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Abstract: Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites
were synthesized in the present study by chemical deposition method and were then characterized
by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron
spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from
aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact
times, and operating temperatures. Response surface methodology (RSM) and artificial neural
network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency
of Cd(II) and optimizing the four removal process variables. The average values of prediction errors
for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven
to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was
found to be more accurate than the RSM model. In addition, experimental data were fitted to the
Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II)
adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters
revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the
pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R2 value
than the pseudo-first-order model.

Keywords: nZVI/rGO composites; Cd(II); removal; artificial neural network; genetic algorithm

1. Introduction

Heavy metals, being controversial in their definition, often refer to elements having atomic weights
between 63.5 and 200.6, and a specific gravity greater than 5.0 [1]. Heavy metal pollution has been
considered as a serious environmental problem during the past few decades [2]. Contamination of the
ecological environment with heavy metals may occur via both natural and anthropogenic causes [3].
Among all heavy metals, cadmium (Cd) is regarded as one of the most toxic because of its high
mobility and persistence, which can accumulate easily and can pose dangers to human health [4–6].
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Exposure to Cd may cause damage to human organs, such as the kidneys, livers, lungs, immune and
reproductive systems [7]. Cd(II) is commonly present in industrial effluents from the manufacturing of
cadmium–nickel batteries, fertilizers, pesticides, pigments, and dyes [8–10]. Therefore, the removal of
Cd(II) from industrial effluents has an important significance to the human society [11].

Various methods have for several decades evolved in wastewater treatment, such as adsorption,
electrochemical treatment, oxidation, ozonation, photochemical treatment, and froth flotation.
Adsorption techniques have been widely investigated for the removal of heavy metals from
wastewaters in recent years and a variety of Nanomaterials has hitherto been reported to serve as
adsorbents for wastewater decontamination [12–14]. The versatility of nanoscale zero-valent iron
(nZVI) has been considered a promising material utilized for the remediation of wastewater because of
its small particle size, large specific surface area, and high reactive activity [15,16]. However, it still has
some technical limitations, such as shortage of durability and mechanical strength, and poor stability,
which may hinder the practical application of nZVI particles [17,18]. In addition, the aggregation is
difficult to be avoided because of the magnetic interaction among the nZVI particles [19].

In order to overcome these shortcomings, methods have been developed using some materials as
mechanical supports to strengthen the dispersion of the nZVI particles. Graphene as a new synthetic
2D allotrope of carbon has advantages as a supporter because of its high surface area and chemical
stability. On the one hand, graphene oxide (GO) has many oxygen-containing functional groups on
its basal plane and on the edges of its sheets, which can effectively combine the heavy metals and
organic pollutants [20]. Yang et al. indicated that the GO has eminent adsorption capacity (46.6 mg/g)
for Cu(II), which was around 10 times that of active carbon [21]. Gao et al. also found that the GO is
a potential adsorbent for tetracycline antibiotics (313 mg/g) [22]. On the other hand, the graphene
based composites have been exhibited to be effective in wastewater treatment with a higher efficiency
than either of their pure components [23–26]. Compared with the nZVI particles, the lead removal
efficiency of the nZVI/rGO composites increased by 25% [25].

As generally known, the performance of a removal process is a function of solution chemistry
(initial pH, initial concentration, operating temperature, contact time, and other coexisting substances)
and adsorbent structure [14]. The traditional method to model the removal process is originated
from deep understanding of adsorption mechanisms. Mechanistic models (surface complexation
model, MUSIC model, etc.) were adopted to manage these problems [27,28]. During the development
of mechanistic models, the unavoidable simplifications and assumptions would offset the lack of
knowledge of some unrevealed mechanisms (such as adsorption, reduction, and coprecipitation).
However, it is unfortunate that these models could lead to inaccurate predictions. Statistical and
mathematical methods (response surface methodology (RSM) and artificial neural network-genetic
algorithm (ANN-GA)) are commonly employed to determine the optimal reaction conditions since
they do not require mathematical description of the complex nature of the underlying process [29,30].
RSM is a collection of statistical techniques for designing experiments, building models, evaluating
the effects of factors, and searching for the optimum conditions [31]. The most extensive application
of RSM can be found in the industrial world in situations where a number of input variables affect
some performance measures (responses), which are not easy or feasible to depict with a rigorous
mathematical formulation [32]. A wide range of successful applications of RSM suggests that the
second-order relation can reasonably approximate many of the wastewater treatment processes [33–35].
RSM has more frequently been employed than ANN, although both methods have been proven to be
powerful tools for modeling and optimizing the wastewater treatment.

ANN was inspired by biological neurons and was derived from artificial intelligence (AI) research,
which can effectively describe multivariate nonlinear problems with the suitable amount of data and
the appropriate training algorithm applied [14]. ANN is a non-linear statistical data modeling in
machine learning due to its ability to learn rather complicated functions. The main advantage of ANN
over RSM is that ANN can approximate almost all kinds of the non-linear functions, whereas RSM
is useful only for the quadratic approximations. The utilization of ANN can predict the degree of
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non-linearity without extensive experimentation as compared to that of the traditional mathematical
models [36]. However, ANN cannot solve all problems in wastewater treatment and it has some
limitations, i.e., it does not guarantee the global optimal solution [37]. Genetic algorithm is a numerical
search tool which operates according to procedures that resemble the principles of natural selection
and genetics. Previous studies took advantage of the genetic algorithm coupled with ANN (ANN-GA)
to generate the global optimum operating variables for the studied processes [38–40].

In the present work, RSM and ANN-GA were employed to model and optimize the Cd(II) removal
from aqueous solutions by the nZVI/rGO composites. The nZVI/rGO composites were prepared
by chemical deposition method and were characterized by Fourier-transform infrared spectroscopy
(FTIR) and X-ray photoelectron spectroscopy (XPS). Initial concentration, initial pH, contact time, and
operating temperature were chosen as the process parameters for Cd(II) removal by RSM and ANN-GA.
The relative importance of the independent variables was explored using analysis of variance and
sensitivity analysis. The developed RSM model and the ANN-GA model were compared against each
other with respect to the accuracy of Cd(II) removal efficiency prediction. The isotherms (Langmuir,
Freundlish, and Dubinin–Radushkevich), thermodynamic (Van’t Hoff equation) and kinetic studies
(pseudo-first-order, pseudo-second-order, and intraparticle diffusion equations) were preformed to
explore the adsorptive behavior of Cd(II) onto the nZVI/rGO composites. In addition, the mechanisms
for the removal of Cd(II) ions from aqueous solutions by the nZVI/rGO composites were investigated
based on the XPS analysis.

