Immobilization of TiO₂ Nanoparticles on *Chlorella pyrenoidosa* Cells for Enhanced Visible-Light-Driven Photocatalysis

Aijun Cai^{1,2}, Aiying Guo¹ and Zichuan Ma^{2,*}

- ¹ College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, PR China; <u>2755@hevttc.edu.cn</u> (A.C.); <u>2695@hevttc.edu.cn</u> (A.G.)
- ² College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016, PR China
- * Correspondence: mazc@hebtu.edu.cn; Tel.:+86-311-80787402

Figure S1. Optical images of chlorella cells (a) before and (b) after the hydrothermal treatment.

Figure S2. Particle size distribution of the chlorella/TiO₂ composite (a) and pure TiO₂ (b).

Figure S3. Ti 2p XPS spectra of the two analyzed samples.

Table S1. The C1s and O1s contents in the samples, extracted from the XPS data.

Samples	Elements	PPAt.%
Pure TiO ₂	C1s	39.77
Chlorella/TiO2 composite	C1s	46.86

Figure S4. XRD patterns of the chlorella/TiO₂ composite and pure TiO₂ before and after the hydrothermal treatment.

Figure S5. Photocatalytic degradation of RhB solution with the samples without the hydrothermal treatment under visible-light illumination.

e authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).