
materials

Article

Structure-Dependent Spectroscopic Properties of
Yb3+-Doped Phosphosilicate Glasses Modified
by SiO2

Ling Wang 1, Huidan Zeng 1,*, Bin Yang 1, Feng Ye 1, Jianding Chen 1, Guorong Chen 1,
Andew T. Smith 2 and Luyi Sun 2

1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and
Engineering, East China University of Science and Technology, Shanghai 200237, China;
y30140453@mail.ecust.edu.cn (L.W.); y45150059@mail.ecust.edu.cn (B.Y.);
y30140482@mail.ecust.edu.cn (F.Y.); jiandingchen@ecust.edu.cn (J.C.); grchen@ecust.edu.cn (G.C.)

2 Department of Chemical and Biomolecular Engineering and Polymer Program,
Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA;
andrew.smith@uconn.edu (A.T.S.); luyi.sun@uconn.edu (L.S.)

* Correspondence: hdzeng@ecust.edu.cn; Tel./Fax: +86-21-6425-3395

Academic Editor: Giorgio Biasiol
Received: 30 January 2017; Accepted: 23 February 2017; Published: 28 February 2017

Abstract: Yb3+-doped phosphate glasses containing different amounts of SiO2 were successfully
synthesized by the conventional melt-quenching method. The influence mechanism of SiO2 on
the structural and spectroscopic properties was investigated systematically using the micro-Raman
technique. It was worth noting that the glass with 26.7 mol % SiO2 possessed the longest fluorescence
lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm2), the maximum Stark splitting manifold
of 2F7/2 level (781 cm−1), and the largest scalar crystal-field NJ and Yb3+ asymmetry degree.
Micro-Raman spectra revealed that introducing SiO2 promoted the formation of P=O linkages, but
broke the P=O linkages when the SiO2 content was greater than 26.7 mol %. Based on the previous 29Si
MAS NMR experimental results, these findings further demonstrated that the formation of [SiO6] may
significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of
the glass. These results indicate that phosphosilicate glasses may have potential applications as a
Yb3+-doped gain medium for solid-state lasers and optical fiber amplifiers.
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1. Introduction

Yb3+-doped laser materials operating at wavelengths around 1 µm have been intensively
investigated for a wide variety of applications, such as high-power and short-pulse lasers, material
processing, and optical telecommunications [1–4]. Yb3+ ions are regarded as the main dopant for the
applications because of their simple energy-level scheme, which prevents excited-state absorption and
multi-phonon non-radiative decay, and obviates the possibility of concentration quenching through
cross-relaxation [5]. Since the first glass laser was obtained in 1961 by Snitzer [6], Yb3+-doped
glasses have been well established as solid-state lasers and optical fiber amplifiers for optical
telecommunications. Recently, for high-power glass-based laser systems, phosphate glasses have
been used as a matrix for Yb3+ ions because of their high rare-earth solubility, high gain coefficient
and superior spectroscopic properties [7–9]. However, the predominant disadvantages of phosphate
glasses are their chemical durability and thermo-mechanical limitations. Therefore, optimizing the
glass compositions with significantly improved thermo-mechanical properties is required.
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Silicate glasses exhibit excellent chemical durability, thermo-mechanical properties and optical
properties. Recent studies have shown that the mechanical properties of phosphate glasses can
be efficiently improved by doping with SiO2 [10–12]. Chen Wei et al. [11] suggested that the
introduction of SiO2 into phosphate glasses can strengthen the thermo-mechanical properties of
the glass without severely degrading the spectroscopic properties. Zhang Liyan et al. [12] reported
that the spectroscopic properties of 60P2O5-7.5Al2O3-15K2O-17.5BaO glass can be improved by
the addition of SiO2. Moreover, the Stark splitting of Yb3+-doped phosphate glasses is enlarged
through the introduction of SiO2, which allows the glass to achieve the laser output successfully.
The glass structure and the local coordination of rare-earth ions can be effectively modulated by
doping SiO2 into phosphate glasses which critically influences the spectroscopic properties of the glass.
Zeng Huidan et al. [13] reported that both the luminous intensity and luminous decay time of the
glass appeared to have positive correlations with the amount of bridging oxygen of the glass matrix
through using X-ray photoelectron spectroscopy (XPS). Hu Lili et al. [14] reported the mechanism for
the decrease in Yb3+ absorption and emission intensity caused by P5+ doping. They found that Yb3+

coordinated to the P–O site in glass with a molar ratio of P5+/Al3+ ≤ 1, and coordinated to the P=O
site in glass with a molar ratio of P5+/Al3+ > 1.