2. Materials and Methods

2.1. Materials

All chemicals used in this study are of analytical grade from Sinopharm Chemical Reagent
(Beijing, China) without further purification. The stock solution (1000 mg/L) of Cd(II) was prepared
by dissolving CdCl2 in deionized water. Required initial concentration of Cd(II) in samples (5 mg/L to
300 mg/L) was achieved by appropriate dilution of the stock solution.

2.2. Preparation of nZVI/rGO Composites

The synthesis of graphene oxide (GO) was carried out by the modified Hummers method, and
recduced graphene oxide (rGO) was synthesized by the reduction of GO with the NaBH4 solution [24,25].
1 g of GO was dispersed in deionized water with ultrasonication for 2 h. 10 g of FeSO4·7H2O was
added to the GO suspension, which was mixed for 12 h with magnetic stirring to reach the adsorption
equilibrium. Then, 50 mL of 0.14 mol/L NaBH4 solution was added into the above solution at
room temperature with magnetic stirring for 30 min. The nZVI/rGO composites were separated by
centrifugation and dried at 50 ◦C in the vacuum drying oven for 24 h [24].

2.3. Characterization of nZVI/rGO Composites

Fourier Transform infrared spectroscopy (FTIR) measurement of nZVI/rGO, GO, and rGO used
a Nicolet 6700 spectrometer (Bruker, Berlin, Germany). The samples for the spectral analysis were
prepared by mixing sample and KBr in 1:100 proportion, which were pressed into a sheer slice. Then,
the average over six scans were collected for each measurement with a resolution of 4 cm–1, and the scan
range was from 4000 to 400 cm−1. XPS analysis for the nZVI/rGO-Cd(II) composites was performed
by using a hemispherical energy analyzer Phoibos 100/150 (SPECS, Berlin, Germany) in comparison
with the XPS analysis of nZVI/rGO composites in our earlier work [24]. The other characterizations
of nZVI/rGO composites—such as scanning electron microscopy, X-ray diffractometer, BET surface
analyzer, and Raman spectroscopy—were carried out as mentioned in our earlier work [24].

2.4. Batch Experimental Program

Initial Cd(II) concentration (X1), initial pH (X2), contact time (X3), and operating temperature
(X4) were considered as independent variables, and the removal percentage of Cd(II) ions (Y) was
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selected as the dependent variable. Batch removal experiments (single factor experiments) were
carried out to study the effect of initial Cd(II) concentration (5–50 mg/L), initial pH (3–7), contact
time (0–60 min), and operating temperature (20–50 ◦C) on the removal efficiency of Cd(II) in 100 mL
centrifugal tubes. In batch experiments, the initial pH of Cd(II) solution was adjusted to the desired
value by using 0.1 mol/L HCl or 0.1 mol/L NaOH. Specific amounts of nZVI/rGO composites (30 mg)
were added into 50 mL solutions containing desired initial concentration. Then, the above solutions
were shaken on temperature controlled water bath shaker (200 rpm) at required operating temperature
and for different contact times. The nZVI/rGO composites were separated from aqueous solutions
by a magnet after the removal experiments. The Cd(II) concentration in the sample solutions was
determined through flame atomic absorption spectrophotometer (AAS), which was made by Ray
Leigh Corporation, Beijing, China. All experiments were performed in triplicates and the average
value of the obtained data was adopted for the analysis [41]. Equations for the calculation of different
removal process parameters can also be referred to our earlier work [24].

2.5. Modeling and Optimization

2.5.1. RSM Modeling and Optimization

RSM is a commonly used statistical method for optimizing the process parameters and building
quadratic models providing the statistical relationship among the variables. The four independent
variables—viz. initial Cd(II) concentration, initial pH, contact time, and operating temperature—were
selected for designing the experiments by employing Box-Behnken Design (BBD) of RSM. The ranges
of independent variables chosen are collected in Table 1, based on the single factor experiments
(Figure S1). The data from BBD were subjected to a second-order multiple regression analysis and
analysis of variance (ANOVA) to interpret the behavior of the system using the least squares regression
methodology. The quadratic model can be represented as

Y = c0 +
m

∑
i=1

cixi +
m

∑
i=1

m

∑
j=1

cijxixj +
m

∑
i=1

ciixi
2 + a (1)

where Y is the response (removal efficiencies of Cd(II) ions), c0 represents the constant coefficient, ci,
cii and cij are the coefficient for linear, quadratic and interaction effect, respectively, xi and xj are the
values of the independent variables; a represents the residual error.

Table 1. Independent variables and their levels for RSM modeling and optimization.

Parameters Unit Lower Level (−1) Middle Level (0) Upper Level (+1)

Initial concentration mg/L 20 30 40
Initial pH 5 6 7

contact time min 10 20 30
operating temperature ◦C 20 30 40

2.5.2. ANN-GA Modeling and Optimization

ANN is a superior and accurate modeling technique as compared to RSM because it represents
the nonlinear relationships including quadratic equations in a better way [42]. Thus, a feed-forward
multilayer perception (MLP) ANN model was employed with a back propagation (BP) algorithm to
build the predictive mathematical model with scaled condition of the four inputs (e.g., initial Cd(II)
concentration, initial pH, contact time, and operating temperature) and one output as Cd(II) removal
efficiency. The neural network topology consisted of three layers: an input layer, a hidden layer,
and an output layer. The first step in ANN was network training, which was done by utilizing 80%
(=24 groups) experiments of BBD, while the performance of trained network was evaluated with
rest 20% (=5 groups) BBD data. All input and output data were normalized between −1 and 1 to
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avoid numerical overflows due to large or small values [43]. Normalization of the input data can be
computed as

Xi = 2
X− Xmin

Xmax − Xmin
− 1 (2)

where Xi is the normalized value of an input variable (X), Xmin and Xmax are the minimum and
maximum values of variables, respectively. The optimized values of variables after completion of the
training were rescaled to their real values according to the equation

X =
(Xi + 1)(Xmax − Xmin)

2
+ Xmin (3)

The network performance was computed in terms of mean squared error (MSE), which shows the
statistical difference between experimental and predicted values. The MSE can be described as

MSE =
∑i=M

i=1 (yi,pred − yi,exp)
2

M
(4)

where M is the number of data sets, yi,pred represents the predicted data, and yi,exp is the experimental data.
The learning rate of the network was set to the values that resulted in an optimal coefficient of

correlation (R2) for the neural network. The goodness of fit for the constructed model can also be
represented in terms of R2 value, which is defined as

R2 =
∑M

i=1 (xi − xmean)
2 −∑M

i=1 (xi − yi)
2

∑M
i=1 (xi − yi)

2 (5)

where xi represents the target value for the ith data point, xmean stands for the mean target value, and
yi is the output of the ith data point.

