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Abstract: We fabricated a 3D sandwich hybrid material composed of graphene and vertically
aligned carbon nanotube forests (VACNTs) using chemical vapor deposition. The graphene was first
synthesized on Cu foil. Then it was transferred to a substrate which had a pre-deposited catalyst Fe
film and a buffer film of Al2O3 for the growth of VACNTs. The VACNTs were grown underneath
the graphene and lifted up the graphene. The graphene, with its edges anchored on the Al2O3,
provided a constrained boundary condition for the VACNTs and hence affected the growth height
and mechanical strength of the VACNTs. We prepared three groups of samples: VACNTs without
graphene, VACNTs with graphene transferred once (1-Gr/VACNTs), and VACNTs with graphene
transferred twice (2-Gr/VACNTs). A nano-indentation system was used to measure the reduced
compressive modulus (Er) and hardness (H). The Er and H of Gr/VACNTs increased with the
number of transfers of the anchored graphene. The 2-Gr/VACNTs had the largest Er and H, 23.8 MPa
and 912 KPa, which are 6.6 times and 5.2 times those of VACNTs without the anchored graphene,
respectively. In this work, we have demonstrated a simple method to increase the mechanical
properties and suppress the height of VACNTs with the anchored graphene and number of transfers.

Keywords: graphene; vertically aligned carbon nanotube forests; 3D structure; mechanical
properties; nanoindentation

1. Introduction

Carbon nanotubes (CNTs) and graphene, both of which are carbon-based nanomaterials, have
excellent mechanical, thermal, and electrical properties, so they are currently popular topics in scientific
research and nanotechnology [1–5]. The most popular growth method of graphene and CNTs is
chemical vapor deposition (CVD) [6–9]. Additionally, Hart et al. reported a method to control the
sharp and the structure of carbon nanotube forests by a pre-fabricated mold [10]. However, the method
is complex and expensive. In recent years, several theoretical and experimental reports have increased
interest in 3D hybrid nanostructures combining graphene and CNT forests, including the fabrication
methods of the structures [11–15]. These reports have shown that the 3D hybrid material has a wide
range of potential applications, such as microsupercapacitor [12] and hydrogen storage [16]. The 3D
hybrid material was fabricated by first growing the graphene on the substrate, after which the catalyst
Fe film and buffer layer Al2O3 were deposited on top of the as-grown graphene to grow vertically
aligned carbon nanotube carpets (VACNTs) using the CVD method [11,12]. Paul et al. reported a
transfer method for fabricating the 3D hybrid structure in which the graphene was on the top of the
hybrid structure [15]. However, most previous reports have noted that the electrical properties and
hybrid structure of substrate/graphene/VACNTs limit their application. To date, no discussions of
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the mechanical properties of the 3D hybrid material have been published. This work focuses on the
direct growth of the 3D structure of substrate/VACNTs/graphene. The mechanical properties of the
3D material with the graphene transferred once and twice are also discussed.

2. Materials and Methods

In this work, a 3D hybrid structure with the VACNTs sandwiched between the substrate
and graphene was constructed. The graphene was synthesized with a three-temperature-zone
CVD (TTZ-CVD) process. The as-grown grapheme was first transferred to the substrate,
after which the VACNTs were synthesized by CVD method to form the hybrid structure of
substrate/VACNTs/graphene. As-cleaned Cu foil (99.8% purity) was first placed on a quartz boat and
inserted into a TTZ-CVD furnace, where it was heated to 1000 ◦C at 30 min under H2 of 30 sccm and
argon (Ar) of 600 sccm. The Cu foil was annealed for 30 min at that temperature to remove oxides of
Cu in H2 and Ar atmosphere. The mixed reaction gas of CH4, H2, and Ar was admitted into the CVD at
flow rates of 10, 30, and 600 sccm for 5 min to grow the graphene sheet. Afterward, the CH4 flow was
stopped and the sample was rapidly cooled to room temperature. Next, the as-grown graphene sheet
was transferred onto the target substrate with a clean-lifting transfer technique utilizing electrostatic
force [17]. The transfer procedure began with the as-grown graphene/Cu foil attached on the PET
(poly ethylene terephthalate) by electrostatic force. After a pressing process to increase the attachment
between the Cu foil and PET, the sample was immersed into Cu etchant (98% sodium persulfate) and
heated to 60 ◦C to etch the Cu foil. The sample was then rinsed with IPA and DI water to remove
residual etchant. The PET with the attached graphene was pressed, and the PET was then removed to
transfer the graphene onto the target substrate, which had a pre-deposited 10 nm buffer layer of Al2O3

and a 1.9 nm catalyst Fe film. It was defined the deposited zone by the tape as shadow mask pattern
and released it after the deposition of buffer layer and catalyst film. In addition, the attached graphene
on PET was transferred onto one side of the pre-patterned Fe film for comparison of the mechanical
properties with or without graphene, as shown in Figure 1. Subsequently, the target substrate was
placed into the quartz tube and heated to 750 ◦C under a 600 sccm flow of Ar gas. To grow the VACNTs,
a H2 flow of 400 sccm and C2H4 gas was supplied as the carbon source at a flow rate of 40 sccm for
60 min at 750 ◦C. The growth processes were conducted under 1 atm. The mechanical properties
of the 3D hybrid structure of substrate/VACNTs/graphene were experimentally measured with a
nanoindentation instrument.
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Figure 1. Fabrication procedure of graphene/vertically aligned carbon nanotubes (VACNTs) hybrid
structure. The catalyst Fe film is for growth of the VACNTs.