In this study, Yb3+-doped phosphate glasses in the system BaO-P2O5 were modified by the
addition of SiO2. The scalar crystal-field NJ and Yb3+ asymmetry degrees were calculated from the
Stark splitting levels, which were derived from Lorentz fitting based on the absorption and emission
spectra. Furthermore, the influence mechanism of SiO2 on the structural and spectroscopic properties
was investigated systematically using the micro-Raman technique and previous 29Si MAS NMR
experimental results. The results may have certain implications for the realization of a new generation
of high-power solid-state lasers for optical telecommunications applications.

2. Experimental

Yb3+-doped silicophosphate glasses with compositions (in mol %) 20BaO-(80-x)P2O5-xSiO2-1Yb2O3

(x = 9, 16, 26.7, 32, and 40 mol %, respectively) were prepared by conventional melt-quenching
technique. High purity BaCO3, NH4H2PO4, SiO2 from Sinopharm Chemical Reagent Company
(Ning Bo, China), and 99.99% Yb2O3 from Macklin were used as starting materials for preparation
of the glasses. About 20 g of raw materials were thoroughly crushed in an agate mortar and the
homogeneous mixture was transferred into a corundum crucible, which was preheated at 350 ◦C for
30 min before being fully melted at 1350–1400 ◦C for 45 min under continuous stirring. Molten glass
was air quenched by casting it onto a preheated brass mold to form bulk glasses and annealed at
430–480 ◦C for 5 h to reduce the thermal stress and strains. Then the furnace was switched off and the
glass was allowed to cool down to room temperature at a cooling rate of about 3 K·min−1. A slab
of 10 mm× 10 mm× 2 mm sample was cut from the specimens and both sides were optically polished
for the spectroscopic measurements.

The UV-VIS-NIR absorption spectra of BaO-P2O5-SiO2 glasses were measured using a Varian
CARY 500 spectrophotometer (Varian Inc., Palo Alto, CA, USA) in the scanning range of 800–1100 nm.
With 915 nm laser diode pump, the emission spectra and lifetimes were measured by a high
resolution spectrofluorometer FLSP920 cooled with liquid helium (Edinburgh Instruments Ltd.,
Livingston, UK). A scanning step of 1 nm was used to measure both absorption and emission spectra.
The structural information on glass samples was obtained by micro-Raman spectrometer (INVIA,
Renishaw, Gloucestershire, UK) with an Ar+-ion laser (514.5 nm) as the irradiation source. Baseline
correction was performed using the Wire software program from Renishaw. All the measurements
were performed at room temperature.

3. Results and Discussion

The absorption and emission spectra of 20BaO-(80-x)P2O5-xSiO2-1Yb2O3 (x = 9, 16, 26.7, 32, and
40 mol %, respectively) glasses are plotted in Figure 1. As shown in this figure, the absorption band
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of the 2F5/2→2F7/2 transition was at 975 nm which corresponds to the transition between the lowest
level of the 2F5/2 and 2F7/2 manifolds. The absorption intensity of glass samples decreased with the
increasing SiO2 content. Under excitation with 915 nm LDs (Laser Diodes), NIR emission peaks at
around 975 and 1005 nm were observed. The SiO2 addition resulted in an increase in the emission
intensity at around 975 nm. One broad emission band with the peak centered at 1005 nm was obtained
upon excitation by 915 nm. The emission intensity decreased with the increased concentration of SiO2

up to 26.7 mol %, and then increased as shown in Figure 1b. The variation trend of the luminescent
intensity was different from the trend of the absorption intensity, which means other factors must exist
that are able to affect the luminescent intensity.
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compositional dependences of emission lifetimes are shown in Figure 2. Apparently, the lifetime 
increases monotonically with the increase of the SiO2 content up to 26.7 mol %, and then decreases 
slightly with further increasing the content of SiO2. Besides the lifetime, the absorption and 
stimulated emission cross-sections are also an important factor for solid-state lasers and broadband 

Figure 1. Absorption (a) and emission (b) spectra of 20BaO-(80-x)P2O5-xSiO2-1Yb2O3 (x = 9, 16, 26.7,
32, and 40 mol %, respectively) glasses.