Determining the number of neurons in the hidden layer is an important task when an ANN
is designed [44,45]. On the one hand, the convergence rate of the network may be affected by a
few neurons in the hidden layer. On the other hand, a large number of neurons may result in the
complicated network topology, training frequency increasing, model over-fitting, and generalization
reduction. Therefore, the number of neurons in the hidden layer is obtained by trial and error method
in order that the error between the experimental values and predicted values is minimized.

After an ANN model is developed with the good prediction accuracy and generalization ability, its
input space (four independent variables) is optimized using genetic algorithm (GA). The optimization
of GA can be depicted as a global optimization procedure with the advantage of being independent
on the initial value to achieve the convergence. GA treats an optimization through a simple cycle of
four stages, which consists of initialization of solution populations, fitness computation, selection of
best chromosomes, genetic propagation of selected parent chromosomes using genetic operators like
crossover and mutation. Both crossover and mutation are implemented to produce the new and better
populations of chromosomes. The best operation condition that evolves after repeating the above cycle
till convergence forms the optimization parameters to the problem [31].

2.6. Adsorption Isotherm Study

In order to establish the most suitable correlation for the equilibrium data in the design
of adsorption system, three common isotherms were employed: the Langmuir, Freundlish, and
Dubinin-Radushkevich (D-R) isotherms [46–48]. The Langmuir isotherm model is based on the
supposition that the adsorption takes place on a homogenous surface by monolayer adsorption
without the interaction between the adsorbate and the adsorbent. The general form of the Langmuir
isotherm is

Ce

qe
=

1
qmk

+
Ce

qm
(6)
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where Ce (mg/L) is the equilibrium Cd(II) concentration, qe (mg/g) represents the amount of Cd(II)
adsorbed per unit mass of adsorbent, qm (mg/g) stands for the maximum adsorption capacity
depending on the number of adsorption sites, k (L/g) is the Langmuir constant related to the energy
of adsorption.

The Freundlich isotherm assumes that the uptake of metal ions occurs on a heterogeneous surface
by multilayer adsorption and that the amount of metal ions adsorbed increases infinitely with an
increase in the concentration of metal ions. The general form of the Freundlich equation is given as

log qe = log K f +
1
n

log Ce (7)

where Kf and 1/n are the Freundlich constants depending on the temperature. The n is related to the
adsorption energy distribution, and Kf indicates the adsorption capacity. A relatively slight slope n < 1
indicates that sorption intensity is favorable over the entire range of concentration studied, while a
steep slope (n > 1) means that sorption intensity is favorable at high concentrations but much less at
lower concentrations [49]. 1/n in the Freundlich model is a measure of adsorption intensity or surface
heterogeneity. The value of 1/n below 1 indicates a normal Freundlich isotherm, and the adsorption
becomes more heterogeneous as the value of 1/n gets closer to zero [50].

The D-R isotherm is generally applied to describe the adsorption mechanism with a Gaussian
energy distribution onto a heterogeneous surface [51]. The D-R sorption isotherm is more general
than the Langmuir isotherm, as its derivation is not based on ideal assumptions, such as equipotent of
the sorption sites, absence of steric hindrance between adsorbed and incoming particles and surface
homogeneity on the microscopic level. The linear form of the D-R isotherm is given as

ln qe = ln qm − βε2 (8)

where β represents the constant of the sorption energy (mol2/J2) related to adsorption mean free
energy (kJ/mol), and ε is Polyanyi potential—ε is defined as

ε = RT ln(1 +
1

Ce
) (9)

where T is the solution temperature (K) and R is the gas constant and is equal to 8.314 J/mol/K.
The adsorption mean free energy (E, kJ/mol), defined as the free energy change when one mol of

ion in the solution is moved from infinity to the adsorbent surface, which can give information about
physical or chemical adsorption mechanism [52]. This can be computed as

E =
1√
2β

(10)

If this value is below 8 kJ/mol, the adsorption is physical, and when it lies between 8 and 16 kJ/mol,
the adsorption process takes place chemically [53].

2.7. Thermodynamic Study

The thermodynamic parameters are indispensable to evaluate the feasibility and nature of the
removal process. Thus, isotherm data, related to adsorption of Cd(II) onto the nZVI/rGO composites at
various temperatures ranging from 293 to 323 K, can be analyzed to obtain the value of thermodynamic
parameters. The values of thermodynamic parameters (enthalpy change (∆H) and entropy change
(∆S)) were calculated using the Van’t Hoff equation

ln kc =
∆S
R
− ∆H

RT
(11)
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where kc is the constant of Langmuir (L/mol), R is the gas constant (8.314 J/mol/K), T is the
temperature (K), ∆S denotes the standard entropy change (J/mol/K), and ∆H is the standard enthalpy
(J/mol). The values of ∆G can be calculated by the Gibbs–Helmholtz

∆G = ∆H − T∆S (12)

2.8. Removal Kinetics

In order to evaluate the efficiency of the studied nZVI/rGO composites for removing Cd(II) ions,
kinetic data were modeled by the pseudo-first-order equation, pseudo-second-order equation, and
intraparticle diffusion equation [54]. These equations are given as

log(qe − qt) = log qe − k1t/2.303 (13)

t/qt = 1/k2q2
e + t/qe (14)

qt = k3t1/2 + b (15)

where qe and qt are the sorption capacity (mg/g) at equilibrium time and at time t, respectively;
k1, k2, and k3 are the pseudo-first-order rate constant (1/min), pseudo-second-order rate constant
(g/mg/min), and intraparticle diffusion rate constant (mg/g/min1/2), respectively; b (mg/g) is a
constant of intraparticle diffusion model.

