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Abstract: Femtosecond (fs)-laser hyperdoped silicon has aroused great interest for applications in
infrared photodetectors due to its special properties. Crystallinity and optical absorption influenced
by co-hyperdoped nitrogen in surface microstructured silicon, prepared by fs-laser irradiation in
gas mixture of SF6/NF3 and SF6/N2 were investigated. In both gas mixtures, nitrogen and sulfur
were incorporated at average concentrations above 1019 atoms/cm3 in the 20–400 nm surface layer.
Different crystallinity and optical absorption properties were observed for samples microstructured
in the two gas mixtures. For samples prepared in SF6/N2, crystallinity and light absorption properties
were similar to samples formed in SF6. Significant differences were observed amongst samples formed
in SF6/NF3, which possess higher crystallinity and strong sub-band gap absorption. The differing
crystallinity and light absorption rates between the two types of nitrogen co-hyperdoped silicon
were attributed to different nitrogen configurations in the doped layer. This was induced by fs-laser
irradiating silicon in the two N-containing gas mixtures.

Keywords: femtosecond laser; hyperdoped; nitrogen; crystallinity; sub-band gap absorption

1. Introduction

Hyperdoped silicon prepared by fs-laser irradiation exhibits a spiked surface and supersaturated
dopants in the doped layer [1–6]. This lowers the optical reflectance of the surface and increases
sub-band gap absorptance coefficient [7–12]. Therefore, femtosecond (fs)-laser hyperdoped silicon
shows strong broadband light absorptance, with potential applications for photovoltaics and
infrared photodetectors [13–17]. In fact, infrared photolectronic response has been observed in
plain gold-hyperdoped silicon and spiked sulfur-hyperdoped silicon [15,17,18]. Before hyperdoped
silicon is used for photoelectric devices, the crystallinity in the doped layer damaged by fs-laser
irradiation should be recovered by thermal annealing. This causes significant sub-band gap absorption
declines [6,19–22]. The post-processing method of nanosecond (ns)-laser melting after fs-laser ablation
was reported by Franta et al. to simultaneously maintain high crystallinity and strong sub-band gap
absorption [23].

Besides post-processing methods, high crystallinity is achieved in hyperdoped silicon during the
process of preparation by ion implantation [24]. In our previous work, a method of fs-laser co-doping
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technique in SF6/NF3 used to obtain hyperdoped silicon showed the ability to simultaneously possess
high crystallinity and strong sub-band gap absorption by co-hyperdoping with nitrogen and sulfur [25].
The co-hyperdoped nitrogen from SF6/NF3 is deemed to effectively improve the crystallinity by
repairing defects in the doped layer [26–32]. Based on this result, whether other N-containing gas
(e.g., N2) can also introduce similar effects on crystallinity raises potential future research questions.
If N2 does offer positive outcomes, this will create additional choices for N-containing gas used in
the fs-laser co-hyperdoping method; even if outcomes are not favorable, the different effects from
NF3 will help researchers to understand the mechanisms for obtaining improved crystallinity via a
nitrogen co-doping method. This work presents recent progress on this issue. Hyperdoped silicon
was fabricated by fs-laser irradiation in SF6/N2 gas-mixtures, and its crystallinity and light absorption
properties were investigated. Although super-statured nitrogen and sulfur are also incorporated into
the doped layer for gas mixtures of SF6/N2, different crystallinity and optical absorption rates were
observed for samples prepared in gas mixtures of SF6/NF3 and SF6/N2. The configurations of nitrogen
doped in silicon introduced by the fs-laser irradiation in the two N-containing gas mixtures, and their
different effects on the crystallinity and light absorption is discussed.

