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Abstract: This paper presents the results of the synthesis and evaluation of thick thermoelectric films
that may be used for such applications as thermoelectric power generators. Two types of electrochemical
deposition methods, constant and pulsed deposition with improved techniques for both N-type bismuth
telluride (Bi2Te3) and P-type antimony telluride (Sb2Te3), are performed and compared. As a result,
highly oriented Bi2Te3 and Sb2Te3 thick films with a bulk-like structure are successfully synthesized
with high Seebeck coefficients and low electrical resistivities. Six hundred-micrometer-thick Bi2Te3 and
500-µm-thick Sb2Te3 films are obtained. The Seebeck coefficients for the Bi2Te3 and Sb2Te3 films are
−150 ± 20 and 170 ± 20 µV/K, respectively. Additionally, the electrical resistivity for the Bi2Te3 is
15 ± 5 µΩm and is 25 ± 5 µΩm for the Sb2Te3. The power factors of each thermoelectric material can
reach 15 × 10−4 W/mK2 for Bi2Te3 and 11.2 × 10−4 W/mK2 for Sb2Te3.

Keywords: thermoelectric materials; electrochemical deposition; annealing effects; thick films;
thermoelectric power generators

1. Introduction

Among thermoelectric materials, N-type bismuth telluride (Bi2Te3) and P-Type antimony telluride
(Sb2Te3) are attractive due to their high performances for thermoelectric power generation applications
near room temperature. Thick films of thermoelectric material with a high Seebeck coefficient and low
electrical resistivity are highly desired to fabricate high performance micro power generator devices.
There are many methods aimed at synthesizing these materials [1–4]. Electrochemical deposition is
one of potential methods for thick film deposition [3]. In this method, it is reported that optimized
techniques can enable the synthesis of materials with high quality morphology and compactness.
One of them is a pulsed deposition method. The advantage of pulsed deposition is first demonstrated
in Reference [5]. According to this reference, thick and compact Bi2Te3 films are deposited at
a rate of 50 µm/h using electrolytes with high concentrations of 80 mM Bi3+ and 90 mM Te2−.
However, the Seebeck coefficients of synthesized films are very low (~−40 µV/K). Another option
is an addition of non-aqueous electrolytes that leads to high ion solubilities. Many non-aqueous
additives have been researched for Bi2Te3: ethylene glycol [6,7] dimethyl sulfoxide [8,9], ethanol [10],
ionic liquids (choline chloride) [11,12], molten salt (AlCl3–NaCl–KCl) [13], and polyvinyl alcohol [14].
Additionally, the appearance of the Bi2Te3 soluble anode is proven to enhance a homogeneous
composition of deposited films in References [14–16]. In this work, another possibility of a deposition
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of thick and stable thermoelectric films has been demonstrated. The electrolytes are used with a low
concentration of cations and ions, resulting in a controlled low deposition rate. The concentrations
of Bi3+ and Te2− are 4 mM and 3.6 mM, respectively. Therefore, the amorphous material is easily
crystallized during the pulsed deposition. By this method, without the necessity of using non-aqueous
additives and a soluble anode, the Seebeck coefficients of synthesized Bi2Te3 thick films are more
improved than that of using high concentration electrolytes [5], and the same as using a soluble anode
(~−80 µV/K) [15,16]. Additionally, this mechanism is successfully applied for not only N-type Bi2Te3

but also P-type Sb2Te3 thick films.

2. Experimental

2.1. Sample Preparation

The sample preparation process begins from a 300-µm-thick silicon substrate. Cr-Au films with
thicknesses of 10 nm and 150 nm, respectively, are deposited on a silicon substrate by sputtering.
A three-electrode electrochemical deposition method is used as follows: the 300-µm-thick silicon
substrate with a Cr/Au seed layer is used as the working electrode, a platinum mesh is used as
a counter electrode, and Ag/AgCl with a 3 M KCl (Potassium Chloride) solution is used as a reference
electrode. A schematic of deposition system is shown in Figure 1.
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2.2. Electrochemistry

