopper and then
collimated on the front side of the fabricated device with an optical fiber. The illumination area was
0.1 mm2.
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Figure 1. Top view and cross-section of the MgZnO thin-film transistor (TFT). W, channel width;
L, channel length.

3. Results and Discussion

As for the film optical properties, the transmittance and optical bandgap determined by the
absorption coefficient were considered. Figure 2 shows the transmittance spectra of the MgZnO thin
film with various oxygen flow ratios. The transmittance in the visible region could clearly be more
than 80%. The absorption edge of the MgZnO thin film was from 329 nm to 334 nm. The inset depicts
the relationship between absorption coefficient and photon energy. The energy bandgap of MgZnO
was found to be around 3.43 eV, regardless of the oxygen flow ratio.
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Figure 2. (A) Transmittances of the MgZnO thin film with a variable oxygen flow ratio of 0%–21%, 
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Figure 2. (A) Transmittances of the MgZnO thin film with a variable oxygen flow ratio of 0%–21%,
(B) Absorption coefficient versus the photon energy for MgZnO thin film with a variable oxygen flow
ratio of 0%–21%.

The variation in the oxygen ratio hardly affected the absorption edge. When oxygen gas was
not introduced during sputtering, more defects developed in the MgZnO thin film. Accordingly,
changes in the sputtering oxygen flow ratio were considered to determine the compensation level of
the oxygen vacancies.

Figure 3 shows the transfer characteristics of the TFTs with various oxygen flow ratios, and Table 1
lists the parameters. Table 1 indicates that samples with an oxygen flow ratio of 14% exhibit the
best characteristics. The MgZnO TFT with a 0% oxygen flow ratio had more defects compared with
the other samples, leading to poor electrical properties. When the oxygen flow ratio increased, the
properties were gradually improved. The oxygen flow ratio of 14% reduced the oxygen vacancies
in the crystal properly however, the oxygen flow ratio of 21% caused the formation of acceptor-like
defects owing to the excessive oxygen. This conclusion can also be obtained from the difference in
S.S. for various oxygen flow ratios. When the flow ratio was 14%, the TFT had the lowest S.S. and a
relatively small total trap density. At an ideal oxygen flow ratio, the on–off ratio could be up to five
orders of magnitude.
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Table 1. Transfer characteristics of the MgZnO TFT with various oxygen ratios.

Oxygen Ratio Vt (V) µeff (cm2/Vs)
On–Off

Current Ratio S.S. Nt

0% 3.6 ± 0.072 2.42 ± 0.048 8.4 × 104 ± 1680 0.89 ± 0.018 1.6 × 1012

7% 6.6 ± 0.132 2.17 ± 0.043 1.2 × 105 ± 2400 1.65 ± 0.033 2.9 × 1012

14% 3.1 ± 0.062 5.65 ± 0.113 4.4 × 105 ± 8800 0.80 ± 0.016 1.4 × 1012

21% 6.2 ± 0.124 3.25 ± 0.065 1.5 × 105 ± 3300 1.36 ± 0.027 2.4 × 1012

Vt, threshold voltage; µeff, field-effect mobility; S.S., subthreshold swing; Nt, trapping density.