2. Materials and Methods

Silicon wafers (p (100), ρ = 1–3 Ω/cm2, d = 250 ± 10 µm) were cleaned to remove organic and
metallic contaminants by the Radio Corporation of America (RCA) standard process. The cleaned
Silicon wafers were placed in a stainless-steel vacuum chamber and irradiated by a Yb:KGW fs-laser
(515 nm, 190 fs, and 1 kHz) at normal incidence. The chamber was filled with gas mixture of SF6/NF3

or SF6/N2 at 70 kPa. The laser beam was focused to a spot size of 60 µm in diameter on the samples
with a 250-mm focal length lens. The silicon wafer was mechanically translated by stepper motors,
and the areas of the samples could be achieved at 10 × 10 mm2. The stepper motors translated at a
speed of 500 µm/s, and the scanning line interval chose the radius of the laser spot (about 30 µm).
In this way, any given spot in the irradiated region was exposed to about 350 laser pulses.

The morphology of the textured surface of the fs-laser hyperdoped silicon was observed by a
scanning electron microscope (SEM, Hitachi, Tokyo, Japan). The average concentrations of the doped
nitrogen and sulfur in the surface layer were detected by secondary ion mass spectrometry (SIMS,
Xevo TQD, SCIEX, Framingham, MA, USA) measurements. The crystal properties of samples were
examined by a confocal Raman spectroscopy (excited by a He-Ne laser of 633 nm, Horiba Jobin
Yvon XploRA, Paris, France). The structures of nitrogen in silicon lattices were explored by a Fourier
transform infrared (FTIR) spectrometer (Nicolet Nexus 470, Nicolet Nexus, Madison, WI, USA). Finally,
using a spectrophotometer (Varian Cary 5E UV-VIS-NIR, Varian Cary, Palo Alto, CA, USA) equipped
with an integrating sphere, we collected the transmission (T) and reflection (R) spectra of samples in
the wavelength of 250–2500 nm, respectively, and determined the absorptance (A) by A = 1 − R − T.

3. Results and Discussion

3.1. Surface Morphology

As in SF6/NF3, fs-laser irradiation in a gas mixture of SF6/N2 also induces arrays of sharp spikes
in the surface of silicon, as shown in Figure 1. While the spikes formed in a gas mixture of SF6/NF3

have a relatively smoother surface (Figure 1a), those prepared in SF6/N2 exhibit a rough surface with
overlying numbers of nm-granular structures (Figure 1b). The difference in the degree of spike surface
roughness is attributed to different effects of NF3 and N2 during the fs-laser fabrication processes [26].

3.2. Nitrogen Co-Doping Characters

Similar to that in SF6/NF3 [25], the hyperdoped silicon formed in SF6/N2 also co-doped with
supersaturated sulfur and nitrogen in the surface layer. The average doping concentrations of
sulfur and nitrogen over a depth range of 20–400 nm in the surface layer are shown in Table 1.
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Compared with the average doping concentration of nitrogen in the silicon materials prepared in
SF6/NF3, those introduced by SF6/N2 are slightly lower. The lower doping concentration exceeded
1019 atoms/cm3 of the surface layer, which is several orders of magnitude above its solid solubility
in silicon crystals [26,30]. Additionally, the co-doping concentrations of sulfur induced by the two
gas mixtures are very similar. The difference of the doped nitrogen induced by the two N-containing
gas mixtures was determined by the doping method. This will also affect the crystallinity of the
doped layer.
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Figure 1. SEM images (viewed at 45◦) of the fs-laser hyperdoped silicon formed in gas mixture of (a)
SF6/NF3 and (b) SF6/N2 at laser fluence of 12.1 kJ/m2. Both gas mixtures are composed by partial
pressure ratio of 35:35 kPa.

Table 1. Average concentration of nitrogen and sulfur in the surface layer (20–400 nm depth) of
hyperdoped silicon formed in SF6/NF3 and SF6/N2.

