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Abstract: TiO2 nanoparticles are immobilized on chlorella cells using the hydrothermal method.
The morphology, structure, and the visible-light-driven photocatalytic activity of the prepared
chlorella/TiO2 composite are investigated by various methods. The chlorella/TiO2 composite is
found to exhibit larger average sizes and higher visible-light intensities. The sensitization of the
photosynthesis pigment originating from chlorella cells provides the anatase TiO2 with higher
photocatalytic activities under the visible-light irradiation. The latter is linked to the highly efficient
charge separation of the electron/hole pairs. The results also suggest that the photocatalytic activity
of the composite remains substantial after four cycles, suggesting a good stability.
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1. Introduction

Recently, visible-light-driven photocatalysts have attracted considerable attention for their
possible utilization in energy conservation and environmental remediation. Therefore, the design and
fabrication of efficient, cost-effective photocatalysts are increasingly investigated. TiO2 is considered as
a classic photocatalyst, extensively studied for potential use in hydrogen energy [1,2], solar cells [3,4],
and environmental cleaning [5,6], owing to its excellent stability, low toxicity, abundant quantities,
and low cost. However, the highly efficient use of TiO2 has been limited by the quick recombination of
its photogenerated electron/hole pairs, hence its inability to respond to the visible light. To overcome
these problems, tremendous efforts have been devoted to enhancing its photocatalytic capacity. So far,
traditional methods, including semiconductor coupling [7,8], metal-ion doping, anion doping [9,10],
noble metal loading [11], and dye sensitization [12] have been explored.

On the other hand, the method based on bio-templating has recently attracted considerable
attention in the synthesis of photocatalysts. Compared with engineered templates, natural biological
materials are abundant, renewable, hierarchical, and environmentally benign [13–16]. With respect to
this, numerous studies conducted by us led to the development of a series of bio-templating methods
to prepare N-I doped ZnO [17], Cu hollow spheres [18], and ZnO/graphene quantum dots (GQDs)
composites [19], among others.

Chlorella is classical single-cell green algae with sizes ranging from 3 to 8 µm, and is known for
its photosynthetic ability and nutrition. It has abundant photosynthesis pigments, such as β-carotene
and chlorophyll, thus resulting in high photosynthetic efficiency. Therefore, Chlorella is considered as
a potential natural dye sensitizer source to produce dye-sensitized TiO2 with the ability to respond to
the visible light.
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In this paper, Chlorella pyrenoidosa cells were combined with TiO2 to prepare visible-light-driven
TiO2 photocatalyst using an in situ dye sensitization method. The synthesized chlorella/TiO2

composite is then characterized by various techniques and its visible-light photocatalytic activities
using rhodamine (RhB) as a model pollutant are examined.

2. Experimental

2.1. Materials

Analytical grade chemicals were used as received without further purification. Chlorella pyrenoidosa
cells were purchased from Yueqing Biological Technology Co., Ltd. (Yueqing, China) Titanium
tetrabutoxide (TBOT), acetonitrile, and ammonia were obtained from Tianjin Yong Da Chemical
Reagent Development Center (Tianjin, China). Fluorine-doped tin oxide (FTO) conducting glass
substrates were purchased from Asahi Glass Company (Tokyo, Japan).

2.2. Synthesis of Chlorella/TiO2 Composite

Typically, Chlorella pyrenoidosa cells (0.05 g) were dispersed in an 80 mL mixture of
ethanol/acetonitrile (3:1 v/v). Under constant stirring, the dispersion was subsequently mixed with
0.6 mL ammonia. Next, a solution containing 1.2 mL TBOT in 20 mL of ethanol/acetonitrile (3:1 v/v)
was added to the suspension. The mixture was then stirred for 2 h at room temperature, and the
resulting precipitates were centrifuged and washed several times with deionized water.

Afterward, the as-obtained precipitates were re-dispersed in 20 mL deionized water and put in a
Teflon-lined stainless steel autoclave with a volume of 30 mL at 180 ◦C for 10 h. After centrifugation
and washing with deionized water, the chlorella/TiO2 composite was obtained.

Pure TiO2 as a control sample was also prepared using the same method but without Chlorella
pyrenoidosa cells.

