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Abstract: Novel graphitic carbon nitride/CuO (g-C3N4/CuO) nanocomposite was synthesized
through a facile precipitation method. Due to the strong ion-dipole interaction between copper
ions and nitrogen atoms of g-C3N4, CuO nanorods (length 200–300 nm, diameter 5–10 nm) were
directly grown on g-C3N4, forming a g-C3N4/CuO nanocomposite, which was confirmed via
X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron
microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Finally, thermal decomposition
of ammonium perchlorate (AP) in the absence and presence of the prepared g-C3N4/CuO
nanocomposite was examined by differential thermal analysis (DTA), and thermal gravimetric
analysis (TGA). The g-C3N4/CuO nanocomposite showed promising catalytic effects for the thermal
decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance
(g-C3N4/20 wt % CuO), the decomposition temperature of AP was decreased by up to 105.5 ◦C
and only one decomposition step was found instead of the two steps commonly reported in other
examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite.
This study demonstrated a successful example regarding the direct growth of metal oxide on g-C3N4

by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which
could provide a novel strategy for the preparation of g-C3N4-based nanocomposite.
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1. Introduction

Recently, graphitic carbon nitride (g-C3N4) has drawn considerable attention due to its unusual
physical and chemical properties, which show great potential for the application in many aspects. g-C3N4

is metal-free, and has multiple structural defects, good thermal and chemical stability, and tunable
electronic structure. More importantly, g-C3N4 is cost-effective and environmentally friendly. All these
make g-C3N4 become a novel and promising form of catalysis and catalytic support [1–8]. To broaden
the application of the g-C3N4-based nanocomposite, compounding functional nano-sized metal oxide
materials with g-C3N4 has been of interest over recent years. The synergy of two functional materials will
result in improved properties of the nanocomposite that will have a wider range of applications [9–12].
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Specifically, Sridharan and his co-workers [13] reported the coupling of g-C3N4 with TiO2 by utilizing
a thermal transformation methodology. With higher photocatalytic ability, the prepared composite
greatly improved the degradation of methylene blue. Additionally, g-C3N4/CeO2 was prepared for the
evaluation of its potential application in the hydrogen production by photocatalysis, and degradation
of methylene blue [14,15]. g-C3N4/Bi2WO6 was also studied to explore its excellent properties [16–20].
For example, Li’s group [16] synthesized a series of g-C3N4/Bi2WO6 composites through a facile
in situ hydrothermal approach, which demonstrated greatly enhanced responses to visible light.
The selective reduction of CO2 to CO was remarkably enhanced. Analogously, Sierra et al. [20] developed
a Bi/Bi2WO6/g-C3N4 ternary composite via thermal reduction of Bi2WO6 with g-C3N4. Owing to its
remarkable red-shift up to 620 nm, Bi/Bi2WO6/g-C3N4 could catalyze the degradation of methylene
blue contaminants under visible light.

CuO is a typical p-type semiconductor that has been widely applied in photoelectric materials, gas
sensors and catalysis [21,22]. The preparation of CuO nanostructures has received much attention in
recent years [23,24]. Zhu et al. [25] prepared a CuO:GO nanocomposite by a facile chemical method
without the utilization of any templates or surfactants. Due to the good dispersion of CuO nanocrystals
on GO nanosheets, the obtained CuO:GO nanocomposite showed a synergistic effect for the thermal
decomposition of AP. Zabilskiy’s group [26] prepared a series of CuO crystals supported on CeO2

