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Abstract: The overly-fast degradation rates of magnesium-based alloys in the biological environment
have limited their applications as biodegradable bone implants. In this study, rare earth element
yttrium (Y) was introduced into AZ61 magnesium alloy (Mg-6Al-1Zn wt %) to control the degradation
rate by laser rapid melting. The results showed that the degradation rate of AZ61 magnesium alloy
was slowed down by adding Y. This was attributed to the reduction of Mg17Al12 phase and the
formation of Al2Y phase that has a more active potential, which decreased galvanic corrosion
resulting from its coupling with the anodic matrix phase. Meanwhile, the hardness increased as Y
contents increased due to the uniform distribution of the Al2Y and Mg17Al12 phases. However, as
the Y contents increased further, the formation of excessive Al2Y phase resulted in the increasing of
degradation rate and the decreasing of hardness due to its agglomeration.

Keywords: AZ61 magnesium alloy; microstructure; degradation properties; hardness

1. Introduction

Magnesium-based alloys have aroused keen attention as biodegradable bone implants due to their
unique biodegradable characteristics, proper mechanical properties and favorable biocompatibility [1–6].
The widely used Mg-Al-Zn (AZ series) alloys belong to a magnesium-based alloy, which exhibits
high strength and certain degradation resistance [7–10]. Nevertheless, it still needs to further enhance
degradation resistance in order to have biological applications [11–13]. The rare earth elements such as
neodymium (Nd), gadolinium (Gd) and yttrium (Y) have a beneficial effect in increasing degradation
resistance and enhance the mechanical properties of magnesium alloys [14–18].

Many research works have been carried out on magnesium alloys with rare earth elements.
Zhang et al. [19] reported that alloying cerium (Ce) could improve mechanical properties and corrosion
resistance of cast Mg-4Al-based alloy. Liu et al. [20] reported that the addition of Lanthanum (La)
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could enhance the corrosion properties of AM60 alloy. Yttrium (Y), a rare earth element, has hexagonal
close-packed crystal structure which is the same as that of magnesium, and the atomic radius of Y
(0.18 nm) is close to that of magnesium (0.16 nm) [21]. Thus, its solid solubility limit in magnesium
alloys can reach up to 11.4 wt % [22]. Moreover, Y has the same standard electrochemical potential
with magnesium (−2.372 V) [23,24]. Qi et al. investigated the effects of Y on the microstructure and
mechanical properties of as-cast Mg-6Zn-1Mn alloy. The results showed that Y could improve its
mechanical properties significantly, and the alloy with Y content of 6.09 wt % has the best mechanical
properties [25]. Luo et al. studied the corrosion resistance property and the corrosion evolution of
as-cast AZ91 alloy with rare earth Y. They found that the proper amount of Y addition could improve
the corrosion resistance of as-cast AZ91 alloys effectively [26].

Laser rapid melting has the characteristic of rapid solidification. The cooling rate during laser
melting usually reaches up to 105 K/s, which can inhibit grain growth and refine the grains [27].
Meanwhile, laser rapid melting can reduce the composition segregation. Furthermore, laser rapid
melting is a non-equilibrium process which can increase the solid solubility of the alloy elements [28].

In this work, the AZ61 magnesium alloys (Mg-6Al-1Zn wt %) with different Y contents (0, 1, 2, 3,
4 wt %) were prepared using laser rapid melting. The microstructure was studied by optical microscopy
(OM), X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersed
spectroscopy (EDS). The degradation properties were analyzed by the immersion experiments.
In addition, the hardness was measured by Vickers hardness tests.

2. Results and Discussion

2.1. Microstructure

The microstructures of the AZ61 magnesium alloys with different amounts of Y added were
examined by optical microscopy (Figure 1) and scanning electron microscopy (Figure 2) respectively.
AZ61 magnesium alloy consisted of the magnesium matrix and network precipitates (pointed by black
arrows) which were distributed mainly at grain boundaries (Figures 1a and 2a). After adding Y, the
network precipitates decreased and a small amount of granulous precipitates (pointed by black arrows
with a round tail) appeared (Figures 1b and 2b). The granulous precipitates increased as the Y contents
increased and were distributed uniformly as Y reached 2 wt % (Figures 1c and 2c). However, as the
Y contents further increased, the granulous precipitates tended to be predominant and agglomerate
(Figures 1d,e and 2d,e).
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Figure 2. SEM micrographs of AZ61 magnesium alloys with different Y contents: (a) 0 wt %; (b) 1 wt %;
(c) 2 wt %; (d) 3 wt % and (e) 4 wt %.