2.3. Characterization

The X-ray diffraction (XRD) patterns were recorded on a Bruker D8-ADVANCE (Bruker Co.,
Billerica, MA USA) X-ray powder diffractometer with Cu-Kα radiation. Transmission electron
microscopy (TEM) images were obtained with a FEI Tecnai G2 F20 S-TWIN microscope (FEI, Hillsboro,
AL, USA). Field-emission scanning electron microscopy (FESEM) images were recorded on a Hitachi
S4800 elect ron microscope (Hitachi, Ltd., Tokyo, Japan). X-ray photoelectron spectroscopy (XPS)
analysis was performed with an ESCALAB 250 instrument (Thermo VG Scientific, Waltham, MA,
USA). The Brunauer–Emmett–Teller (BET) specific surface area and Barrett–Joyner–Halenda (BJH)
analysis were carried out using a Micromeritics 3Flex surface characterization analyzer (Micromeritics
Instrument Co., Norcross, GA, USA). A Hitachi U-4100 spectrophotometer (Hitachi, Ltd., Tokyo, Japan)
was employed to acquire the UV-vis diffuse reflectance spectra (DRS), and BaSO4 was used as a
reference sample.

The behavior of the photogenerated charge carriers in the samples was characterized by surface
photocurrent (SPC) and electrochemical impedance spectroscopy (EIS), using our modified method [20].
The electrochemical measurements were acquired on a CHI-660B electrochemical system with a
conventional three-electrode cell configuration. A Pt wire was used as a counter electrode and a
saturated calomel electrode (SCE) as a reference electrode in an electrolyte solution of 0.5 M Na2SO4.
The working electrode was prepared on a 20 mm × 33 mm FTO glass as follows: the FTO glass was
firstly cleaned by sonication in acetone for 0.5 h and dried at 80 ◦C. The boundary of FTO glass was
then covered with an insulating tape, with the exposed effective area of 1 cm2. Fifty milligrams of
as-prepared products were suspended in 5 mL ethanol, which was then dip-coated on the pretreated
FTO glass and annealed at 300 ◦C for 2 h. The variation in the photoinduced current density as a
function of time (i-t curve) was measured at a bias potential of 0.5 V (vs. SCE) over five cycles during
which the light was switched on and off. A 300 W Xe lamp with a 420 nm cutoff filter was utilized
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for the visible-light irradiation. The EIS test was carried out at the open-circuit potential with the
frequency range from 0.1 to 106 Hz.

2.4. Photocatalytic Activity Measurements

The photocatalytic activity of RhB degradation was measured using the following methodology:
First, the catalysts (50 mg) were dispersed in 50 mL RhB aqueous solution (5 mg/L). Prior to
visible-light exposure, the suspension was magnetically stirred in the dark for 30 min to reach the
adsorption–desorption equilibrium. Under constant stirring, the mixture was then placed under a
500 W Xe lamp with a 420 nm cutoff filter. Next, using regular irradiation steps, aliquots (4 mL)
were withdrawn from the suspension at intervals of 30 min. The RhB concentration change was
monitored using UV-Vis absorption spectroscopy at wavelength of 553 nm. After dye degradation,
the photocatalyst was centrifuged and washed several times with deionized water and anhydrous
ethanol, respectively. The centrifugate was re-suspended in 50 mL RhB aqueous solution (5 mg/L),
and used for the next cycle of dye degradation under visible-light irradiation. The RhB degradation
efficiency (D%) is calculated using Equation (1):

D% = (1 − C/C0) × 100% (1)

where C and C0 represent the RhB concentration at time t and the equilibrium concentration of RhB,
respectively [21].

The kinetics related to the degradation of RhB was also investigated, and the experimental data
were fitted with the pseudo first-order-kinetic equation expressed by Equation (2):

ln(C/C0) = −kt (2)

where k is the apparent reaction rate constant (min−1).

3. Results and Discussion

The XRD patterns of pure TiO2 and chlorella/TiO2 composite are shown in Figure 1. The chlorella/TiO2

composite is ascribed to the anatase TiO2 phase (JCPDS card No. 21-1272), and exhibits a similar XRD
pattern to pure TiO2. Both chlorella/TiO2 composite and pure TiO2 show similar full width at half
maximum, suggesting similar grain sizes based on Scherrer’s equation [22,23].
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Figure 1. XRD patterns of pure TiO2 and chlorella/TiO2 composite.

