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Deformation of Drops with Different Sizes Subjected to a Range of Direct Current (DC) 
Field Strengths 

The electric capillary number = 	 /  is a measure of the strength of the electric force 
versus capillary forces.  is the vacuum permittivity,  is the dielectric constant for the exterior 
fluid, 	is the applied electric field,  is the drop surface tension, and 	is	the drop radius. Figure S1 
displays drop deformation for both silicone oil and Pickering drops with different sizes plotted 
versus . 

 
Figure S1. Deformation of particle-free silicone oil drops and polyethylene (PE) Pickering drops 
plotted versus the electrical capillary number . The Pickering drops are silicone oil drops covered 
by 47–52 μm PE particles, and the drop size ranges between 1.2 and 2.2 mm. The solid line is Taylor’s 
theory for linear drop deformation calculated using the parameters listed in the Methods section. The 
dashed line is our fluid shell description, using a Pickering PE surface conductivity that is 30% of the 
silicone oil conductivity. 

Classical Taylor Electrohydrodynamic (EHD) Theory for Emulsions Drops 

EHD deformation of conducting emulsion drops, free of particles, is described by the Taylor 
leaky dielectric model [1], which has been developed by Melcher [2] and others [3–5]. Free charge 
build-up at the drop interface creates interfacial electrical stresses that are balanced by the drop 
surface Laplace pressure and viscous hydrodynamic stresses. The Taylor model gives the drop 
deformation: = ( ∥ − )/( ∥ + ) = ( ) [ ( + 1) − 2 + 3( − 1) ], where ∥ and  

are the drop axis lengths parallel and perpendicular to the electric field direction, respectively,  is 
the dielectric constant of the surrounding fluid,  is the drop radius,  is the interfacial surface 
tension between the drop and exterior fluid, and the dimensionless numbers R, S and  are the 
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conductivity, dielectric constant and viscosity ratios: = / , = / , = / , where  is 
electric conductivity,  is dielectric constant, and  is viscosity. The subscript “ex” refers to the 
exterior surrounding liquid (castor oil) while “in” refers to the interior drop (silicone oil). The drop 
deformation can be oblate ( < 0) or prolate ( > 0), depending on these parameters. Notice that the 
Taylor model is only valid for weak drop deformations and when the charge relaxation time is much 
shorter than the charge convection time. 

Electric Field-Induced Deformation of a Pickering Drop: Fluid Shell Description 
Developed for the Current Work 

When subjected to an electric field, electric stress is induced at the surface of Pickering drops. If 
the drop is fully covered with particles, there is no EHD circulation flow in steady state because the 
particle layer adsorbs the tangential stress. Ouriemi and Vlahovska [6] modelled Pickering drops 
with the assumption that the electric stress is adsorbed by in-plane elastic deformation, i.e., the 
Pickering layer is considered as an elastic capsule. In our experiments, we observed that clay-covered 
Pickering drops appear to be more fluid or gel-like for moderate particle coverage, and can undergo 
considerable in-plane deformation. For polyethylene (PE) bead-covered drops that are not jammed, 
we had previously observed that the beads can roll over each other in glide planes [7], which relaxes 
the in-plane elastic stress, giving a more fluid-like behaviour of the Pickering layer. Therefore, we 
here consider a fluid membrane description for the Pickering drop as a first approximation, where 
the Pickering drop layer is considered to be a uniform thin film (fluid membrane) of thickness , with 
electrical conductivity and dielectric constant of  and , respectively. 

 

Figure S2. Geometry of a dielectric spheroid capsule subjected to a uniform DC electric field. The 
capsule is considered to be a sphere of an interior fluid coved by a particle film and surrounded by 
an exterior fluid. The dielectric constants ε and conductivities σ are marked in the figure and denoted 
“f”, “ex”, and “in”, referring to the particle film, exterior and interior fluids, respectively. A spherical 
coordinate system is used where  is the inclination angle,  the azimuthal angle and r the distance 
from the centre of the capsule. The ,  parameters are the radii of the two interfaces, and  is the 
thickness of the particle film. 