Figure 4 shows the XPS spectra of O 1s for films grown at different oxygen flow ratios from 7%
to 21%. The peak at the lower binding energy of ~530 eV (OI) was attributed to O2− ions present
in a stoichiometric wurtzite MgZnO structure. The peak at the higher binding energy of ~532 eV
(OII) was is attributed to oxygen deficiencies in MgZnO [21]. This result shows that, as the flow ratio
increased from 7% to 14% the oxygen in the films tended to compensate for the vacancies in the crystal
lattice. This can be confirmed by the spectrum curve area decreasing from 75.3% to 65.3%. However,
as the sputtering oxygen flow ratio was increased to 21%, the oxygen composition in the film became
defective, which contributed to undesirable oxygen interstitials. The spectrum area at the higher
binding energy increased from 65.3% to 81.3%, which is related to the difference in the S.S. of various
oxygen flow ratios. When the flow ratio was 14%, the TFT had the lowest S.S. and a relatively low
total trap density.
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Oxide TFTs with photosensitive metal oxide semiconductor materials can be used as
phototransistors, which are key components in optoelectronic circuits. Hence, we exposed the MgZnO
TFTs to light to analyze the photo characteristics. Figure 5 shows the transfer characteristics for the
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oxygen flow ratio of 14% for an MgZnO TFT in the dark and under illumination from 450 nm to
250 nm when plotted as a function of VG from −10 V to 25 V, with drain voltage (VD) fixed at 12 V.
Under illumination, the threshold voltage had a significant negative shift, and the drain current
increased owing to the photo-generation from excessive holes and free electrons. Therefore, Id of
the MgZnO TFT illuminated with UV light (whose photon energy is greater than the bandgap of
the semiconducting material) has two components: (i) the current flowing between the source/drain
electrodes (Ids) because of the applied bias voltage, and (ii) the photoconductive component (Iph):

Id = Ids + Iph. (3)

Iph is given by the relation

Iph =
q(µn)ηFphτpWVDS

L
, (4)

where µn is electron mobility, η is the quantum efficiency, Fph is the photon flux, τp is the carrier lifetime,
q is the electronic charge, W and L are the width and length of the device, respectively, and VDS is
the voltage applied between the source and drain electrodes [22]. Thus, for a given photon flux Fph,
the photoconductive component will be large if VDS is large. Hence, with the corresponding threshold
voltage shift, the transistor is easier to turn on. The drain current was enhanced in the wavelength
range between 300 and 350 nm, which corresponds to the optical characteristics of MgZnO.
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Figure 6 shows the spectral response of the fabricated MgZnO device. Here, we define the
UV-to-visible rejection ratio as the responsivity measured at 290 nm divided by the responsivity
measured at 450 nm:

Rejection Ratio (R.R.) =
Responsivity (290 nm)

Responsivity (450 nm)
(5)

UV-to-visible rejection ratio of a photodetector measures the ability of a device to detect UV light
signals compared to visible light signals. The value of UV-to-visible rejection ratio is the responsivity
of a certain wavelength of UV light region divided by the responsivity of a certain wavelength of
visible light region. If the rejection ratio is high, it implies that the device is more sensitive to UV light.
We pursue the goal of accomplishing a photodetector with high UV-to-visible rejection ratio. With an
incident light wavelength of 290 nm and an applied gate bias of −5 V, the measured responsivity of the
device was 3.12 A/W, and the UV-to-visible rejection ratio was 6.55 × 105. Such result again indicates
that the fabricated TFT was very UV-sensitive and can be used as a solar-blind phototransistor.
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4. Conclusions 

The best characteristics of the MgZnO TFT with a SiO2 dielectric were obtained with a sputtering 
oxygen flow rate controlled at 14% in order to compensate for the oxygen vacancies. Under this 
condition, the transistor exhibited an on–off ratio of five orders of magnitude, and a mobility of ~5 
cm2/Vs was achieved. Our results broaden the applicability of MgZnO TFTs to photodetectors. When 
a negative gate bias was applied, the optimized MgZnO phototransistor exhibited fine photo 
properties. The responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a 
gate bias of −5 V under 290 nm illuminations. The results indicate that the fabricated device is suitable 
for solar-blind photodetectors. 
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Figure 6. Photoresponsivity spectra of the MgZnO thin-film phototransistor with a bias of −5 V to 20 V
under different light illumination.

4. Conclusions

The best characteristics of the MgZnO TFT with a SiO2 dielectric were obtained with a sputtering
oxygen flow rate controlled at 14% in order to compensate for the oxygen vacancies. Under this
condition, the transistor exhibited an on–off ratio of five orders of magnitude, and a mobility of
~5 cm2/Vs was achieved. Our results broaden the applicability of MgZnO TFTs to photodetectors.
When a negative gate bias was applied, the optimized MgZnO phototransistor exhibited fine photo
properties. The responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a
gate bias of −5 V under 290 nm illuminations. The results indicate that the fabricated device is suitable
for solar-blind photodetectors.
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