3. Results and Discussion

3.1. Characterization of nZVI/rGO Composites

Figure 1 shows the FTIR spectra of GO, rGO, and nZVI/rGO. The FTIR spectrum of the GO
consists of C=O (1730 cm−1), aromatic C=C (1625 cm−1), epoxy C–O (1224 cm−1) and alkoxy C–O
(1053 cm−1) stretching vibrations. The FTIR spectra of the rGO and nZVI/rGO consisted of an apparent
peak at 1625 cm−1 corresponding to the aromatic C=C stretch. However, the intensity of the C=O peak
at 1730 cm−1 was significantly reduced, which demonstrated that the most of the oxygen–containing
functional groups were removed. The FTIR spectrum of the nZVI/rGO composites is similar to that of
rGO indicating the presence of rGO in the nZVI/rGO composites, which also indicated that the GO
was fully reduced to rGO.
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3.2. RSM Optimization

Table 2 shows the values of the dependent and independent variables and the observed and
predicted experimental data for the removal of Cd(II). As shown in Table 2, the removal efficiency
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of Cd(II) increased from 44.26% to 77.25%. The center point (0, 0, 0, 0) was repeated for five times
and nearly the same results obtained showed the reproducibility of the data. The quadratic model
was generated by the RSM design, which was applied to evaluate the responses. The developed RSM
model equation is given as follows:

Y = − 98.09 + 2.67X1 + 40.93X2 − 0.08X3 − 0.89X4 − 0.36X1X2 − 0.03X1X3 + 0.03X1X4 +
0.29X2X3 + 0.36X2X4 + 0.03X3X4 − 0.03X1

2 − 3.33X2
2 − 0.02X3

2 − 0.03X4
2 (16)

Table 2. Experimental and predicted values of Cd(II) ions removal by nZVI/rGO composites.

Run X1 X2 X3 X4 YExperimental YRSM,pred YANN,pred

mg/L min ◦C % % %
1 40 7 20 30 51.77 ± 0.52 52.48 51.77
2 40 5 20 30 47.05 ± 0.36 46.17 47.05
3 30 5 20 40 50.32 ± 0.42 51.09 50.32
4 20 6 20 40 67.58 ± 0.78 68.35 67.58
5 30 6 20 30 64.88 ± 0.22 64.72 64.74
6 40 6 30 30 50.01 ± 0.57 50.97 50.01
7 30 6 20 30 64.89 ± 0.55 64.72 64.74
8 30 7 20 20 58.97 ± 0.68 58.19 58.97
9 40 6 20 20 44.26 ± 0.15 43.53 44.26

10 30 5 10 30 52.01 ± 0.25 53.01 52.01
11 30 6 30 40 66.97 ± 0.38 65.99 66.97
12 30 6 30 20 58.11 ± 0.21 58.91 58.11
13 20 7 20 30 77.25 ± 0.88 78.09 77.25
14 30 6 20 30 64.62 ± 0.74 64.72 64.74
15 40 6 10 30 49.92 ± 0.28 50.67 49.92
16 20 6 20 20 66.58 ± 0.33 67.43 66.58
17 30 7 20 40 70.85 ± 0.53 71.94 70.85
18 40 6 20 40 56.37 ± 0.45 55.56 56.37
19 30 6 20 30 64.67 ± 0.56 64.72 64.74
20 30 6 20 30 64.52 ± 0.72 64.72 64.74
21 20 6 30 30 75.12 ± 0.52 74.36 75.12
22 30 6 10 40 60.87 ± 0.32 60.04 60.86
23 30 7 30 30 72.88 ± 0.76 71.92 72.88
24 30 7 10 30 61.66 ± 0.11 60.76 64.66
25 20 6 10 30 64.94 ± 0.29 63.98 65.14
26 30 5 20 20 52.98 ± 0.07 51.89 53.79
27 30 5 30 30 51.58 ± 0.26 52.52 55.34
28 30 6 10 20 53.23 ± 0.54 54.18 51.08
29 20 5 20 30 57.99 ± 0.37 57.25 57.28

The result of ANOVA for the second-order model is shown in Table 3, which indicated that this
model was significant with a low probability value with F value of 113.96. Statistical analysis of the
data showed the values of 0.9913 and 0.9826 for R2 and adjusted R2, which demonstrated that only
0.87% of the total variation could not be interpreted by the quadratic model. In addition, the initial
Cd(II) concentration, initial pH, contact time and operating temperature are quite significant for the
Cd(II) removal. Judging by F-values of independent variables, the decrease order for these parameters
influencing the removal process is: initial Cd(II) concentration > initial pH > operating temperature >
contact time. The predicted maximum for the removal of Cd(II) by using RSM was 85.92%, and the
optimized conditions were X1 = 20.00 mg/L, X2 = 7.00, X3 = 30.00 min, and X4 = 37.13 ◦C. The Cd(II)
removal obtained experimentally at RSM optimized condition was 80.36 ± 0.46% with 6.47% of the
prediction error.
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Table 3. ANOVA analysis and statistical parameters for the quadratic model.

Source Sum of Squares df Mean Square F-Value p-Value Remarks

Model 2109.55 14 150.68 113.96 <0.0001 significant
X1 1009.80 1 1009.80 763.73 <0.0001
X2 552.84 1 552.84 418.13 <0.0001
X3 85.55 1 85.55 64.70 <0.0001
X4 125.65 1 125.65 95.03 <0.0001

X1X2 52.85 1 52.85 39.97 <0.0001
X1X3 25.45 1 25.45 19.25 0.0006
X1X4 30.86 1 30.86 23.34 0.0003
X2X3 33.93 1 33.93 25.66 0.0002
X2X4 52.85 1 52.85 39.97 <0.0001
X3X4 0.37 1 0.37 0.28 0.6041
X1

2 54.15 1 54.15 40.95 <0.0001
X2

2 71.95 1 71.95 54.42 <0.0001
X3

2 21.76 1 21.76 16.46 0.0012
X4

2 62.66 1 62.66 47.39 <0.0001
Residual 18.51 14 1.32

Lack of Fit 18.51 10 1.84 68.85 0.0005 not significant
Pure Error 0.11 4 0.027

Total 2128.07 28

3.3. ANN-GA Optimization

The optimum number of neurons was determined based on the minimum value of MSE
for the training and test set [12]. The optimization was done by using the variable learning rate
back-propagation (traingdx) as a training algorithm with the neuron number in the range from 1 to
10. MSE was 0.007595 when one neuron was used and decreased to 0.002461 when four neurons
were selected (Figure 2). Figure 3 shows the optimized neural network structure (4-4-1), which has
the tangent sigmoid transfer function (tansig) at hidden layer with four neurons and linear transfer
function (purelin) at output layer.
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Figure 3. Pattern of optimized ANN architecture (4-4-1).

Figure 4 shows a comparison between experimental Cd(II) removal values and predicted values
using the BP-ANN model. The linear fit was indicated by a solid line with 0.9999 of the R2, which
indicates a good agreement between the predicted data and experimental data. The MSE decreases
rapidly in the beginning, and the reduction rate slows down with an rise in the number of epochs,
finally reaching a saturation point when the model was trained for 1931 epochs (Figure 5). The average
errors (%) between the experimental and predicted Cd(II) removal efficiency for the training and test
set were 0.0012 and 2.88, respectively. Small values of the MSE and high values of the R2 for both the
training and test outputs demonstrated that the BP-ANN model possesses good approximation and
generalization characteristics.