Electrochemical deposition of the BiTe is performed and compared using constant and pulsed
waveform methods at room temperature with slow stirring (60 rpm). According to previous discussion,
the usage of electrolytes with high concentrations of ions and cations has the advantage in high
deposition rate. However, the deposition encounters the obstacle to grow high quality crystal
films. Therefore, a low concentration electrolyte has been used to mitigate this negative behavior.
The electrolyte solution consists of 4 mM Bi3+, 3.6 mM HTeO2+, and 1 M HNO3. The solution is
prepared from the following steps. At first, both Bi2O3 and TeO2, are dissolved in nitric acid. Deionized
(DI) water is added to both solutions to obtain a 1 M concentration (1 mol/L) of nitric acid at a pH = 0.
Then, both solutions are mixed together. Using this method, all the oxide components of Bi and Te are
completely dissolved in the electrolyte. Nitric acid is used because it can dissolve bismuth oxide and
tellurium oxide so that H+ acts as a working ion and NO3− acts as a counter ion. Meanwhile, SbTe thick
films are grown by pulsed electrochemical deposition at room temperature and a stirring speed of
60 rpm. The electrolyte solution consists of 6 mM Sb3+, 3.6 mM HTeO2+, 0.5 M C4H6O4·5H2O,
and 1 M HNO3. The oxide component of Sb is inert in the nitride acid. Therefore, tartaric acid is
employed to dissolve the Sb2O3 and results in SbO+ and (C4H4O6)2−.
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2.3. Characterization

Because a material property evaluation needs to be conducted on an insulating substrate to avoid
short circuiting, the synthesized films are peeled from the substrate by epoxy resin and mounted on
a glass substrate [17]. The in-plane Seebeck coefficient is measured at room temperature between
two points of the film. The temperatures are observed by 50 µm diameter K-type thermocouples.
Multiple measurements are carried out at many temperature differences from 4 to 8 ◦C to ensure
accurate results. The Seebeck coefficient, obtained from the generated voltage as a result of given
temperature gradient, is measured for these samples. The electrical resistivity is measured using a four
terminal method. Synthesized films are imaged by Scanning Electron Microscopy (SEM) equipped
with Energy Dispersive X-ray spectroscopy (EDX), which is used for composition analysis. These
measurements are performed on a Field Emission Gun Scanning Electron Microscope Hitachi SU-70
(Hitachi, Tokyo, Japan). X-ray diffraction (XRD) patterns of the deposited films are recorded with an
X-ray Diffractometer Bruker- D8 (Billerica, MA, USA) using Cu α radiation (λ = 1.5418 Å, 40 kV, 40 mA,
step size 0.02◦, 2 s/step, and with a sample rotation 60 rpm). The nanostructures of the sample are
evaluated by High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron
Diffraction (SAED) on a JEOL-2100F instrument (JEOL, Tokyo, Japan). The cross-sectional preparation
is performed by a mechanical thinning and dimpling method, followed by Ar+ ion beam milling to
make the area transparent to electrons.

3. Results and Discussion

3.1. Synthesis of N-Type Bismuth Telluride

3.1.1. Voltammetry

The reaction equation for BiTe is [18]:

13H+ + 18e− + 2BiO+ + 3HTeO2
+ ↔ Bi2Te3 + 8H2O. (1)

The cyclic voltammetry (CV) presented in Figure 2 is recorded between −1 V and 1 V with a scan
speed of 10 mV/s. The literature states that, during the deposition process, the first main reduction
relates to the formation of BiTe films [19,20]. In this work, the first reduction ranges between −0.1 V
and 0.1 V. During the backward scan, three oxidation peaks, O1, O2, and O3, appear at 300 mV, 600 mV
and 800 mV, respectively. Peak O3 belongs to the depriving process of Bi and Te on the gold surface.
Peaks O1 and O2 represent an oxidation of the residual elemental Bi [19,20]. From the CV curve,
the appropriate potentials for growing BiTe films are determined to be among the first reduction peak
occurring at approximately 20 mV.
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3.1.2. Constant Deposition