The morphology of the chlorella cells is shown in Supporting Information (Figure S1). The chlorella
cells are of sphere-like shape, and do not change after hydrothermal treatment. The morphology of
the products was examined by FESEM and the results are depicted in Figure 2. As seen in Figure 2a,
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the overall image of the chlorella/TiO2 composite shows that the product exhibits a quasi-spherical
shape. Although the pure TiO2 shows a similar spherical morphology to the chlorella/TiO2 composite
(Figure 2b), the average size of the pure TiO2 is smaller than that of the chlorella/TiO2 composite.
As exhibited in Figure S2, the average sizes of the pure TiO2 and chlorella/TiO2 composite are 620
and 790 nm, respectively. This result shows that the Chlorella pyrenoidosa cells play an important role
in mediating the crystal growth of the products. The TEM images shown in Figure 2c,d reveal that
the chlorella/TiO2 composite is composed of nanocrystals of about 12 nm in size. The HRTEM image
estimates the d-spacing between two consecutive planes to be about 0.35 nm, agreeing well with
the d (101) values of the anatase phase. The polycrystalline anatase phase is further confirmed by
the selected area electron diffraction (SAED) pattern (Figure 2f), which is consistent with the XRD
powder pattern.
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Figure 2. Field-emission scanning electron microscopy (FESEM) images of (a) the chlorella/TiO2

composite and (b) the pure TiO2; (c) TEM image of the chlorella/TiO2 composite; (d) Enlarged TEM
image of a representative chlorella/TiO2 composite; (e,f) HRTEM image and SAED pattern of the
chlorella/TiO2 composite, respectively.
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Figure 3 shows the XPS results for the chlorella/TiO2 composite. As shown in Figure 3a, the XPS
survey spectrum illustrates the presence of signals of O 1s, Ti 2p, and C 1s. The XPS high-resolution
core level spectra are shown in Figure 3b–d. The high-resolution scanning spectrum of O 1s displayed
in Figure 3b shows two peaks: 530.9 eV and 529.8 eV. The peak at 530.9 eV can be attributed to the
Ti–O binding [24], and the low binding energy component located at 529.8 eV could be due to the
oxygen in the oxide lattice [25]. Figure 3c shows a Ti 2p XPS spectrum. Two peaks are observed at
464.4 eV and 458.6 eV, which are assigned respectively to the Ti 2p1/2 and Ti 2p3/2 spin-orbital splitting
photoelectrons in the Ti4+ state in anatase titanium [26]. As shown in Figure S3, the binding energy of
Ti in the chlorella/TiO2 composite does not exhibit evident changes, compared with that of the pure
TiO2. As shown in Figure 3d, C 1s spectrum exhibits two peaks at 288.5 eV and 284.7 eV. The peak
at 288.5 eV corresponds to the C=O from carbonyls and carboxylates, and the peak at 284.7 eV is
attributed to the carbon from chlorella cells and/or contamination. Compared with the pure TiO2,
the chlorella/TiO2 composite has higher C 1s content due to the richness of the carbon from chloral
cells, which is shown in Table S1. However, the peaks corresponding to the Ti–C bond (282 eV), Ti 2p1/2
(466.0 eV) and Ti 2p3/2 (460.3 eV) were absent, indicating no carbon doping in the lattice of TiO2 [27].
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(c) Ti 2p; and (d) C 1s.

Figure 4 shows the DRS results of the two samples. The pure TiO2 exhibits strong absorption in the
ultraviolet region, due to the transition of the excited state electrons from the valence band (VB) to the
conduction band (CB) under the UV irradiation. In comparison with the pure TiO2, the chlorella/TiO2

composite shows elevated visible-light absorbance intensities, which contributes to the improvement
of the photocatalytic activity under visible-light irradiation.
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The N2 adsorption and desorption isotherms are shown in Figure 5. According to IUPAC
classification [14], both the chlorella/TiO2 composite and the pure TiO2 should have similar isotherm
curves (type IV) and H1 hysteresis loops. The surface areas of the chlorella/TiO2 composite and the
pure TiO2 are estimated to be 138.5 m2/g and 130.1 m2/g, respectively. Due to the similar surface areas,
it is conferred that the surface area should not be the primary factor devoted to the visible-light-driven
photocatalytic performance enhancement. The mesoporous structures of both samples are further
confirmed by the pore size distribution analysis, shown in the inset of Figure 5. The mesoporous
peaks for the chlorella/TiO2 composite and the pure TiO2 are estimated to be 13.7 nm and 15.6 nm,
respectively. Although the two samples exhibit narrowly distributed mesopores, the chlorella/TiO2

composite shows a macroporous peak at ca. 56.1 nm, which further contributes to the entrancement of
the dye molecules during the photocatalysis.
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To study the separation and transfer behavior of the photogenerated charges in the visible region,
SPC and EIS were performed and the results are shown in Figure 6. Figure 6a shows the result of
the SPC of the samples. It can be seen that a steady and prompt photocurrent generation is observed
in the two samples under visible-light irradiation. The chlorella/TiO2 composite exhibits a higher
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photocurrent density, compared with the pure TiO2, suggesting enhanced photoinduced separation of
electron/hole pairs [28]. The EIS result of the samples is shown in Figure 6b. The semicircle in EIS
Nyquist plot of chlorella/TiO2 composite becomes shorter than that of the pure TiO2, suggesting a
decrease in the solid-state interface layer resistance and the charge transfer resistance on the surface [29].
The result indicates the effective separation of photogenerated electron/hole pairs and fast interfacial
charge transfer in the chlorella/TiO2 composite.Materials 2017, 10, 541  7 of 11 
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of the samples.