Materials 2017, 10, 544  10 of 22 

 
Figure 3. Pattern of optimized ANN architecture (4-4-1). 

Figure 4 shows a comparison between experimental Cd(II) removal values and predicted 
values using the BP-ANN model. The linear fit was indicated by a solid line with 0.9999 of the R2, 
which indicates a good agreement between the predicted data and experimental data. The MSE 
decreases rapidly in the beginning, and the reduction rate slows down with an rise in the number of 
epochs, finally reaching a saturation point when the model was trained for 1931 epochs (Figure 5). 
The average errors (%) between the experimental and predicted Cd(II) removal efficiency for the 
training and test set were 0.0012 and 2.88, respectively. Small values of the MSE and high values of 
the R2 for both the training and test outputs demonstrated that the BP-ANN model possesses good 
approximation and generalization characteristics.  

 
Figure 4. Correlations between data predicted by BP-ANN model and experimental data.  Figure 4. Correlations between data predicted by BP-ANN model and experimental data.



Materials 2017, 10, 544 11 of 22
Materials 2017, 10, 544  11 of 22 

 
Figure 5. The performance of the BP-ANN model (4-4-1) in the training phase showing performance 
value (MSE-0.0000116) after 1931 epochs. 

Sensitivity analysis was performed to sum the connection weights of the ANN model, which 
can make us understand the in-depth information of the ANN model. Connection weight is to 
evaluate the variable importance through the calculation that records the input-hidden and 
hidden-output connection weights between each independent variable and dependent variables 
across all hidden neurons [55]. The Garson equation is useful to exhibit the relative influence of the 
independent variables on the dependent variable, which can be described as 

1

1

1 1

1

N ab
bvMb

dbd
av

M N ab
bvMa b

dbd

w
e

w
P

w
e

w





 



 
 
 
 

  
  

    

 

  

 
(17) 

where P is the percentage of influence for the input neuron, w represents the weight between input 
and hidden neuron, e stands for the weight between hidden and output neuron, M is the number of 
neurons in input layer, N is the number of neurons in hidden layer, and v is the number of output 
neuron. As shown in Table 4, initial concentration (43.33%) and initial pH (30.71%) have a strong 
effect on the removal of Cd(II), which was consistent with the results of ANOVA. 

Table 4. Results from variable importance analysis in the ANN model. 

Independent Variable Order Relative Importance (%) 
Initial concentration 1 43.33 

Initial pH 2 30.71 
Contact time 4 10.57 

Operating temperature 3 15.39 

In order to achieve an optimum solution, the process of optimization was iterated at variable 
GA input conditions. Achievement of similar results for most of the GA inputs ensured that it must 
be global optimal solution [56]. GA generated the optimal set of initial Cd(II) concentration, initial 
pH, contact time, and operating temperature that governed a maximum removal of Cd(II). The best 
fitness plot achieved during the iterations of GA after 23 generations describes the gradual 
convergence of results towards the optimal solution (Figure 6). The ANN predicted Cd(II) removal 
at the GA optimized condition was 81.50% at the condition of 20.16 mg/L (initial Cd(II) 
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Sensitivity analysis was performed to sum the connection weights of the ANN model, which can
make us understand the in-depth information of the ANN model. Connection weight is to evaluate
the variable importance through the calculation that records the input-hidden and hidden-output
connection weights between each independent variable and dependent variables across all hidden
neurons [55]. The Garson equation is useful to exhibit the relative influence of the independent
variables on the dependent variable, which can be described as

Pav =
∑N

b=1

(
|wab |

∑M
d=1|wdb |

|ebv|
)

∑M
a=1

(
∑N

b=1

(
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∑M
d=1|wdb |

|ebv|
)) (17)

where P is the percentage of influence for the input neuron, w represents the weight between input
and hidden neuron, e stands for the weight between hidden and output neuron, M is the number of
neurons in input layer, N is the number of neurons in hidden layer, and v is the number of output
neuron. As shown in Table 4, initial concentration (43.33%) and initial pH (30.71%) have a strong effect
on the removal of Cd(II), which was consistent with the results of ANOVA.

Table 4. Results from variable importance analysis in the ANN model.

Independent Variable Order Relative Importance (%)

Initial concentration 1 43.33
Initial pH 2 30.71

Contact time 4 10.57
Operating temperature 3 15.39

In order to achieve an optimum solution, the process of optimization was iterated at variable
GA input conditions. Achievement of similar results for most of the GA inputs ensured that it
must be global optimal solution [56]. GA generated the optimal set of initial Cd(II) concentration,
initial pH, contact time, and operating temperature that governed a maximum removal of Cd(II).
The best fitness plot achieved during the iterations of GA after 23 generations describes the gradual
convergence of results towards the optimal solution (Figure 6). The ANN predicted Cd(II) removal at
the GA optimized condition was 81.50% at the condition of 20.16 mg/L (initial Cd(II) concentration),
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6.48 (initial pH), 30.00 min (contact time), and 25.31 ◦C (operating temperature). This result was
cross-validated by performing batch experiments at the GA-specified optimum condition. The removal
of Cd(II) achieved during experimental condition was 82.38 ± 0.82%, which was in a good agreement
with the ANN-GA prediction.
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3.4. Comparison of RSM and Hybrid ANN-GA

The RSM model and the ANN-GA model were compared and validated by performing
confirmatory experiments (in triplicate) at the predicted optimal operating condition. The deviation
of the predicted results and the average values of prediction errors between the RSM model and the
ANN-GA model are shown in Table 5. It was found that the average values of prediction errors of
RSM and ANN-GA models were 6.47% and 1.08% and the R2 of ANN-GA (0.9999) was higher than
that of RSM (0.9913). This difference between predicted and experimental removal efficiency can be
contributed to the extent of deviation in predictive capacity of model. Since ANN is more accurate and
more generalized model than quadratic RSM, it better obtained the global optimum.

Table 5. Comparative results of confirmatory experiments for model validation.