First, constant deposition is used to synthesize thick Bi2Te3 films. From the CV analysis,
some deposition potentials in the first reduction range are examined to evaluate the potential
dependence on the atomic composition, as shown in Figure 3. During the deposition process,
BiTe stoichiometric formation is obtained from the balance of potential-dependent chemical kinetics
for the deposition of both bismuth and tellurium [19]. That balanced stoichiometry is obtained at
the potential where the first reduction peak of the electrolyte CV curve is observed, as shown in Figure 2.
Because the reduction potential of tellurium is greater than that of bismuth, the atomic composition
of tellurium is more advantageous than that of bismuth when the applied potential is larger than
the balanced stoichiometry. In contrast, if the potential is smaller than that of balanced stoichiometry,
more bismuth atoms will be deposited, as shown in Figure 3. From the results, 20 mV is determined
to be the most balanced stoichiometry potential to electrochemically deposit Bi2Te3. At −40 mV,
bismuth telluride is synthesized in the form of Bi2.3Te2.7, and Bi1.8Te3.2 appears at 60 mV.
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Figure 3. Potential dependence on the atomic composition of BiTe.

The deposition potential not only changes the atomic composition of the material but also has
a significant effect on the crystal morphology. Figure 4 shows the deposition potential dependence
of the surface morphology of the film. The sample synthesized with a potential of −40 mV exhibits
a standing plate-like shape with large grains of approximately 4 µm. When the deposition potential
increases to 20 mV, the grain size decreases (~1 µm) and changes to a granular structure for a deposition
potential of 60 mV. An XRD measurement is also performed to analyze the effect of the deposition
potential on the crystal growth orientation.
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Figure 5 shows the XRD patterns of the deposited bismuth telluride films, which exhibit a polycrystalline
structure with (110), (1010) and (015) as the prominent diffracted peaks. However, the intensity ratios of
the peaks are not similar for each deposition potential, indicating an effect on the growth orientation.
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To research the dependence of the metallic seed layer on the lattice matching of the initial layer,
the material film is separated from the Au- film interface using epoxy resin [17], as shown in Figure 6a.
Subsequently, the sample is mounted on the glass wafer to perform measurements on the initial
layer of the film. Figure 6b shows the SEM image of the interface obtained by above separation.
Additionally, the XRD patterns illustrate the difference as the diffracted peak of (103) in the subsequent
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thick film is disappeared and a new peak of (101) is found in the initial matching layer, as shown
in Figure 6c. It can be concluded that, although the growth orientation is slightly altered the crystal
structure is unchanged.Materials 2017, 10, 154  6 of 17 

 

 

 
Figure 6. The dependence of the metallic seed layer on the lattice matching of the initial monolayer: 
(a) sample structure after being separated from the metallic seed layer with the monolayer on the top 
surface; (b) surface morphology determined via Scanning Electron Microscopy (SEM) observation; 
and (c) XRD pattern of the initial monolayer. 

The electron diffraction pattern and the HRTEM image are shown in Figure 7a,b, respectively. 
The SAED observation illustrates many diffraction patterns that overlap along the concentric circles, 
indicating grain texturing. It is concluded that the sample consists of polycrystalline nanograins. 
When the deposition is performed for a long time, the oxidation of Bi or the over-deposition of Te 
leads to a change in the stoichiometry and causes stressed or porous layers. These layers become 
unstable as the layer thickness increases. For this reason, only a small number of studies have been 
successful in synthesizing thick films of BiTe and SbTe [3,14–16,21]. As shown in Figure 8a, although 
a 200-μm-thick film can be grown using the constant method at a high deposition rate of 
approximately 30 μm/h, only 20 μm of the thickness is actually of good quality (Figure 8b). The thick 
film layer on the top contains porous structures or particles that easily peel from the underlying layer. 
The 10-μm-thick layer in Figure 8c exhibits an initial 4-μm-thick layer that has a compact structure. 
Upon further deposition, the porous structure begins to appear. To solve this problem, another 
method and technique must be considered when synthesizing a thick film. 

Figure 6. The dependence of the metallic seed layer on the lattice matching of the initial monolayer:
(a) sample structure after being separated from the metallic seed layer with the monolayer on the top
surface; (b) surface morphology determined via Scanning Electron Microscopy (SEM) observation;
and (c) XRD pattern of the initial monolayer.