The lifetime of luminescent ions is a critical parameter for broadband optical amplifiers.
The compositional dependences of emission lifetimes are shown in Figure 2. Apparently, the lifetime
increases monotonically with the increase of the SiO2 content up to 26.7 mol %, and then decreases



Materials 2017, 10, 241 4 of 8

slightly with further increasing the content of SiO2. Besides the lifetime, the absorption and
stimulated emission cross-sections are also an important factor for solid-state lasers and broadband
optical amplifiers. The absorption and emission cross-sections have been calculated by the
reciprocity method [15,16]; the absolute value of cross-sections and accurate spectra information
can be obtained in Table 1. As shown in Table 1, the absorption and emission cross-sections of
20BaO-(80-x)P2O5-xSiO2-1Yb2O3 (x = 9, 16, 26.7, 32, and 40 mol %, respectively) glass samples
decreased with the increasing SiO2 concentration. The magnitude of the absorption (emission)
cross-section at 975 nm for all the studied Yb3+-doped glass was found to be in the range of
0.62–1.09 × 10−20 (0.83–1.46 × 10−20 cm2), which is much higher than those of the commercial Kigre
QX/Yb: 0.50 × 10−20 (1.06 × 10−20 cm2) laser glass [17]. The product (σem × τexp) of the stimulated
emission cross-section and the lifetime is a significant parameter to depict laser materials for the
laser threshold is inversely proportional to σem × τexp. The σem × τexp values of the Yb3+-doped
phosphosilicate glass are shown in Table 1. All the σem × τexp values of this work were about
1 × 10−23 cm2s, which indicates that these glasses could be a potential material for high-power
solid-state lasers and broadband optical amplifiers.
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Figure 2. The fluorescence decay curve of Yb3+-doped 20BaO-(80-x)P2O5-xSiO2-1Yb2O3 (x = 9, 16, 26.7,
32, and 40 mol %, respectively) glasses.

Table 1. Spectral parameters for 20BaO-(80-x)P2O5-xSiO2-1Yb2O3 (BPSx) (x = 9, 16, 26.7, 32, and
40 mol %, respectively) glass samples.

Glass
σabs

(975 nm)
(10−20 cm2)

σem(975 nm)
(10−20 cm2)

σabs
(1005 nm)

(10−20 cm2)

σem
(1005 nm)

(10−20 cm2)
τexp (ms)

σem × τexp
(10−20 cm2·ms)

BPS9 1.09 1.46 0.15 0.86 1.17 1.01
BPS16 0.98 1.30 0.13 0.76 1.38 1.04

BPS26.7 0.85 1.13 0.12 0.71 1.55 1.10
BPS32 0.80 1.07 0.11 0.66 1.37 0.91
BPS40 0.62 0.83 0.11 0.62 1.46 0.90

Recently, many research studies have been published on NIR luminescence in Yb3+-doped glasses;
however, the origin of this phenomenon has not been identified. The relation between the glass
structure and the spectroscopic properties of Yb3+-doped glass is revealed through the evaluation of
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the scalar crystal-field NJ and Yb3+ asymmetry degree. According to References [18–20], the scalar
crystal-field NJ and Yb3+ asymmetry degree can be calculated from the Stark splitting levels, which can
be derived from Lorentz fitting based on the absorption and emission spectra. As shown in Figure 3,
the maximum Stark splitting manifold of the 2F7/2 level (781 cm−1) and the scalar crystal-field NJ and
Yb3+ asymmetry degree are observed when the SiO2 concentration is 26.7 mol %.Materials 2017, 10, 241  5 of 8 
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20BaO-53.3P2O5-26.7SiO2-1Yb2O3 glass (the black lines are the original spectra, while the red
lines offer the fitting lines composed of the corresponding multi-fitting peaks); (c) Stark level energies
of 2F7/2 and 2F5/2 manifolds in 20BaO-(80-x)P2O5-xSiO2-1Yb2O3 (x = 9, 16, 26.7, 32, and 40 mol
%, respectively) glasses obtained from the Lorentz fitting to the absorption and emission spectra;
(d) Scalar crystal-field parameters NJ and Yb3+ asymmetry degree in 20BaO-(80-x)P2O5-xSiO2-1Yb2O3

(x = 9, 16, 26.7, 32, and 40 mol %, respectively) glasses.