Process Parameters
RSM ANN-GA

Optimized
Values

Experimental
Values

Optimized
Values

Experimental
Values

Initial Cd(II) concentration (mg/L) 20.00 20.00 20.16 20.00
Initial pH 7.00 7.00 6.48 6.50
Contact time (min) 30.00 30.00 30.00 30.00
Operating temperature (◦C) 37.13 37.10 25.31 25.30
Removal efficiency (%) 85.92 80.36 ± 0.46% 81.50 82.38 ± 0.82%
Average values of prediction errors (%) 6.47 1.08
R2 0.9913 0.9999

Although ANN is superior to RSM, these models complement each other in interpreting the
experimental removal efficiency. ANN is more reliable in capturing the nonlinear relationship between
the removal efficiency and process variables, while RSM notes the statistical importance of the
individual process variables and their interactions via ANOVA. However, the disadvantage of RSM
is that it can only assume a quadratic non-linear correlation for the removal process. Therefore,
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the effectively used RSM can be achieved when the search space is appropriately narrowed down,
which makes the modeling process highly dependent upon the search space. This will require either
additional experiments or good prior knowledge of the removal process to fix the search space. ANN
can easily overcome the above disadvantage of RSM since it can inherently capture almost any form of
non-linearity. Hence, the liberal search space can be chosen by using ANN although the correlation in
the search space is more complex than the quadratic.

3.5. Adsorption Isotherms

Equilibrium isotherm studies were carried out with different initial Cd(II) concentrations
(5–50 mg/L) (Figure 7a). The quantity of Cd(II) adsorbed on the adsorbents increases with the rise
in initial Cd(II) concentrations, since higher initial concentrations provide a higher driving force
for the ion transportation from the solution to the adsorbents, resulting in an increase in collisions
between Cd(II) and active sites on the adsorbents [18]. The linear relationship between Ce/qe and Ce

showed that the Langmuir isotherm fit well with the equilibrium data of Cd(II) ions by the nZVI/rGO
composites (Figure 7b).
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Table 6 shows the values of R2 and other parameters of the three models. As can be seen, the
R2 values of the three models give the values higher than 0.97, however fitting the data using the
Langmuir model gives a better fit than when using the Freundlich and D–R models. It can be seen
from the fitting data obtained that the value of R2 is high for the Langmuir isotherm (0.9909) compared
to that of the Freundlich isotherm (0.9852) and D–R isotherm (0.8226). In addition, the value of the
parameter Kf is 20.02, which is higher than that reported by other studies [57–60]. This shows the
remarkable Cd affinity of the nZVI/rGO composites compared to other adsorbents. The n value of
the Freundlich isotherm was greater than 1, indicating that the adsorption intensity was favorable at
high concentrations. The calculated value of 1/n was 0.28, which suggests the adsorption process was
heterogeneous. Moreover, the value of E is found to be 2.24 kJ/mol, indicating that the adsorption of
Cd(II) onto the nZVI/rGO composites is carried out through a physical interaction. Therefore, these
results suggest that the adsorption process of Cd(II) onto the nZVI/rGO composites could take place
by monolayer physical adsorption in nature.

Table 6. Parameters of isotherm models for the adsorption of Cd(II) onto the nZVI/rGO composites.

Isotherms Equation Parameters Values of Parameters

Langmuir Ce
qe

= 1
qmk +

Ce
qm

k (L/mg) 0.96
qm (mg/g) 47.84

R2 0.9909

Freundlich log qe = log K f +
1
n log Ce

Kf (mg/g) 20.02
n

1/n
3.54
0.28

R2 0.9852

D–R ln qe = ln qm − βε2
β (mol2/J2) 10−7

qm (mol/g)
E (kJ/mol)

0.34
2.24

R2 0.8226

On the basis of the Langmuir isotherm, the maximum adsorption value (qm) of the nZVI/rGO
composites to Cd(II) is 47.84 mg/g, which is close to the experimental value (46.45 mg/g). Satisfactory
fitting of the experimental data to the Langmuir isotherm may be attributed to the homogeneous
distribution of active sites on the surface of the nZVI/rGO composites. The adsorption capacity of
Cd(II) using the nZVI/rGO composites was lower than that of Pb(II) (904 mg/g) determined in our
earlier work [24]. The reason for this is the physicochemical properties of Cd(II), which has the lower
covalent index, atomic weight, electronegativity, electrode potential, and ionic size than Pb(II) [61,62].

A further analysis of the Langmuir equation can be made on the basis of dimensionless equilibrium
parameters [63], RL also known as the separation factor, which was calculated with the equation

RL = 1/(1 + kC0) (18)

where C0 represents the initial Cd(II) concentration (mg/L) and k stands for the Langmuir constant
indicating the nature of adsorption. The value of RL indicates the nature of the adsorption process to
be irreversible (RL = 0), favorable (0 < RL < 1), linear (RL = 1), or unfavorable (RL > 1). The calculated
RL values in our work for the adsorption on the nZVI/rGO composites at different initial Cd(II)
concentrations are presented in Table 7. As can be seen here, the RL values obtained were all between 0
and 1, indicating that this adsorption process is favorable.
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Table 7. The values of RL for the adsorption of Cd(II) ions by the nZVI/rGO composites.

Initial Concentration (mg/L) RL Value

5 0.172
10 0.094
20 0.050
30 0.034
40 0.025
50 0.020

3.6. Thermodynamic Study

Van’t Hoff plots were drawn in the temperature range of 20–50 ◦C (Figure 8) and the
thermodynamic parameters were calculated using thermodynamic equations (Table 8) [64,65].
The negative values of ∆H confirmed the exothermic nature of the removal process and negative
magnitude of ∆G decreased from−25.7752 to−27.5363 kJ/mol, which signified the thermodynamically
feasible and spontaneous nature of the adsorption process. It is reported that when the ∆H value is
lower than 40 kJ/mol, the adsorption type can be described as a physical process [52]. ∆H in the present
work was−8.5759 kJ/mol indicating that the adsorption process is a physical adsorption, which was in
agreement with the result of D-R model. Furthermore, positive values of ∆S demonstrated the increase
in degree of randomness of metal ions during removal process this might be due to the disorderliness
at solid-liquid interface [66,67].
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Table 8. Thermodynamic parameters for Cd(II) removal by the nZVI/rGO composites.

T (K) Equation ∆S (kJ/mol/K) ∆H (kJ/mol) ∆G (kJ/mol)

293 ln kc =
∆S
R −

∆H
RT 0.0587 −8.5759 −25.7752

303 −26.3622
313 ∆G = ∆H − T∆S −26.9492
323 −27.5363

3.7. Removal Kinetics

Figure 9 shows that the removal process achieves equilibrium within 30 min, and 76.11% of Cd(II)
ions is removed by the nZVI/rGO composites with the removal capacity of 25.37 mg/g. The observed
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increase may be due to the fact that, initially, a large number of vacant sites are available on the
adsorbent surfaces for removal and after some time the remaining sites may be difficult to be occupied
due to repulsive forces operating between the already adsorbed metal ion on the solid and those
present in the solution [68,69].Materials 2017, 10, 544  16 of 22 
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Figure 9. Cd(II) removal kinetics of the nZVI/rGO composites (initial pH = 7.0; nZVI/rGO composites 
dosage = 30 mg; operating temperature = 20 °C; Cd(II) concentration = 20 mg/L). 