The electron diffraction pattern and the HRTEM image are shown in Figure 7a,b, respectively.
The SAED observation illustrates many diffraction patterns that overlap along the concentric circles,
indicating grain texturing. It is concluded that the sample consists of polycrystalline nanograins.
When the deposition is performed for a long time, the oxidation of Bi or the over-deposition of Te leads
to a change in the stoichiometry and causes stressed or porous layers. These layers become unstable as
the layer thickness increases. For this reason, only a small number of studies have been successful in
synthesizing thick films of BiTe and SbTe [3,14–16,21]. As shown in Figure 8a, although a 200-µm-thick
film can be grown using the constant method at a high deposition rate of approximately 30 µm/h,
only 20 µm of the thickness is actually of good quality (Figure 8b). The thick film layer on the top
contains porous structures or particles that easily peel from the underlying layer. The 10-µm-thick layer
in Figure 8c exhibits an initial 4-µm-thick layer that has a compact structure. Upon further deposition,
the porous structure begins to appear. To solve this problem, another method and technique must be
considered when synthesizing a thick film.
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3.1.3. Pulsed Deposition

To synthesize thick Bi2Te3 films, pulsed electrochemical deposition is performed using a waveform
shown in Figure 9. The applied potentials used in the pulsed deposition alternate between Eon cycles
and Ioff cycles. At the Eon cycles, the potential condition of the potentiostatic mode is adjusted to grow
Bi2Te3, as described in the constant deposition section. Meanwhile, the working electrode current is
maintained at 0 mA during the Ioff cycles.
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The working mechanism is as follows. During the deposition cycle with Eon = 20 mV, the reduction
reaction can be precisely controlled to grow material and during the cycle with Ioff = 0, any undesired
reactions are prevented. The pulse width is set to 0.1 s for the ON status and 0.2 s for the OFF
status. The advantages of the pulsed deposition over constant deposition is that it can balance the loss
of ions at the surface of the working electrode that occurs when a constant potential is applied to
ionize the electrolyte [22]. In principle, the pulsed deposition is used to ensure the amorphous
material deposited during the ON period is in a position to crystallize during the OFF period.
Significant improvements may be due to two different effects of the crystal growth: new crystals
can grow on the surface as a homogeneous distribution, or atoms and ions can be added to
any existing layers. A small surface diffusion and a high electrochemical potential possibly incite
the growth of new crystals, whereas a high surface diffusion and a small electrochemical potential can
promote the adhesion of formed atoms to existing layers. During pulsed electrochemical deposition,
a better supply of material within the solution may result in crystal growth [23]. This is proven
in Figures 4b and 10. The surface of the Bi2Te3 deposited by the pulsed waveform is more uniform
and smoother than that for a constant deposition. Although the surface of the sample prepared by
pulsed deposition method is dense, it is rough and loose with dendritic growth for the constant
deposition method. The 10-µm-thick sample synthesized by constant deposition shows a roughness of
2 µm. This is much larger than the 300-nm roughness of the sample formed by the pulsed deposition
method. The crystal size of approximately 1 µm formed by constant deposition is apparently smaller
than that of the pulse deposited crystals (~5 µm). This is related to the diffusion limitations during
the constant deposition, since the lateral growth is restricted if enough ions are not supplied to
the edges of the crystals. As a result, the new crystals will tend to grow on the top of the already
formed crystals to create a standing shape, as shown in Figure 4b. Therefore, the size of the crystals
becomes narrower. For the films deposited using the pulsed method, much wider crystal sizes are
obtained, as shown in Figure 10. Again, the observation of the material cross-sections shown in
Figure 11 confirms this explanation. The crystals deposited by pulsed deposition are formed uniformly
to create a more reinforced compact structure than that from constant deposition. However, the effect
of the pulsed deposition method will be limited if the deposition rate is too high during the ON period.
A long OFF period is not really effective in this case. Therefore, a millisecond pulsed deposition is
first presented in Reference [23] to solve this issue. The purpose of this method is to limit the high



Materials 2017, 10, 154 9 of 17

deposition rate during the ON period. In this work, we propose another approach of low concentration
electrolytes. Additionally, the usage of soluble anodes can stabilize the deposition, but it may affect
a low concentration of ions and cations. Therefore, electrolytes are renewed frequently to avoid
a significant depletion of low concentrations of the species.
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As a result, a film with a thickness of approximately 600 µm and single crystalline bulk-like
structure is achieved, as shown in Figure 12. The deposition rate is approximately 10 µm/min.
An XRD measurement is performed to analyze the crystal growth orientation of the synthesized films.