The XRD patterns of the AZ61 magnesium alloys with different Y contents were exhibited in
Figure 3. Only the α-Mg and Mg17Al12 phase were detected in the AZ61 magnesium alloy (Figure 3a).
After adding Y, a new Al2Y phase was formed and the corresponding peak intensity gradually
increased as Y increased. Meanwhile, the peak intensity of the Mg17Al12 phase decreased. This
implied the reduction of the Mg17Al12 phase and the increase of the Al2Y phase. Reference intensity
ratio (RIR) method was used to quantify the weight percent of the Mg17Al12 phase and Al2Y phase.
A more complete view on the weight percent of the Mg17Al12 phase and Al2Y phase as influenced
by Y content was given in Figure 4. It could be observed that the weight percent of the Mg17Al12

phase decreased from 7.5% in the AZ61 magnesium alloy to 4.1% in the AZ61 magnesium alloy with
4 wt % Y, while that of Al2Y increased from 0% in the AZ61 magnesium alloy to 2.5% in the AZ61
magnesium alloy with 4 wt % Y. In general, the tendency of elements to form stable compounds was
in positive correlation with the electronegativity difference between elements. The electronegativity
values of Y, Mg and Al were 1.22, 1.31 and 1.61 respectively, from which it could be deduced that Y
was prone to react with Al to form Al-Y compound [29]. Thus, the Al2Y phase increased gradually as
Y increased, while the Mg17Al12 phase decreased.

The morphology and compositions of the second phases in AZ61 magnesium alloy with 2 wt %
Y were studied by EDS. It was presented that magnesium content reduced while Al and Y increased
across the granulous particles (Figure 5b). Thus, it was reasonable to conclude that the granulous
particle was in the Al2Y phase. Meanwhile, the rod-shaped phase had a Mg/Al ratio (78.78/21.22)
(Figure 5c) which was close to that of Mg17Al12, and was thereby identified as Mg17Al12 phase.

The three phases (α-Mg, Al2Y and Mg17Al12) were exactly determined in the AZ61 magnesium
alloy with Y. The schematic diagram of the phase formation in the alloy was shown in Figure 6. The first
precipitated phase in the solidification of the high-temperature liquid phase was the Al2Y phase. This
could be explained by the Al2Y phase having the highest melting point (1485 ◦C) among the three
phases (Figure 6b) [30]. Afterwards, the α-Mg phase with the melting point of 650 ◦C started nucleation
(Figure 6c). Then, the remained Al atoms precipitated in Mg17Al12 (437 ◦C) which distributed on the
α-Mg grain boundaries (Figure 6d).
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2.2. Hardness

The hardness of AZ61 magnesium alloys with different Y contents was shown in Figure 7.
The hardness of AZ61 magnesium alloy was 90.9 Hv. The hardness continuously increased as Y
increased from 0 wt % to 2 wt %. The optimal hardness was 104.9 Hv when the Y content was 2 wt %.
However, it decreased as the Y contents further decreased. The increase of hardness was attributed to
the uniform distribution of Al2Y and Mg17Al12 phases which acted as a second phase strengthening
agent in the alloy matrix. As the Y contents further decreased, the excessive Al2Y phase formed in
the alloy tended to aggregate. Thus, the structure of the alloy became uneven and the hardness of the
alloy decreased.
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2.3. Degradation Properties