The photocatalytic activities were examined through the degradation of RhB solution under
visible-light illumination. For comparison, the photocatalytic activity of commercial TiO2 (P25) was
also tested under the same reaction conditions. As shown in Figure 7a, RhB dye cannot be degraded in
the absence of the photocatalysts under visible-light irradiation, confirming the photostability of the
dye. After 90 min irradiation with visible light, around 78.5% and 83.7% of RhB are degraded by the
pure TiO2 and P25, respectively. While after the same time, 95.9% of the RhB is successfully degraded
in the presence of the chlorella/TiO2 composite. The result demonstrates that the chlorella/TiO2

composite has the highest photocatalytic activity, due to the coupling of TiO2 with the biotemplates.
Figure 7b shows the kinetics lines. From the slopes of the curves, the k for the chlorella/TiO2 composite,
the pure TiO2 and P25 is determined as −0.0299, −0.0155 and −0.0156 min−1, respectively. The valid
photocatalyst is TiO2 that is only part of the chlorella/TiO2 composite. Although the actual content
of TiO2 in the chlorella/TiO2 composite is lower as compared with the pure TiO2, the chlorella/TiO2

composite is able to degrade the RhB much faster than another sample.
In addition, the hydrothermal treatment is found to play an important role in the preparation of

the samples. It is well known that TiO2 exhibits an amorphous phase, using the sol-gel method of
TBOT [30,31]. The chlorella/TiO2 composite and pure TiO2 can be transferred from amorphous to
anatase phase (JCPDS card No. 21-1272) through the hydrothermal treatment, which is confirmed
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by the XRD patterns (Figure S4). As shown in Figure S5, the amorphous products reveal lower
visible-light-driven photocatalytic activities for degradation of RhB.Materials 2017, 10, 541  8 of 11 
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Zhang et al. synthesized spirulina/TiO2 composite to degrade methyl orange (MO) under
visible-light irradiation [12]. They obtained a similar k value to ours for the composite, however,
they have not compared P25 with the as-prepared composite, and the stability of the composite has
not been determined. Our results confirm that the algae, such as spirulina and chlorella, can be
used as an efficient sensitizing source to improve the visible-light photocatalytic activity of TO2.
Moreover, there are abundant algae in the sea and freshwater, which presents a new method in
mass-fabricating photocatalysts.

Previous studies have shown that dye sensitization is a useful method to induce visible-light
photocatalysis on the surfaces of wide band-gap semiconductors, such as TiO2 [32]. Chlorella is
rich in β-carotene and chlorophyll. When these dyes are adsorbed on TiO2 through the weak Van
der Waals interaction, TiO2 becomes sensitized which raises its photocatalytic activity. Before the
hydrothermal process, two important factors are found to influence the photocatalytic performance.
Firstly, TiO2 only exhibits the amorphous phase, which leads the lower photocatalytic activities.
Secondly, most photosynthesis pigments (PBPs) cannot be released from the Chlorella cells to combine
with TiO2, due to the limitation of the cell walls. The schematic diagram of visible-light activation of
TiO2 by dye sensitization is shown in Figure 9. Under the visible-light illumination, the adsorbed dye
molecules on the surface are excited and electrons are injected into the CB of TiO2 [32]. The electrons
injected by the dye molecules are then quickly transferred to the surface of TiO2. The electrons can
reduce the oxygen absorbed on the catalyst to superoxide radical O2−, which is the reactive species
responsible for the degradation of RhB [33,34].
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4. Conclusions

A hydrothermal method was used to immobilize TiO2 nanoparticles on Chlorella pyrenoidosa
cells. Compared with the pure TiO2, the obtained chlorella/TiO2 composite has larger average sizes
and higher absorbance in the visible-light region. The chlorella/TiO2 composite exhibits enhanced
photocatalytic activity towards the degradation of RhB dye under visible-light irradiation. The likely
reaction mechanism is linked to the highly efficient charge separation of electron/hole pairs due to the
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