Pressure Ratio of Gas Mixture N (1019 Atoms/cm3) S (1019 Atoms/cm3)

SF6/NF3 (35:35 kPa) 4.50298 4.43861
SF6/N2 (35:35 kPa) 1.31992 4.56782

3.3. Crystal Properties

The crystallinity of the laser hyperdoped silicon influenced by supersaturated nitrogen from
SF6/NF3 and SF6/N2 were detected by Raman diagnosis. The results are shown in Figure 2. Results
show normalized Raman spectra of hyperdoped silicon prepared in gas mixture of SF6/NF3 and
SF6/N2 at different pressure ratios. Compared with sample prepared in SF6, an improved crystallinity
with a small amount of amorphous silicon and little polymorph silicon was obtained for samples
formed in SF6/NF3. Hyperdoped silicon prepared in SF6/N2 showed that the crystallinity in the
doped layer was little improved by the co-hyperdoped nitrogen. As the pressure ratio of N2 in SF6/N2

increased, that of SF6 decreased. The Raman peaks assigned to polymorphic BC8 structure (Si-III,
387 cm−1 and 443 cm−1) [20,21,25,26] remained nearly unchanged, and the amorphous silicon (a-Si,
broad peaks at 300 cm−1 and 460–495 cm−1) [20,21,25,26] increased. Furthermore, as the pressure ratio
of N2 increased, the width of Raman peaks at 520 cm−1 also increased, which implies that the lattice
stress increased and/or the grain size decreased [23]. Therefore, we can draw the conclusion that the
hyperdoped nitrogen introduced by gas mixtures of SF6/NF3 and SF6/N2 show different effects on
the crystallinity in the doped layer.

As reported, nitrogen can be doped in silicon lattices in different configurations, such as single
nitrogen atoms, paired nitrogen atoms, and nitrogen molecules [26,31–33]. With the irradiation of
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fs-laser pulses, nitrogen atoms were dissociated from NF3 and then doped in silicon lattices at a
substitutional or interstitial site (single atoms and paired atoms). The super-statured nitrogen atoms
in the doped layer combine with vacancies to form various nitrogen vacancies complexes [26,32,33].
These complexes effectively improved the crystallinity of the hyperdoped silicon by locking
dislocations and suppressing the formation of large defects [25,26,29,30]. Although the gas mixture of
SF6/N2 also introduced supersaturated nitrogen in the doped layer, this hyperdoped nitrogen exists
in silicon lattices as other nitrogen configurations. As Takao reported, during the process of silicon
growth in N2, nitrogen molecules doped in silicon showed minimal interaction with silicon lattices [34].
Even with fs-laser irradiation, the N2 could not be dissociated into single nitrogen atoms and doped in
silicon. This is attributed to the laser fluence of 12.1 kJ/m2 (approximately 107 W/m2), far from the
ionization threshold of N2 (≥1014−15 W/m2) [35,36].
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Figure 2. Raman spectra of hyperdoped silicon prepared in gas mixture of SF6/NF3 and SF6/N2 at
respective ratios. All the samples formed at same laser fluence of 12.1 kJ/m2, and the crystalline silicon
is given as comparison.

To further understand the structure of the co-hyperdoped nitrogen in silicon introduced by
fs-laser irradiation in SF6/NF3 and SF6/N2, IR detection was performed on the samples using a
Fourier transform infrared (FTIR) spectrometer. In the results shown in Figure 3, the spectra of samples
prepared in SF6/NF3, showed several IR bands at 462, 511, 568, 613, 646, 670, 737, 817, 894, and
960 cm−1. For the spectra of samples prepared in SF6/N2, there were only two obvious IR bands
at 613 and 737 cm−1. According to calculations, the IR band at 960 cm−1 is assigned to a nitrogen
di-interstitial pair (Ni–Ni); the IR bands at 568, 646, and 670 cm−1 are assigned to local vibrational
modes of (Ni–Ni) self-interstitial complexes sub-situational nitrogen pairs (Ns–Ns), (Ni–Ni) vacancy
complexes, and (Ns–Ns) vacancy complexes, respectively [23,26,32]. The IR bands at 613 and 737 cm−1

are connected with crystalline silicon [23,32]. All of the IR bands assigned to nitrogen-containing
complexes (568, 646, and 670 cm−1) were unobserved in the spectra of samples prepared in SF6/N2.
The FTIR spectra measurement more clearly show that super-saturated nitrogen from SF6/NF3 and
SF6/N2 doped as different configurations in silicon lattices, and show different effects on defects in the
doped layer. Similar to effects on defects, nitrogen configurations also exhibit different effects on the
light absorption of the fs-laser hyperdoped silicon.
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Figure 3. FTIR spectra of the nitrogen co-hyperdoped silicon prepared in SF6/NF3 and SF6/N2.
Both gas mixtures are composed by a partial pressure ratio of 35:35 kPa.