Here we consider a leaky-dielectric (weakly conductive) drop suspended in a leaky-dielectric 
exterior fluid and covered by a dielectric particle film with thickness = − . The capsule is 
subjected to a uniform DC electric field  in the ̂ direction = ̂ (Figure S2). 
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To calculate the electric field at the three different regions (capsule exterior, film and interior), 
we solve Laplace’s equation ( , ) = ( + ⁄ ) cos  with the usual boundary conditions for 
leaky dielectrics: lim→ → , (1) lim→ | | < ∞, (2) = , →  (3) = , →  (4) ̂ = , → (5) ̂ = , → (6) 

The boundary conditions for the electric field components  (normal) and ̂ (tangential) follow 
from ∇ × 	= 0 and no net surface charge. 

To calculate the electric stress acting on the capsule interface, we need to calculate the Maxwell 
electric stress tensors. For a dielectric material it is given by: , , ≡ ( − ). Here,  is the 
vacuum permittivity, the indices i and j refer to the coordinates r,  and , while the subscript k 
indicates the electric field on the exterior fluid side (k = 1) and the film side (k = 2) of the exterior 
interface. In this case, only the rr and  components of the Maxwell stress tensor are important (  
and  components do not apply net force densities to the drop, while the other components are zero 
[8]). Here the rr electric stress tensor components for the exterior capsule interface are given by:  

, ( , ) = 12 , cos − , sin , (7) 

, ( , ) = 12 , cos − , sin . (8) 

The  stress tensor components for the exterior capsule interface are given by: 

, ( , ) = , , cos sin , (9) 

, ( , ) = , , cos sin . (10) 

The rr stress tensor components for the interior capsule interface are given by: 

, ( , ) = 12 , cos − , sin , (11) 

, ( , ) = 12 ( , cos − , sin ). (12) 

And lastly, the  stress tensor components for the interior capsule interface are given by: 

, ( , ) = , , cos sin , (13) 

, ( , ) = , , cos sin . (14) 

The  and  coefficients depend on the radii of the interfaces and the conductivities of the 
particle layer fluids: 

, = , = 3 [2 ( − ) + (2 + )]2 ( − )( − ) + (2 + )(2 + )	, (15) 

, = , = 92 ( − )( − ) + (2 + )(2 + )	, (16) 

, = , = − 3 [ ( − ) + (2 + )]2 ( − )( − ) + (2 + )(2 + ) (17) 

, = , = − , . (18) 
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The total electric stress tensor components rr (normal to the capsule interface) and  (tangential 
to the capsule interface) are then calculated as:  ∆ ( , , ) = , ( , ) − , ( , ) + [ , ( , ) − , ( , )] /  (19) ∆ ( , , ) = , ( , ) − , ( , ) + [ , ( , ) − , ( , )] / , (20) 

where rf is the mid-surface radius of the capsule, defined as: = − /2 = + /2. Because the 
electric stress components are non-uniform, they have to be balanced by non-uniform forces. For a 
particle-covered capsule, EHD-induced viscous forces can be neglected due to the incompressibility 
of the particles at the capsule interface. A capsule suspended in a fluid has two interfaces and two 
interfacial surface tensions (particle-drop and particle-surrounding fluid). Because the particle layer 
on the capsule is thin, we define surface tension  as the average (mid-surface) of the two surface 
tensions. The non-uniform efficient surface tension is here defined as: = + cos 2 , where	  is 
a uniform surface tension and  is a variable surface tension amplitude that is determined from the 
tangential stress balance (Equation 21). The normal electric stress component is balanced by the 
Laplace pressure, while the tangential component is balanced by the surface tension gradient:  ∆ ( , , ) = 2 ( ) ( , ), (21) ∆ ( , , ) = ∇ , (22) 

where ( , ) is the mean curvature of the capsule [9]. The deformed capsule shapes can be described 
by: ( , ) = + ( , ), with the unit vector  in the r direction and the displacement vector  
parameterized as [10]: = (3 cos − 1) 2⁄  and = − sin cos , where  is an overall 
deformation amplitude. Here, we assume that the capsule deformations are small compared to the 
capsule radius  ( ≪ ), and that 0 ≤ ≤ . A series expansion to the first order yields 2 ( , ) =−(2 + + 3 cos 2 )/ , lim→ 2 ( , ) → −2/ , which is the curvature of a non-deformed spherical 
capsule.  