Immersion tests were applied to study the degradation properties of AZ61 magnesium alloys
with different Y contents. The hydrogen evolution volume varied with the immersion time, as
shown in Figure 8. The hydrogen evolution volume of the alloys increased rapidly in the early
stages of immersion and then increased slowly, which indicated a reduction of degradation rate.
The hydrogen evolution volume of AZ61 magnesium alloys with Y contents of 0, 1, 2, 3 and 4 wt %
were 30.1 mL/cm2, 13.3 mL/cm2, 6.1 mL/cm2, 10.5 mL/cm2 and 18.1 mL/cm2 after immersion for
360 h, respectively. It was observed that the degradation rate reduced remarkably with adding Y up
to 2 wt %, while a further increase of Y resulted in an increased degradation rate. The degradation
rates of the AZ61 magnesium alloys with different Y contents were calculated according to mass loss
test (Figure 9). The results were consistent with that of hydrogen evolution analysis, which showed
that AZ61 magnesium alloy with 2 wt % Y exhibited the lowest degradation rate (0.28 mm/year).
The degradation rate of AZ61 magnesium alloy with 2 wt % Y was lower than the reported value of
WE43 magnesium alloy (0.85 mm/year) [31].
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Figure 9. Degradation rates of AZ61 magnesium alloys with different Y contents after immersion in
SBF solution for 7 days.

The degradation morphology of the AZ61 magnesium alloys with different Y contents after
immersion for 120 h was shown in Figure 10. Obviously, the alloys were covered with a degradation
product film which presented some cracks. The appearance of cracks was believed to be caused by
the dehydration of the degradation product film after drying in ambient atmosphere. The AZ61
magnesium alloy exhibited a severely corroded surface with many cracks (Figure 10a). After adding
1 wt % Y, the surface of the alloy presented relatively shallow cracks. When the Y contents was 2 wt %,
the integrated degradation film without a crack formed, which implied that the degradation degree
of the alloy was relatively low (Figure 10c). As the Y contents further increased, the cracks of the
degradation product film gradually increased (Figure 10d,e).
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Figure 10. SEM degradation morphology of AZ61 magnesium alloys with different Y contents after
immersion for 120 h: (a) 0 wt %; (b) 1 wt %; (c) 2 wt %; (d) 3 wt % and (e) 4 wt %.

It could be concluded that the appropriate addition of rare earth element Y could enhance
degradation resistance of the AZ61 magnesium alloy. In general, the Mg17Al12 phase acted as
the cathode with respect to the magnesium matrix, which facilitated the degradation of the AZ61
magnesium alloy [32]. After adding Y, Y reacted with Al to form the Al2Y phase, which reduced the
amount of Mg17Al12 phase on the grain boundaries. Furthermore, the Al2Y phase has more active
potential [33]. Thus, adding Y could suppress the galvanic corrosion of the alloys, which enhanced
the degradation resistance. However, as the Y contents further increased, the excessive Al2Y phase
accelerated galvanic corrosion, resulting in the increase of degradation rate.

3. Experimental Procedure

3.1. Materials Preparation

The spherical AZ61 magnesium alloy powders were purchased from Tangshan Weihao Materials
Co., Ltd. (Tangshan, China, average particle size 70 µm) and irregular-shaped Y powders were
obtained from Shanghai Naiou Nano technology Co., Ltd. (Shanghai, China, average particle size
20 µm). The powder mixtures with different Y contents (0, 1, 2, 3 and 4 wt %) were prepared through
ball milling in a mixed gas environment (1 vol % SF6 and 99 vol % CO2). The rotation speed was fixed
at 450 rpm (revolution per minute) in the course of ball milling and the milling time was 2 h.

The AZ61 magnesium alloys with different Y contents (0, 1, 2, 3, 4 wt %) were prepared using a
homemade laser rapid melting system. It consists of a fiber laser, a focus system, a gas protection device
and a computer control system. The fiber laser has a maximum output power of 110 W. The minimum
spot diameter of the laser beams is 50 µm. More details of the system are available in the reference [34].
The processing parameters were as follows: laser scanning rate 200 mm/min, laser spot 150 µm and
laser power 80 W. The powder mixtures were melted layer by layer in the sealed building chamber
protected by argon gas. Then, the samples of alloys (10 mm × 10 mm × 5 mm) were built up.