As is known, introducing SiO2 into phosphate glass can effectively modulate the structure and
thus lead to a change in the Yb3+ local field. Therefore, to further elucidate the role of SiO2 in
phosphate glass, the detailed structural information of the glass by using the micro-Raman technique
was obtained. In Figure 4, micro-Raman spectra are shown as a function of an increasing SiO2 content
in the range of 200–1600 cm−1. The broad bands of the Si(n) units (Si(n) represents the [SiO4] tetrahedral
unit and n is the amount of bridging oxygen per tetrahedral) with n = 4, 3, 2, 1 and 0, which are
centered at around 1200, 1100, 950, 900, and 850 cm−1, respectively [21]. The spectra of low-SiO2

glass show four major features centered near 700, 1155, 1277, and 1330 cm−1, respectively. With an
increasing content of SiO2, several new peaks appear at 500, 900, and 970 cm−1. The bands near 900,
970, 1155 cm−1 are assigned to Si(1), Si(2), and Si(4), respectively. As shown in Figure 4, the band near
1155 cm−1 contributing to the stretching vibration mode in Si(4) becomes wider and moves towards
a lower wave number. This may be due to the formation of [SiO6] which broadens the peak near
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1155 cm−1 [22–24]. The band near 1330 nm is derived from P=O stretching vibration [25,26]. As the
content of SiO2 is increased, the intensity of the Raman peak increases until 26.7 mol % SiO2 and then it
decreases. This structural change indicates that the introduction of SiO2 can promote the formation of
P=O linkages, but it can also break the P=O linkages when the SiO2 content is greater than 26.7 mol %.
P=O linkages arouse a remarkable adjustment on the distorted structure and thus result in a dramatic
change in the Yb3+ local structure. As shown in Figure 3d, the variation trend of the asymmetry degree
and NJ is similar to that of the P=O linkage. According to previous work [27], 29Si MAS NMR spectra
of 20BaO-(80-x)P2O5-xSiO2 (x = 9, 16, 26.7, 32, and 40 mol %, respectively) glass samples indicated that
[SiO6] existed in these phosphosilicate glasses, and the peaks of [SiO6] significantly decreased when
the SiO2 content was greater than 26.7 mol %. Based on the previous 29Si MAS NMR and micro-Raman
experimental results, these findings further demonstrate that the presence of [SiO6] may significantly
affect the formation of P=O, and thus improve the spectroscopic properties of phosphate glasses.
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Figure 4. Micro-Raman spectra of 20BaO-(80-x)P2O5-xSiO2-1Yb2O3 (x = 9, 16, 26.7, 32, and 40 mol %,
respectively) glasses.

4. Conclusions

The influence mechanism of SiO2 on the structural and spectroscopic properties of phosphate
glasses prepared by the conventional melt-quenching method was systematically investigated using
the micro-Raman technique and previous 29Si MAS NMR analysis. A significant change occurs in
the variation trends of fluorescence lifetimes and the scalar crystal-field NJ, and Yb3+ asymmetry
degree when the SiO2 content is greater than 26.7 mol %. It is worth noting that the glass with
26.7 mol % SiO2 possess the longest fluorescence lifetime (1.51 ms), the highest gain coefficient
(1.10 ms·pm2), the maximum Stark splitting manifold of 2F7/2 level (781 cm−1), and the greatest NJ and
Yb3+ asymmetry degree. Micro-Raman spectra indicate that the formation of P=O linkages in the glass
is responsible for this abnormal variation. With the increase in the SiO2 concentration, the intensity
of the P=O linkages increases, and then slightly decreases when the SiO2 content is greater than
26.7 mol %. This variation trend is consistent with the NJ and Yb3+ asymmetry degree. Additionally,
based on the previous 29Si MAS NMR experimental results, [SiO6] units existing in these
phosphosilicate glasses may significantly affect the formation of P=O, and thus influence the
spectroscopic properties of the glasses. It can be realized that these phosphosilicate glasses could be
materials possessing the potential to be developed as a Yb3+-doped gain medium for high-power
solid-state lasers and broadband optical amplifiers.
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