The capsule deformation is defined as: = ( || − )/( || + ), where || and  are the drop 
axes parallel and perpendicular to the electric field direction, respectively: || = 2 ( = 0) = 2( +) and = 2 ( = ) = 2 − . The capsule deformation can then be expressed as:  = 34 + ≈ 34 , (23) 

By solving Equations (21) and (22) for the deformation amplitude s, we get an expression for the 
capsule deformation. The resulting Pickering drop deformation to first order in film thickness  and 
second order in applied electric field strength E0 is: = 916 (2 + ) [ + + ( )], (24) 

where the coefficients are:  = (2 + )[ ( + ) − 4 ], (25) = ( + )[ ( − 2 ) + + 2 ( + 2 )]− 4 [ (2 + )( + )+ (2 − 4 − 4 + 3 )]. (26) 

The capsule deformation can be reduced to the deformation of a pure drop (without a particle 
layer) where the tangential electric stress component is absorbed by the interface 
(electrohydrodynamic circulation flows are neglected) by → 0: lim→ = 9 [ ( + ) − 4 ]16 (2 + )  (27) 

We obtained the same drop deformation when we independently repeated these calculations for 
a drop without a particle layer (a drop with one radius and one interface). This expression is different 
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than the one found by Taylor [1], since we here balanced the tangential electric stress with a surface 
tension gradient instead of EHD-induced viscous stress. If we let the conductivity of the surrounding 
fluid go to zero, the deformation is reduced to the special case of a conducting drop surrounded by 
a perfect insulator [11]: lim→ = 9 16 . (28) 

In our numerical calculations we have used the following parameters for:  
A PE Pickering drop: = 1.22	mm, = 50	μm, = 50	pSm , 	 = 5	pSm , 	 =4.5	mNm , 	 = 8.854	 ×	10 	Fm , 	 = 4.7, 	 = 2.2, = 2.8, 	 = 0.05	Pa ∙ s, 	 = 0.75	Pa ∙s. 
A clay Pickering drop: = 1.22	mm, = 5	μm, 	 = 50	pSm , 	 = 5	pSm , 	 =4.5	mNm , 	 = 8.854	 ×	10 	Fm , = 4.7, 	 = 6, = 2.8, 	 = 0.05	Pa ∙ s, 	 = 0.75	Pa ∙ s. 

Drops in Alternating Current (AC) Fields 

 

Figure S3. Deformation of a particle-free silicone oil drop and a PE Pickering drop subjected to an AC 
electric field. A particle-free silicone oil drop and a Pickering drop covered by 50 μm PE particles 
suspended in castor oil before (a, c) and after (b, d) the application of a 100 Hz electric field of strength 
550 V/mm. The drop radii are 1.3 mm. The measured steady-state deformations are approximately 
0.047 and 0.055 for the Pickering drop and silicone oil drop, respectively.  

Particle layers at drop interfaces can provide resistance to deformation if the particles are 
jammed (if the particle packing is sufficiently high for particle motion to be prohibited). The particle 
layers on the PE Pickering drops in this paper are prepared such that the particle layer is not jammed 
(the particle packing is around 0.84 ± 0.02, just below the maximal theoretical packing for spheres at 
a flat interface, which is 0.91). Deformation experiments were performed on a pure silicone oil drop 
(radius 1.3 mm) and a PE-covered Pickering drop (radius 1.3 mm) when subjected to an AC electric 
field with a strength of 550 V/mm and a frequency of 100 Hz (Supplementary Figure S3). The field 
strength of 550 V/mm was chosen to produce large deformations (the maximum field strength 
provided by our setup), while we decided to use a frequency of 100 Hz to avoid charge build-up at 
the drop interfaces.  

We found that the deformation of PE Pickering drops (≈ 0.047) was slightly smaller than that of 
the silicone oil drops (≈ 0.055) and, unlike similar drops in DC electric fields, both drops deform into 
a prolate geometry. Because the period of the frequency of the electric field is much higher than the 
inverse of the Maxwell-Wagner charge build-up time of the drops (around 1 s for this system), 
charges do not have time to accumulate at the drop interfaces. As a result, the drops behave as 
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dielectrics that polarize and are stretched by the electric field (into a prolate shape). Because the 
particle monolayer is thin (50 μm), polarization of the particle layer does not contribute significantly 
to the Pickering drop deformation in the AC electric field (100 Hz), and the deformation should be 
similar to the deformation of the pure silicone oil drop. The results show that resistance to drop 
deformation is not mainly caused by particle layer elasticity or by a change in Laplace pressure. 
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