It is noticed that the calculated qe value of the pseudo-first-order model is high compared with 
the experimental qe value, and the value of R2 is also not high (Table 9). This indicates that the Cd(II) 
uptake onto the nZVI/rGO composites cannot be approximated favorably by the pseudo-first-order 
model. However, the calculated qe value fully agrees with the experimental qe in the case of the 
pseudo-second-order model, and the removal data are not well represented by the intraparticle 
diffusion model with a lower R2 (0.8841). 
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k1 (1/min) 2.23 × 10−1 
qe (mg/g) 53.43 

R2 0.8729 
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2

2
/ 1 / /t q k q t qe et    
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Intraparticle diffusion 1/2
3t bq kt   

k3 (mg/g/min1/2) 1.03 
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R2 0.8841 
experimental qe (mg/g) 25.37 

3.8. Cd(II) Removal Mechanisms 

The removal of heavy metal ions by the nZVI/rGO composites from aqueous solutions is 
controlled by various mechanisms, such as reduction, co-precipitation, and adsorption [70,71]. To 
investigate the interaction mechanisms between Cd(II) and the nZVI/rGO composites, the nZVI/rGO 
and nZVI/rGO-Cd(II) composites were analyzed by XPS to investigate the elemental composition 
and valence state on the surface of the nZVI/rGO and nZVI/rGO-Cd(II) composites.  
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It is noticed that the calculated qe value of the pseudo-first-order model is high compared with
the experimental qe value, and the value of R2 is also not high (Table 9). This indicates that the Cd(II)
uptake onto the nZVI/rGO composites cannot be approximated favorably by the pseudo-first-order
model. However, the calculated qe value fully agrees with the experimental qe in the case of the
pseudo-second-order model, and the removal data are not well represented by the intraparticle
diffusion model with a lower R2 (0.8841).

Table 9. Kinetic parameters obtained from pseudo-first-order, pseudo-second-order, and intraparticle
diffusion model for the removal of Cd(II) by the nZVI/rGO composites.

Model Equation Parameters Value of Parameters

Pseudo-first-order
kinetics

log(qe − qt) =
log qe − k1t/2.303

k1 (1/min) 2.23 × 10−1

qe (mg/g) 53.43
R2 0.8729

Pseudo-second-order
kinetics

t/qt = 1/k2q2
e + t/qe

k2 (g/mg/min) 3.41 × 10−1

qe (mg/g) 26.32
R2 0.996

Intraparticle diffusion qt = k3t1/2 + b

k3 (mg/g/min1/2) 1.03
b (mg/g) 18.37

R2 0.8841
experimental qe (mg/g) 25.37

3.8. Cd(II) Removal Mechanisms

The removal of heavy metal ions by the nZVI/rGO composites from aqueous solutions is
controlled by various mechanisms, such as reduction, co-precipitation, and adsorption [70,71].
To investigate the interaction mechanisms between Cd(II) and the nZVI/rGO composites, the
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nZVI/rGO and nZVI/rGO-Cd(II) composites were analyzed by XPS to investigate the elemental
composition and valence state on the surface of the nZVI/rGO and nZVI/rGO-Cd(II) composites.

The wide-scan XPS spectrum of the nZVI/rGO composites indicated that the surface of
the nZVI/rGO composites consists mainly of iron, oxygen, and carbon (Figure 10a). After the
treatment by nZVI/rGO composites, Cd(II) appeared in the spectrum of nZVI/rGO-Cd(II) composites.
Figure 10b shows the XPS spectra of C 1s for the nZVI/rGO and nZVI/rGO-Cd(II) composites, which
demonstrated that nZVI was supported on rGO. The XPS peak of the nZVI/rGO composites did not
change before and after the reaction with the Cd(II) ions due to the stability of rGO. As shown in
Figure 10c, the O 1s XPS spectrum of the nZVI/rGO composites consist of the two peaks at 530.4
and 531.9 eV, corresponding to the binding energies of O2− and OH−, respectively. The O 1s XPS
spectrum for the nZVI/rGO-Cd(II) composites has only one peak (531.9 eV), which may indicate that
Fe2O3 disappeared after the reaction with the Cd(II) ions. The high-resolution Fe 2p spectra of the
nZVI/rGO and nZVI/rGO-Cd(II) composites show the presence of four iron peaks (Figure 10d). A peak
at 706.9 eV corresponding to the binding energy of Fe 2p3/2 for the zero-valent iron (Fe0) indicates the
presence of Fe0 on the surface of the nZVI/rGO and nZVI/rGO-Cd(II) composites. This peak for the
nZVI/rGO-Cd(II) composites may demonstrate that Fe0 did not react with Cd(II). The peaks at 711.2,
720.6, and 724.8 eV are representative of the oxidized iron species (Fe(II) and Fe(III)), which may be
present as iron hydroxides (Fe(OH)x), iron oxyhydroxide (FeOOH), or iron oxides (FexOy) [72].

Materials 2017, 10, 544  17 of 22 

531.9 eV, corresponding to the binding energies of O2− and OH−, respectively. The O 1s XPS spectrum 
for the nZVI/rGO-Cd(II) composites has only one peak (531.9 eV), which may indicate that Fe2O3 
disappeared after the reaction with the Cd(II) ions. The high-resolution Fe 2p spectra of the 
nZVI/rGO and nZVI/rGO-Cd(II) composites show the presence of four iron peaks (Figure 10d). A 
peak at 706.9 eV corresponding to the binding energy of Fe 2p3/2 for the zero-valent iron (Fe0) 
indicates the presence of Fe0 on the surface of the nZVI/rGO and nZVI/rGO-Cd(II) composites. This 
peak for the nZVI/rGO-Cd(II) composites may demonstrate that Fe0 did not react with Cd(II). The 
peaks at 711.2, 720.6, and 724.8 eV are representative of the oxidized iron species (Fe(II) and Fe(III)), 
which may be present as iron hydroxides (Fe(OH)x), iron oxyhydroxide (FeOOH), or iron oxides 
(FexOy) [72]. 