3.4. Optical Light Absorption

Figure 4 shows the light absorption properties of nitrogen co-hyperdoped silicon prepared in
SF6/NF3 (35:35 kPa) and SF6/N2 (35:35 kPa). Compared with the sub-band gap absorption of the
silicon materials prepared in SF6, that of the sample formed in SF6/NF3 slightly decreased, but it was
nearly unchanged (keeps at 90%) for the silicon materials prepared in SF6/N2. As we noted above,
the hyperdoped silicon formed in SF6/NF3 showed higher crystallinity, and the doped nitrogen from
SF6/N2 failed to improve crystallinity in the doped layer (see Figure 2b). Samples prepared in SF6/N2

should be annealed in order to recover crystallinity before use in photoelectric devices. Unfortunately,
after annealing the samples under a flash lamp at 800 K for 30 min in forming gas (95% N2, 5% H2,
300 sccm), the sub-band gap absorption of the samples prepared in SF6/N2 declined to approximately
25%. This light absorption property is nearly identical to that of samples prepared in SF6, which
shows a strong sub-band gap absorption (more than 90%) before annealing, and declines sharply (to
20%–30%) after annealing. Sulfur co-hyperdoped silicon remains a method that can induce stronger
sub-band gap absorption. The light absorption properties were determined by the doping method.
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annealed (800 K, 30 min) samples and crystalline silicon are given as comparison.

According to previous research [25,33], similar to sulfur atoms, the hyperdoped single nitrogen
atoms in silicon could import defect states into the silicon gap and induce sub-band gap absorption.
The hyperdoped paired nitrogen atoms induced no defect states and demonstrate few contributions
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to sub-band gap absorption. Additionally, the sub-band gap absorption induced by hyperdoped
single nitrogen atoms is lower than that induced by hyperdoped sulfur, which made the sub-band gap
absorption of samples prepared in SF6/NF3 decline slightly [25,33]. For samples prepared in SF6/N2,
supersaturated nitrogen molecules were induced to co-dope in the surface layer, which exhibit few
interactions with silicon lattices [34]. The sub-band gap absorption of samples prepared in SF6/N2 was
nearly unchanged by the hyperdoped nitrogen molecules, dependent on the co-hyperdoped sulfur
atoms in the doped layer. Samples were prepared at several pressure ratios of SF6/N2, and found that
all show a sub-band gap absorption similar to those prepared in SF6. The differences of the mechanism
on the sub-band gap absorption induced by sulfur atoms and that of those incorporated with nitrogen
molecules doping in silicon requires further study.

4. Conclusions

This study examined different configurations of nitrogen doped in silicon, introduced by
N-containing gas of SF6/NF3 and SF6/N2, and the associated effects on crystallinity and sub-band
gap absorption of fs-laser hyperdoped silicon. Although supersaturated nitrogen and sulfur are
incorporated into the doped layer for both gas mixtures, the co-hyperdoped nitrogen from SF6/NF3

improved the crystallinity, while samples processing in SF6/N2 showed almost no effects on both
crystallinity and sub-band gap absorption. This is because the supersaturated nitrogen molecules
induced by SF6/N2 in the doped layer showing little interaction with the silicon lattice. This is largely
different from that of induction by SF6/NF3, which induced supersaturated nitrogen atoms doped in
silicon and formed various nitrogen vacancy complexes to improve the crystallinity of the doped layer.
The doped nitrogen molecules from SF6/N2 failed to improve crystallinity in hyperdoped silicon;
as a comparison, it makes the mechanism and demands for obtaining the improved crystallinity by
such nitrogen co-doping technique increasingly clear. The investigations of the effects of nitrogen
configuration on the crystallinity and light absorption of hyperdoped silicon will greatly benefit
non-equilibrium material manufacturing.
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