3. Results and Discussion

Figure 2 shows the Raman spectrum of the as-grown graphene. The two main peaks corresponded
to the G band (~1580 cm−1) and 2D band (~2700 cm−1) of the graphene [18]. The peak intensity of
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the 2D band peak was lower than that of the G band, with a peak intensity ratio of I2D/IG ~0.67,
and the full width at half-maximum of the 2D band peak was 63.1 cm−1. The results indicated few
or more layers of graphene [19,20]. A scanning electron microscope (SEM) image is presented in
Figure 3. The sample was 1 graphene sheet transferred onto the target substrate. The height of the
1-Gr/VACNTs was 509 um, lower than that of VACNTs of 1070 um without the anchored graphene.
Interestingly, the morphology of VACNT was affected at the boundary zone (i.e., transition zone) due
to the Van der Waals force of CNTs [21], which resulted in smooth increasing the height of VACNTs at
the interface.
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Figure 3. SEM (scanning electron microscope) side-view image of the 1-Gr/VACNTs with an inset
showing the optical image.

From the VACNTs growth process, Figure 4 shows the type of VACNTs is the multi-wall CNTs [22].
The mechanical properties of the VACNTs and 1-Gr/VACNTs (i.e., VACNTs with the graphene
transferred once) were measured with a nanoindentation system (TI 950 TriboIndenter, Hysitron,
Minneapolis, MN, USA). A standard Berkovich indenter was used to indent the top surfaces of the
VACNTs and 1-Gr/VACNTs with a 30 µN load on the sample surface for 5 s. The slope of the unloading
curve was used to determine the reduced modulus (Er) and hardness (H) of the samples according to
the theory proposed by Oliver and Pharr [23]. The indentation depth of 1-Gr/VACNTs was less than
that of the VACNTs sample, as shown in Figure 5, indicating that the hardness of the Gr-VACNTs was
greater than that of the VACNTs. To verify the repeatable results of the nanoindentation measurement,
two points were measured. The measurement results of Er and H are listed in Table 1, where it can be
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seen that the Er and H of 1-Gr/VACNTs were higher than those of the VACNTs. The Er and H of the
1-Gr/VACNTs were 3.633 MPa and 277 KPa, 2 times and 1.9 times those of the VACNTs, respectively.
These differences indicated that the anchored graphene strengthened the mechanical properties of the
VACNTs. The anchored graphene was similar to an elastic sheet constraining the growth of VACNTs,
resulting in compression and a greater density of VACNTs, which enhanced the mechanical properties
of the VACNTs. In addition, Wardle et al reported the densification of CNTs enhanced the mechanical
properties with the increasing volume fraction of the different diameter CNTs [24].A similar effect
may have occurred in this work, resulting in the greater Er and H of 1-Gr/VACNTs. The effect of
pre-compression of the VACNTs suggests the graphene constraint enhanced to increase the Van der
Waals force of CNTs.
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Table 1. Reduced modulus (Er) and hardness (H) of VACNTs (vertically aligned carbon nanotube) and
1-Gr/VACNTs.

Material Reduced Modulus Er (Mpa) Surface Hardness H (Kpa)

VACNTs 1.766 149
1-Gr/VACNTs 3.633 277

To further examine the constraining effect of the multi-layer graphene on the mechanical
properties, the graphene sheets were transferred once and twice onto different areas of the substrate and
VACNTs were grown, as shown in the inset of Figure 6. Figure 6 is an SEM image of 2-Gr/VACNTs,
1-Gr/VACNTs, and VACNTs, which respectively had heights of 600 um, 740 um, and 1140 um.
The height of the VACNTs with graphene transferred twice was lower than those with graphene
transferred once and graphene not transferred. As can be seen from Figure 7, the Gr/VACNTs with
graphene transferred twice had greater strength. The highest Er and H were respectively 6.6 times and
5.2 times those of VACNTs without the anchored graphene due to the compression and greater density
of VACNTs, as shown in Figure 8. However, when the number of transfers of the anchored graphene
was increased further, no VACNTs grew on the substrate. The anchored graphene layers were similar
to a graphite film blocking the Fe catalysts and restrained the growth of the VACNTs. In addition,
the height of the VACNTs was affected by the number of transfers of the anchored graphene.
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