The X-ray diffraction proves that the pulsed-deposited Bi2Te3 thick film possesses
a Rhombohedral-hexagonal structure, as shown in Figure 13 [14]. The most intensive peak (110) occurs
at 41◦ of two theta while peaks at (015) and (103) are eliminated and become almost unobservable.
This result is in agreement with previous studies of Bi2Te3 thin films [19,24,25]. In comparison with
constant deposited films, the diffracted peak intensity becomes much narrower. This change indicates
a significant increase in the grain size and improved crystallinity. This again confirms the results from
the SEM observation, which indicates the difference in crystal growth between the constant and pulsed
deposition methods. It is clear that the Bi2Te3 films grown using constant deposition change from
a polycrystalline to a (110) single crystal-like structure when using pulsed deposition.

In the conclusions from References [26,27], the figure of merit (ZT) is an anisotropic property.
The single peak of the (110) highly oriented structure has the highest value of ZT. The (110) highly
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oriented structure yielded for thick films are one of the achievements from this research. In contrast to
the constant deposition method, the clear SEAD pattern of the pulsed-deposited sample reveals that it
basically possesses a single crystalline structure with a major Bi2Te3 phase, as shown in Figure 14a.
From the HRTEM observation in Figure 14b, the distance between two neighboring faces is estimated to
be approximately 2.2 Å, which is the same as the inter-planar distance between the (110) lattice planes.
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3.1.4. Thermo-Electric Properties Evaluation

The electrical resistivity (ρ) and Seebeck coefficient (S) are evaluated for the Bi2Te3 films deposited
by both methods. The Seebeck coefficient of the sample deposited with the constant mode is observed
to be a maximum of −60 µV/K. The pulsed-deposited Bi2Te3 film exhibits a slightly higher Seebeck
coefficient with an average of −80 µV/K. However, the electrical resistivity of the films synthesized by
pulsed deposition is much improved over specimens fabricated via constant deposition. The electrical
resistivity of the samples prepared by the pulsed method exhibit a value of 20 µΩm. This is
approximately 2.5 times lower than 50 µΩm from the constant method. The main reason for this
difference is the aforementioned crystal growth structure. In a material containing defective grain
boundaries, charge carriers may be scattered at the interfaces between grains. The cross-section
structure observations, XRD and TEM analyses show that the sample deposited using the constant
method contains more defects in the grain boundaries than for the pulsed deposition. This leads to
a low electrical conductivity when using the constant deposition method. The relationship between
Seebeck coefficients and electrical conductivities of BiTe and SbTe is a complicated issue. According to
works reported, many behaviors of this relationship have been observed. In References [18,20],
the relationship between Seebeck coefficients and electrical conductivities behaves differently when
crystals growth is improved by pulsed deposition or annealing process. In detail, it is shown that
Seebeck coefficients increase while electrical conductivities decrease in Reference [20]. In contrast,
both properties are enhanced dramatically in Reference [18]. The same results are also reported
that both Seebeck coefficients and electrical conductivities are much improved due to high quality
crystallinity and low defect concentration [23,28].

Additionally, this paper reports how annealing affects the Seebeck coefficient and electrical
resistivity of the Bi2Te3. The Bi2Te3 films are annealed at various temperatures in N2 at ambient
conditions for 1 h. The heat ramp rate during the annealing process is 2 ◦C/min. Then, the films are
analyzed using EDX to confirm that there is no elemental oxygen detected to prevent the formation
of oxidation during the annealing process. The result shows that, although annealing can improve
the thermal and electrical properties of materials, some annealing temperatures are found to optimize
material performance. The highest Seebeck coefficient for the Bi2Te3 films is found at an annealing
temperature of approximately 250 ◦C, as shown in Figure 15.
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At a 250 ◦C annealing temperature, thermoelectric property measurements show that the annealing
process can significantly improve Seebeck coefficient and electrical resistivity of the materials synthesized
from both constant and pulsed deposition methods. The Seebeck coefficients of the films prepared using
the constant and pulsed deposition methods are evaluated to be improved by a factor of roughly
two after the annealing process. The annealed sample is measured to have a Seebeck coefficient
of −110 µV/K, which is remarkably improved from the −50 µV/K in the as-deposited sample
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fabricated using constant deposition. For pulsed deposition, a similar increase is also observed
when the Seebeck coefficient improves from −80 µV/K to −150 µV/K. The electrical resistivity
of the sample synthesized using pulsed deposition is slightly improved from 20 µΩm to 15 µΩm.
Meanwhile, the electrical resistivity of the annealed films produced using constant deposition is
impressively reduced in comparison with the non-annealed films. This improvement may be attributed
to decreases in the defects in the grain boundaries occurring from the annealing process. As explained
in References [21,29], the rearrangement of crystal grains and removal of the defects are also the reasons
for a similar improvement of the Seebeck coefficient due to the annealing process. The summarized
results are shown in Table 1.