nanospheres using a glycothermal approach. The synthesized CuO/CeO2 exhibited very promising
activity and stability, which could be effectively applied to the catalysis of N2O decomposition. Recently,
Wang’s group reported on a new synthetic approach for the preparation of porous nanorod-type graphitic
carbon nitride/CuO composites using a Cu-melamin supramolecular framework as a precursor [27].
These works have focused more on the control of the morphology of g-C3N4 than on that of CuO.
Specifically, due to the three-dimensional hydrogen-bond (N—H· · ·N) directions which guide the
condensation of melamine molecules in the Cu-melamin precursor, the as-prepared CuO-g-C3N4 showed
a porous nanorod morphology consisting of CuO nanoparticles spread on the surface of rod-shaped
g-C3N4. However, the high reaction temperature (up to 550 ◦C) would lead to the serious sintering
of CuO nanoparticles, which could affect the catalytic activity of the CuO-g-g-C3N4. Based on the
above analysis, in order to obtain a novel g-C3N4/CuO nanocomposite with synergistic effect, the CuO
nanoparticles were made to be uniformly dispersed on g-C3N4. Herein, we report on an improved
strategy for the preparation of CuO nanorods well-dispersed g-C3N4 nanocomposite via the direct
growth of CuO nanorods on g-C3N4, using a facile precipitation method (Scheme 1).
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Ammonium perchlorate (AP), which accounts for 60% of the total mass of the propellant, is the
most common oxidant in composite solid propellants [28]. The properties of solid propellants mostly
depend on reaction rate, high-temperature decomposition, and the activation energy of AP thermal
decomposition. Thus, exothermic heat and lower high-temperature decomposition (HTD) play
an important role in the utilization of AP [29]. Up to now, as a transition metal oxide, CuO was
demonstrated to be a promising catalyst for the thermal decomposition of AP [25]. Moreover, our group
confirmed that g-C3N4 can also accelerate the thermal decomposition process [30]. It was anticipated
that the direct growth of CuO on g-C3N4 will not only avoid the agglomeration of nano-sized CuO,
but also efficiently accelerate the electron transfer rate between them. Thus, the thermal decomposition
process of AP could be markedly accelerated in the presence of the novel g-C3N4/CuO catalyst.

2. Experimental

2.1. Materials

All the reagents were of analytical grade and used as received without further purification.
Melamine, sodium hydroxide, cupric nitrate trihydrate and ethanol were all purchased from Sinopharm
(Beijing, China). Distilled water was used throughout the experiment.

2.2. Preparation of g-g-C3N4/CuO Nanocomposite

Firstly, g-C3N4 solid was synthesized by heating melamine in a muffle furnace (Hefei Ke Jing
Materials Technology Co., Ltd., Hefei, China) at 520 ◦C for two hours at a heating rate of 50 ◦C min−1

with air, the solid was then ground with agate mortar to obtain g-C3N4 powder. The product was
washed with distilled water three times and dried at 70 ◦C [30].

Secondly, the g-C3N4/CuO nanocomposite was synthesized using a facile precipitation
method [31]. The g-C3N4/CuO nanocomposite with differing CuO contents (5, 10, 20, 30, 50 wt %)
were prepared and labeled as g-C3N4/x wt % CuO (x = 5, 10, 20, 30, 50). A typical experiment
for the synthesis of g-C3N4/20 wt % CuO catalyst is as follows: 0.32 g of g-C3N4 was dispersed
in 60 mL deionized water by ultrasonication for 30 min. Afterwards, 0.242 g Cu(NO3)2·3H2O
(analytically pure) was added into the solution, and then the obtained dispersion was stirred for
another 20 min. Subsequently, 10 mL sodium hydroxide solution (1 mol·L−1) was added dropwise
with stirring. The mixture was then stirred at room temperature for two hours, then collected, washed
with deionized water and alcohol, and dried. Finally, the mixture was calcined in a muffle furnace
at 200 ◦C for two hours, to obtain the g-C3N4/CuO nanocomposite. CuO without g-C3N4 was also
obtained using the same method under the same conditions.

2.3. Characterization

Unless otherwise indicated, g-C3N4/CuO nanocomposite containing 20 wt % CuO was used as a
representative for characterization.