3.2. Materials Characterization

The prepared alloy specimens were ground with abrasive papers grading from 1000 to 2000 grit
and mechanically polished on cotton cloth with 0.5 µm diamond paste, followed by being etched
for 10 s with the acetic picral solution (10 mL of acetic acid, 70 mL of ethanol (99.8% v/v), 4.2 g of
picric acid, and 10 mL of distilled water), then the metallurgical structure of alloys was studied by an
optical microscopy (OM, Olympus BHM, Osaka, Japan). The composition distribution of the alloys
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was studied using scanning electron microscopy (SEM, QUANTA FEG250, FEI Company, Hillsboro,
OR, USA) and energy dispersive spectroscopy (EDS, JSM-5910LV, JEOL, Tokyo, Japan). The phase
compositions were analyzed through X-ray diffraction (XRD, D8 Advance, Bruker Inc., Karlsruhe,
Germany) using Cu-Kα radiation at 15 mA and 30 kV with scattering angles ranging from 10◦ to 80◦,
step size 0.02◦ and scanning speed 8◦/min. X-ray diffraction patterns were identified by comparing
the diffraction patterns with the standard ICDD-PDF cards. The quantitative phase analysis was
conducted by means of the reference intensity ratio method [35].

Vickers hardness tests were performed by a Vickers microindenter (HXD-1000TM/LCD, Digital
Micro Hardness Tester, Shanghai Taiming Optical Instrument Co. Ltd, Shanghai, China) with a load
of 2.45 N and loading time of 15 s. Ten indents were made for each sample. The hardness was
expressed as a mean and standard deviation of these 10 readings. The dimensions of alloys used for
the immersion tests were 10 mm × 10 mm × 5 mm. Immersion tests were operated at 37 ± 0.5 ◦C in
simulated body fluid (SBF) (the ratio of the surface area to solution volume was 1 cm2:100 mL). The
SBF that has similar ion concentrations to those of human blood plasma was prepared according to
the protocol described by Kokubo et al. [36]. In short, the relevant reagent grade chemicals (CaCl2,
K2HPO4·3H2O, KCl, NaCl, MgCl2·6H2O, NaHCO3 and Na2SO4) were dissolved in distilled water
at the appropriate amounts. The pH of the solution was buffered to physiological pH (pH = 7.4) by
adding tri-hydroxymethyl-aminomethane and hydrochloric acid. The hydrogen evolution volume
was monitored during the immersion. After immersion for 7 days, each sample was removed from the
solution and washed with distilled water. A chromic acid solution (200 g/L Cr2O3 + 10 g/L AgNO3)
was used to remove the degradation products on the sample surface before mass loss measurement.
Five samples were measured for each group to obtain reproducible results. The degradation rates
(mm/year) were calculated according to mass loss test. After immersion for 120 h, the samples were
taken out from SBF and then blown dry with air at room temperature. The degraded surfaces were
observed by SEM. Before the SEM observations, the samples were coated with gold by using a sputter
coater (Leica EM SCD005, Leica Microsystems GmbH, Wetzlar, Germany).

3.3. Statistical Analysis

The experimental data of mechanical and degradation properties were expressed as mean ±
standard deviation. Statistical analysis was performed to assess the difference by the analysis of
variance. The difference was considered to be significant when p < 0.05.

4. Conclusions

The microstructure, degradation properties and hardness of the AZ61 magnesium alloys with
different Y contents (0, 1, 2, 3, 4 wt %) prepared by laser rapid melting were investigated. Adding
Y to AZ61 magnesium alloy could lead to the formation of Al2Y phase and reduce the amount of
Mg17Al12 phase. The degradation resistance of the AZ61 magnesium alloy was enhanced with Y
addition. The AZ61 magnesium alloy with 2 wt % Y exhibited an optimal degradation resistance.
Furthermore, the hardness increased as Y contents increased from 0 wt % to 2 wt %, and then decreased
when Y contents decreased further. In conclusion, laser rapid melting AZ61 magnesium alloy with
2 wt % Y exhibit prospects for future bone implants.
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