Table 1. Effects of annealing on the Bi2Te3 properties.

Constant Deposited Bi2Te3 Pulsed-Deposited Bi2Te3

Non-Annealing Annealing (250 ◦C) Non-Annealing Annealing (250 ◦C)

Seebeck coefficient (±20 µV/K) −50 −110 −80 −150
Electrical resistivity (±5 µΩm) 50 20 20 15

Power Factor (W/mK2) 0.5 × 10−4 6 × 10−4 3.2 × 10−4 15 × 10−4

3.2. Synthesis of P-Type Antimony Telluride

3.2.1. Voltammetry

To understand the formation mechanism for SbTe during the deposition process, the cyclic
voltammetry of the reactions is studied. The potentials are swept over a range from −1.0 to 1.5 V at
a scan speed of 10 mV/s. According to the cyclic voltammetry results shown in Figure 16, two main
reduction peaks (D1 and D2) and three oxidation peaks (O1, O2, and O3) are observed. The first
main reduction peak, D1, is located at approximately −150 mV, which correlates to the formation
of SbTe films, whereas the following reduction reaction appears at −450 mV because of hydrogen
evolution [23,30]. The three oxidation peaks correspond to the process of stripping the Te atoms.
Therefore, a potential range between−200 mV and 100 mV is determined to be an appropriate potential
condition for depositing SbTe films on a gold film. The reaction taking place during the deposition
process is shown to be [23]:

3HTeO2
+ +18e− + 2SbO+ + 13HTeO2

+ ↔ Sb2Te3+ 8H2O. (2)
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The dependence between deposition potentials and atomic composition in the range of suitable
potentials from the CV measurement is also investigated, as shown in Figure 17. The ideal composition
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of 40 atomic % Sb and 60 atomic % Te is achieved at a potential of -144 mV. In the SbTe formation,
antimony is deposited at a higher potential than bismuth and in the region where the tellurium
deposition potential is already large. Therefore, a stronger stoichiometry dependence on the deposition
potentials than for BiTe is predicted.

Materials 2017, 10, 154  13 of 17 

 

tellurium deposition potential is already large. Therefore, a stronger stoichiometry dependence on 
the deposition potentials than for BiTe is predicted. 

 
Figure 17. Potentials dependence on the atomic composition of the Sb2Te3. 

3.2.2. Pulsed Deposition 

Sb2Te3 thick films have been grown using pulsed electrochemical deposition at room 
temperature and a stirring speed of 60 rpm. The pulsed waveform is applied at −144 mV for the ON 
period for 0.1 s and a zero current during the OFF period for 0.2 s. After one hour, precipitation of 
Sb2O3 begins to appear. This phenomenon causes a loss of (C4H4O6)2− ions because (C4H4O6)2− is the 
result of the dissolution of Sb2O3 in tartaric acid. Therefore, the electrolyte is renewed for every hour 
of deposition. Finally, 500-μm-thick Sb2Te3 film is successfully synthesized with a deposition rate of 
approximately 4 μm/h, as shown in Figure 18. The crystal structure is analyzed using XRD for Sb2Te3 
films deposited by both constant and pulsed depositions at −144 mV. The film synthesized by pulsed 
deposition exhibits narrower diffracted peak intensity than that of the constant method. However, 
both samples possess a polycrystalline structure, as shown in Figure 19. Similarly, all of the SbTe 
films synthesized at three different potentials near the first main reduction peak exhibit randomly 
oriented polycrystalline, as shown in Figure 20. 