The crystalline phases of products were analyzed by X-ray diffraction (XRD) using a
Rigaku Ultima-IV advanced X-ray diffractometer (Rigaku, Tokyo, Japan) with Cu Kα irradiation
(λ = 0.15406 nm) within the range of 2θ = 10◦–90◦. The morphology and structure of the as-synthetized
nanocomposite was observed by field emission scanning electron microscopy (FESEM, Zeiss MERLIN
Compact, Jena, Germany) and transmission electron microscopy (TEM, Philips Tecnai 12, Amsterdam,
The Netherlands). X-ray photoelectron spectra (XPS) were recorded on a PHI Quantera II X-ray
photoelectron spectrometer (Chigasaki, Japan), using Al Kα radiation as the excitation source.

2.4. Catalytic Activity Measurement

For study of the catalytic performance of g-C3N4/CuO nanocomposite on the thermal
decomposition of AP, AP powder mixed with g-C3N4, CuO, and g-C3N4/CuO were prepared.
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For sample preparation for catalytic research, 0.01 g g-C3N4, CuO or g-C3N4/CuO was mixed
with 0.49 g AP in ethanol, stirred for one hour, and then dried at 60 ◦C for one hour.

The resulting powder was determined by differential thermal analysis (DTA) (NETZSCH
Instrument 404 PC, Selb, Germany) and thermal gravimetric analysis (TGA) (Beijing Hengjiu
Instrument HTG-1, Beijing, China) at a heating rate of 10 ◦C min−1 (from 100–500 ◦C) under an
N2 atmosphere.

3. Result and Discussion

3.1. Morphology and Textural Property

The crystal structures of pure g-C3N4, CuO, and g-C3N4/CuO nanocomposite with various CuO
contents were studied by XRD. As illustrated in Figure 1a, the g-C3N4 sample had a characteristic peak
at 27.4◦ and 13.2◦, which could be indexed by the hexagonal g-C3N4 (JCPDS87-1526) as the (002) and
(100) diffraction plane peaks, corresponding to the interlayer stacking of aromatic segments with a
distance of 0.326 nm, and the in-plane structural packing motif, respectively [32,33]. The diffraction
peaks of the obtained CuO were indexed to the monoclinic phase of CuO (JCPDS05-0661) [34].
The diffraction peaks at 32.4◦, 35.6◦, 38.8◦, 48.7◦, 53.5◦, 58.3◦, 61.5◦, 66.1◦, 68.1◦, 72.4◦, 75.2◦ were
observed (Figure 1a), corresponding to (1, 1, 0), (−1, 1, 1), (1, 1, 1), (−2, 0, 2), (0, 2, 0), (2, 0, 2),
(−1, 1, 3), (3, 1, −1), (2, 2, 0), (3, 1, 1) and (2, 2, −2) [35]. The g-g-C3N4/CuO nanocomposite exhibited
diffraction peaks corresponding to both g-C3N4 and CuO, reflecting the presence of two phases,
and no other impurity peaks were observed. The enlarged profiles of the g-C3N4, CuO and all the
g-C3N4/CuO nanocomposites are shown in Figure 1b. With an increased content of CuO in the
g-C3N4/CuO nanocomposite, the characteristic peaks of g-C3N4 were gradually decreased, and the
diffraction peaks of CuO were all slowly increased, indicating the successful synthesis of g-C3N4/CuO
nanocomposite [36]. Nevertheless, the (002) reflection peak of the laminated g-C3N4 gradually shifted
to a small angle direction along with an increased loading percentage of CuO nanorods on g-C3N4,
which indicated that a certain number of CuO nanorods were grown in situ on the inter-lamination of
g-C3N4, resulting in the increase of inter-layer spacing [37].
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with various contents of CuO; (b) Enlarged profiles of the selected area in Figure 1a.