 
Figure 18. SEM image of the cross section of the 500-μm-thick Sb2Te3 film. 

Figure 17. Potentials dependence on the atomic composition of the Sb2Te3.

3.2.2. Pulsed Deposition

Sb2Te3 thick films have been grown using pulsed electrochemical deposition at room temperature
and a stirring speed of 60 rpm. The pulsed waveform is applied at −144 mV for the ON period
for 0.1 s and a zero current during the OFF period for 0.2 s. After one hour, precipitation of Sb2O3

begins to appear. This phenomenon causes a loss of (C4H4O6)2− ions because (C4H4O6)2− is the result
of the dissolution of Sb2O3 in tartaric acid. Therefore, the electrolyte is renewed for every hour of
deposition. Finally, 500-µm-thick Sb2Te3 film is successfully synthesized with a deposition rate of
approximately 4 µm/h, as shown in Figure 18. The crystal structure is analyzed using XRD for
Sb2Te3 films deposited by both constant and pulsed depositions at −144 mV. The film synthesized
by pulsed deposition exhibits narrower diffracted peak intensity than that of the constant method.
However, both samples possess a polycrystalline structure, as shown in Figure 19. Similarly, all of
the SbTe films synthesized at three different potentials near the first main reduction peak exhibit
randomly oriented polycrystalline, as shown in Figure 20.
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Figure 20. XRD pattern of the SbTe films at different deposited potentials.

3.2.3. Thermo-Electric Properties Evaluation

The Sb2Te3 films are also annealed to improve the thermal and electrical properties. The annealing
process is performed for 1 h in N2 atmosphere. The heat ramp rate of 2 ◦C/min is conducted during
the annealing process. The effect of the annealing process on the Seebeck coefficient for Sb2Te3 is
different from that of Bi2Te3. The Seebeck coefficient for the as-deposited Sb2Te3 sample exhibits a value
of approximately 140 µV/K. After the annealing process, this increases to approximately 170 µV/K.
However, the electrical resistivity is as much as three times better than that of the as-deposited films.
The electrical resistivity remarkably decreases from 60 µΩm to 20 µΩm after the annealing process.
The large value for the electrical resistivity possibly relates to the high number of defects at the grain
boundaries. Therefore, the annealing process greatly affects the electrical resistivity. This is as same
behavior as for the constant deposition of Bi2Te3 compared to the pulsed deposition. In this case,
the film’s electrical resistivity in the sample produced by the constant method is more dramatically
decreased by the annealing process than that for the pulsed deposition method because of its worse
crystal defects. In comparison to the thin Sb2Te3 films reported on previously [23,31], the thick films
synthesized in this work do not show a significant difference in the electrical resistivity than for the thin
films. This proves that the thick films obtained in this work can have the same properties as thin films.
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The proper annealing temperature for the Sb2Te3 is found to be lower than for the Bi2Te3, which is
approximately 200 ◦C, as shown in Figure 21. Summarized results are shown in Table 2.Materials 2017, 10, 154  15 of 17 
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Table 2. The effects of annealing on the Sb2Te3 properties.

Pulsed-Deposited Sb2Te3

Non-Annealing Annealing (200 ◦C)

Seebeck coefficient (±20 µV/K) 130 170
Electrical resistivity (±5 µΩm) 60 25

Power Factor (W/mK2) 2.8 × 10−4 11.2 × 10−4

4. Conclusions

In this report, the syntheses of thick bulk-like thermoelectric Bi2Te3 and Sb2Te3 materials are
demonstrated for such applications as micro thermoelectric power generators. N-type Bi2Te3 and
P-type Sb2Te3 thick films are obtained. A new usage of low concentration electrolyte is proposed as an
approach for the synthesis of materials with high quality morphology and compactness. The conditions
and effects of the annealing process are also investigated. Both materials exhibit a high Seebeck
coefficient and low electrical resistivity. The Seebeck coefficient of the synthesized thermoelectric
materials can reach approximately ±150 µV/K. Electrical resistivities of 15 ± 5 µΩm and 25 ± 5 µΩm
are obtained for 600-µm-thick Bi2Te3 and 500-µm-thick Sb2Te3 films, respectively.
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