The morphology of g-C3N4, CuO and g-C3N4/CuO nanocomposite (20 wt % CuO as a
representative) was investigated by TEM and FESEM, and the TEM result is described in Figure 2.
Figure 2a confirmed that g-C3N4 displayed a 2D laminated structure, which is similar to its graphite
analogue, containing several stacking layers [38]. As shown in Figure 2b,c, pure CuO showed a
dense agglomeration of rough nanoscale rods and spherical particles with an average diameter of
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5–10 nm. However, the morphology of g-C3N4/CuO was obviously different from pure g-C3N4

and CuO. Figure 2d clearly demonstrated that CuO nanorods (labeled with red arrows) were well
dispersed in g-C3N4. The light portion was g-C3N4, and the nanorod-shaped dark portion was
CuO, which confirmed that CuO nanorods were directly grown on g-C3N4. Previous studies have
indicated that g-C3N4 exhibits a strong ability to capture cations via an ion-dipole interaction between
cations and lone pairs of electrons on nitrogen atoms of g-C3N4 [39,40]. Thus, after dispersing
the g-C3N4 into the solution with cupric ions, the cupric ions could be captured and randomly
dispersed into the framework of g-C3N4 (Scheme 1). In this case, upon the addition of hydroxide
solution, the nano-Cu(OH)2 could be formed in situ because of the ion-dipole interaction, efficiently
avoiding agglomeration. In addition, compared with the bulk g-C3N4 from Figure 2a, the color of
g-C3N4 in g-C3N4/CuO nanocomposite (Figure 2d,e) was brighter, which indicated thinner lamellar
thickness. These results demonstrated that the interlayer-formed CuO nanorods (synthesized by the
calcination of as-prepared Cu(OH)2 at 200 ◦C) in return caused the partial exfoliation of the bulk
g-C3N4, which was also supported by XRD results (Figure 1). Figure 2e,f show the TEM images
with high magnification of the g-C3N4/CuO nanocomposite. We observed that the diameter of CuO
nanorods ranged between 5–10 nm and the length was approximately 200–300 nm. As shown in
Figure 2e, the overlapping phenomenon of CuO nanorods resulted from their simultaneous existence
on the surface and inter-lamination of g-C3N4.
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Figure 3a further revealed that the pure g-C3N4 had loose laminated structures adhered between
interlaminations [41]. From Figure 3b,c, CuO nanorods with a diameter of about 5–10 nm, and a length
of 200–300 nm (labelled with red frame) were found to be dispersed on g-C3N4. We also employed
energy dispersive spectrometer (EDS) to conduct elemental analysis on the nanocomposite, and
characteristic peaks corresponding to C, N, Cu, and O were present in the EDS spectrum (Figure 3d).
In order to further investigate the elemental distribution of the g-C3N4/CuO nanocomposite, the
elemental mappings of C, N, Cu and O were also performed by EDS area scanning (Figure 3e). The
maps of C, N, Cu and O were well defined, with sharp contrast. The maps of C and N showed C
and N signals, respectively, indicating the definite existence of g-C3N4. The profile of Cu was similar
to that of O, demonstrating the homogeneous distribution of CuO nanorods on g-C3N4. All these
demonstrated the successful decorating of g-C3N4 with CuO nanorods.
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(b,c) g-C3N4/CuO nanocomposite; (d) energy dispersive spectrometer (EDS) spectrum and
(e) elemental mappings of the g-C3N4/20 wt % CuO nanocomposite.

XPS was performed to further confirm the composition and the chemical states of the
nanocomposite. The results obtained in the XPS analysis were corrected by referencing the C1s
line to 284.6 eV. The full scan of the XPS spectra of g-C3N4 (Figure 4a) showed that characteristic
peaks corresponding to C, N, O and Si elements were found. The existence of the O1s peak was due
to the existence of O2 on the surface of the sample [42], and the existence of Si2p was attributed to
the introduction of trace SiO2 during grinding. Meanwhile, characteristic peaks corresponding to
C, N, O, and Cu were found in the full scan spectra of g-C3N4/CuO, and no other peaks could be
assigned. All these demonstrated the successful preparation of the g-C3N4/CuO nanocomposite.
Figure 4b,c are high-resolution XPS spectra of the C1s, and N1s. There were two peaks present in
the C1s spectrum of g-C3N4, and the peak at 284.6 eV could be ascribed to the surface adventitious
reference carbon, whereas the binding energy at 288.3 eV was corresponding to sp2-hybrid carbon of
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the N–C=N group [43]. The C1s spectrum of g-C3N4/CuO was similar to that of g-C3N4, while the
blue shift (0.2 eV) of the binding energy at 288.1 eV indicated the interaction between g-C3N4 and CuO.
As for the N1s high-resolution spectrum of g-C3N4, three binding energy peaks at 398.5, 399.2 and
400.6 eV could be assigned to the aromatic N(C=N–C), tertiary N(N–(C)3), and the N atom on C–N–H
group, respectively [44,45]. The blue shift (0.1 eV) of the aromatic N(C=N–C) in the N1s spectrum of
g-C3N4/CuO (Figure 4c) also supported the strong interaction between g-C3N4 and CuO.
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3.2. Catalytic Activity of Nanocomposite Materials for Ammonium Perchlorate (AP) Decomposition

The thermal decomposition of AP was employed to evaluate the catalytic effect of g-C3N4/CuO
nanocomposite. Specifically, AP in the absence and presence of 2 wt % pure g-C3N4, CuO, and
g-C3N4/CuO (various content of CuO from 5 to 50 wt % versus g-C3N4/CuO), respectively, were
utilized to investigate its thermal decomposition by differential thermal analysis (DTA) and thermal
gravimetric analysis (TGA), and the results were illustrated in Figures 5 and 6. The thermal
decomposition process of AP in the absence of catalyst exhibited two exothermic peaks at 326.3
and 425.1 ◦C, corresponding to the low and high temperature decomposition stages [46], and one
endothermic peak at 248.3 ◦C, which was the crystal transformation temperature of AP [47] (Figure 5).
The addition of catalyst led to significant change in both high and low decomposition temperatures,
while did not affect the crystal transformation temperature. When treated with 2 wt % CuO and
2 wt % g-C3N4 separately, the high decomposition temperature (HTD) of AP was decreased by
84.6 ◦C, and 27.0 ◦C, suggesting that pure CuO exhibited higher catalytic performance on thermal
decomposition of AP than pure g-C3N4, which is in accordance with the literature [48]. Besides, with
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CuO content increased from 5 to 20 wt % in the g-C3N4/CuO nanocomposite, the HTD of AP decreased
gradually. Specifically, upon the addition of 2 wt % g-C3N4/20 wt % CuO nanocomposite as a catalyst,
the HTD of AP showed a maximum decrease of 105.5 ◦C, and only one peak corresponding to
decomposition temperature was present in the spectrum, which was presumably due to the merging
of high and low decomposition temperatures. In the case of the g-C3N4/CuO nanocomposite, CuO
were all nano-sized and well dispersed throughout the micron-sized g-C3N4. Previous studies
have indicated that active sites exposed on the surface of nanocomposite would significantly
increase the enhancement well dispersed nano-component concentrations to some extent [49,50].
Thus, g-C3N4/20 wt % CuO exhibited higher catalytic performance on the thermal decomposition of
AP than g-C3N4/10 wt % CuO and g-C3N4/5 wt % CuO, respectively. Meanwhile, on account of
the partial agglomeration of CuO nanorods on g-C3N4 with the percentage of CuO being more than
20 wt % versus g-C3N4/CuO (g-C3N4/30 wt % CuO and g-C3N4/50 wt % CuO), the catalytic efficacy
of the g-C3N4/CuO nanocomposite was decreased (Table 1); this was accompanied by the recurrence
of two exothermic peaks corresponding to high and low decomposition temperatures, respectively.
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The TG and DTG curves in Figure 6 showed that the decomposition process of AP has two
platforms, indicating that there are two weight loss steps of AP from 100 to 500 ◦C [51]. It was
also discovered that the initial and final weight-loss decomposition temperatures decreased in the
presence of all independent catalysts (Figure 6a). In particular, with 2 wt % g-C3N4 and 2 wt % CuO,
separately, both the two weight-loss decomposition temperatures of AP were decreased, and the
decomposition process still exhibited two platforms corresponding to initial and final weight-loss
decomposition. However, it should be noted that the addition of g-C3N4/CuO reduced the temperature
span between the initial and final weight-loss decomposition temperatures, and the span disappeared
with 20 wt % CuO (versus g-C3N4/CuO) added, resulting in a merge into one peak at 318.6 ◦C
(maximum decrease by 128.5 ◦C) in the spectrum (Figure 6b), which is consistent with the observation
from DTA. Meanwhile, the recurrence of two peaks corresponding to the initial and final weight-loss
decomposition temperatures, when treated with g-C3N4/CuO containing more than 20 wt % CuO,
implies that the catalytic efficacy of the g-C3N4/CuO nanocomposite decreased (Table 1). Overall,
our observations indicated that g-C3N4 and CuO show synergistic catalytic effects on the thermal
decomposition of AP.
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Table 1. High decomposition temperature and high weight-loss decomposition temperature of
ammonium perchlorate (AP) in the absence and presence of different catalyst.

Sample High Decomposition
Temperature (◦C)

High Weight-Loss Decomposition
Temperature (◦C)

Pure AP 425.1 447.1
CuO + AP 340.5 340.1

g-C3N4 + AP 398.1 393.5
g-C3N4/5 wt % CuO + AP 340.3 347.7

g-C3N4/10 wt % CuO + AP 338.9 344.3
g-C3N4/20 wt % CuO + AP 319.6 318.6
g-C3N4/30 wt % CuO + AP 337.1 346.3
g-C3N4/50 wt % CuO + AP 331.1 344.3

The proposed thermal decomposition process of AP catalyzed by g-C3N4/CuO was also studied.
The low temperature decomposition was a solid-gas heterogeneous reaction, which included a
proton transfer to form NH3 and HClO4, the adsorption of NH3 and HClO4 in the porous structure,
the decomposition of HClO4, and a subsequent reaction with NH3 [30]. The high temperature
gas-phase decomposition reaction included the oxidation of NH3 by HClO4 in the gas phase [52].

Previous studies demonstrated that proton transfer was the most important process of the thermal
decomposition of AP. Indeed, the as-prepared g-C3N4/CuO nanocomposite effectively promoted
proton transfer.

On one hand, Chen et al. illustrated that the surface O2− species of the CuO nanorod were likely to
be proton traps which could react with NH4

+ easily and then promote the process of proton transfer [53].
On the other hand, due to the unique surface structure of g-C3N4 that could be considered to be a
Lewis base [54], HClO4 (generated from proton transfer reaction) could be absorbed on the surface of
g-C3N4 via a Lewis acid-base interaction, leading to the separation of HClO4 from the pores of AP,
and then resulting in a decrease of activation energy, thus accelerating the thermal decomposition of
AP [55,56]. In summary, by combining the functions of g-C3N4 and CuO, the as-prepared g-C3N4/CuO
nanocomposite would promote proton transfer effectively, and accelerating the thermal decomposition
process of AP.

4. Conclusions

The novel nanocomposite g-C3N4/CuO, was synthesized through a facile precipitation method,
and fully characterized using various methods. Specifically, on account of the ion-dipole interaction
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between cupric ions and long pair electrons on the nitrogen atoms of g-C3N4, CuO nanorods with
diameter in the range of 5–10 nm and length of 200–300 nm were directly grown on g-C3N4. Moreover,
g-C3N4/CuO greatly accelerated the thermal decomposition of AP. Upon addition of g-C3N4/CuO,
the decomposition temperature of AP was decreased by up to 105.5 ◦C, and only one decomposition
step was found, demonstrating synergetic catalytic activity of g-C3N4 and CuO. g-C3N4 was decorated
with other promising metal oxides, which could broaden the application of g-C3N4. This potential
application is currently being examined by our group.
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