The high-resolution Cd 3d spectrum of the nZVI/rGO-Cd(II) composites showed two intense 
peak for Cd at 405.6 eV for Cd5/2 and 412.4 eV for Cd3/2 (Figure 10e), which are in accordance with the 
values reported for Cd(II) in the literature [70]. The results indicate that Cd was removed as the 
Cd(II) ions on the surface of the nZVI/rGO composites, which may include electrostatic interactions 
and specific surface bonding. However, our earlier work found that Pb(II) could be reduced by the 
nZVI/rGO composites [24]. The metal ions with a far more positive standard reduction potential 
than that of Fe0 can be removed by a reduction mechanism, while the metals having a standard 
reduction potential more negative than or close to that of Fe0 can be removed by an adsorption 
mechanism. The standard reduction potential of Cd(II) (ECd(II)/Cd(0)0 = −0.40 V) is close to that of Fe(II) 
(EFe(II)/Fe(0)0 = −0.45 V), while the standard reduction potential of Pb(II) (EPb(II)/Pb(0)0 = −0.12 V) is more 
positive than that of Fe(II). Therefore, the unnoticeable amount of Cd(II) was reduced to Cd(0) by the 
nZVI/rGO composites, which demonstrated that the removal of Cd(II) by the nZVI/rGO composites 
could take place by adsorption as reported earlier [19]. 

0 200 400 600 800

nZVI/rGO-Cd(II)

 

 

In
te

ns
it

y 
(a

.u
.)

Binding energy (eV)

nZVI/rGO

C1s

Cd 3d

O1s Fe 2p
(a)

280 285 290 295 300

 

nZVI/rGO-Cd(II)

In
te

ns
it

y 
(a

.u
.)

Binding energy (eV)

nZVI/rGO

C1s(b)

525 530 535 540

OH-

OH-

 

 

In
te

ns
ity

 (
a.

u.
)

Binding energy (eV)

O2- OH-

nZVI/rGO-Cd(II)

nZVI/rGO

O1s(c)

700 710 720 730 740

2p
1/2

nZVI/rGO-Cd(II)

 
 

In
te

ns
it

y 
(a

.u
.)

Binding energy (eV)

Fe(0)

Fe(III)

Fe(II)

(d) Fe2p

nZVI/rGO

2p
3/2

Fe(0)

Figure 10. Cont.



Materials 2017, 10, 544 18 of 22Materials 2017, 10, 544  18 of 22 

400 402 404 406 408 410 412 414

 

In
te

ns
it

y 
(a

.u
.)

Binding energy (eV)

(e) Cd 3d

Cd
5/2

Cd
3/2

Figure 10. Wide-scan XPS survey of nZVI/rGO and nZVI/rGO-Cd(II) (a); high-resolution spectra of C 
1s for nZVI/rGO and nZVI/rGO-Cd(II) (b); high-resolution spectra of O 1s for nZVI/rGO and 
nZVI/rGO-Cd(II) (c); high-resolution spectra of Fe 2p for nZVI/rGO and nZVI/rGO-Cd(II) (d); 
high-resolution spectrum of Cd 3d for nZVI/rGO-Cd(II) (e). (Initial Cd(II) concentration = 100 mg/L; 
initial pH = 7; nZVI/rGO composites = 300 mg; contact time = 1 h; operating temperature = 20 °C). 

4. Conclusions 

This study investigated the removal of the Cd(II) ions by the nZVI/rGO composites from 
aqueous solutions by using the RSM and ANN-GA models. The results showed that the ANN-GA 
model with a higher value of R2 and a lower value of average error could provide more accurate 
predictions than the RSM model in the estimation of process parameters for the Cd(II) removal 
(initial Cd(II) concentration, initial pH, contact time, and operating temperature). Both ANOVA and 
sensitivity analysis indicated that initial concentration was the most significant variable for the 
Cd(II) removal. Using the ANN-GA model, the Cd(II) removal from aqueous solutions was 
improved by 2.02% in comparison with the RSM model. Therefore, the ANN-GA model may be an 
ideal alternative for predicting the removal efficiency of Cd(II) by the nZVI/rGO composites, which 
indicated its potential in predicting the behavior of a complex water treatment process. In addition, 
the adsorption isotherm and the kinetic model follow the Langmuir isotherm and the 
pseudo-second-order model, respectively. The result from the Langmuir isotherm illustrated that 
the Cd(II) removal by the nZVI/rGO composites took place via the monolayer physical adsorption. 
The calculated thermodynamics parameters exhibit that the removal process was spontaneous and 
exothermic in nature. The XPS analysis demonstrated that the mechanism for the removal of Cd(II) 
ions from aqueous solutions was controlled by the adsorption of nZVI/rGO composites. Further 
studies by using advanced optimization algorithms (particle swarm optimization, Monte Carlo 
simulation, simulated annealing, etc.) is currently on the way to improving the optimization of 
pollutant removal from aqueous solutions. 
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Figure 10. Wide-scan XPS survey of nZVI/rGO and nZVI/rGO-Cd(II) (a); high-resolution spectra
of C 1s for nZVI/rGO and nZVI/rGO-Cd(II) (b); high-resolution spectra of O 1s for nZVI/rGO
and nZVI/rGO-Cd(II) (c); high-resolution spectra of Fe 2p for nZVI/rGO and nZVI/rGO-Cd(II) (d);
high-resolution spectrum of Cd 3d for nZVI/rGO-Cd(II) (e). (Initial Cd(II) concentration = 100 mg/L;
initial pH = 7; nZVI/rGO composites = 300 mg; contact time = 1 h; operating temperature = 20 ◦C).

The high-resolution Cd 3d spectrum of the nZVI/rGO-Cd(II) composites showed two intense
peak for Cd at 405.6 eV for Cd5/2 and 412.4 eV for Cd3/2 (Figure 10e), which are in accordance with
the values reported for Cd(II) in the literature [70]. The results indicate that Cd was removed as the
Cd(II) ions on the surface of the nZVI/rGO composites, which may include electrostatic interactions
and specific surface bonding. However, our earlier work found that Pb(II) could be reduced by the
nZVI/rGO composites [24]. The metal ions with a far more positive standard reduction potential than
that of Fe0 can be removed by a reduction mechanism, while the metals having a standard reduction
potential more negative than or close to that of Fe0 can be removed by an adsorption mechanism.
The standard reduction potential of Cd(II) (ECd(II)/Cd(0)

0 =−0.40 V) is close to that of Fe(II) (EFe(II)/Fe(0)
0 =

−0.45 V), while the standard reduction potential of Pb(II) (EPb(II)/Pb(0)
0 = −0.12 V) is more positive than

that of Fe(II). Therefore, the unnoticeable amount of Cd(II) was reduced to Cd(0) by the nZVI/rGO
composites, which demonstrated that the removal of Cd(II) by the nZVI/rGO composites could take
place by adsorption as reported earlier [19].

4. Conclusions

This study investigated the removal of the Cd(II) ions by the nZVI/rGO composites from aqueous
solutions by using the RSM and ANN-GA models. The results showed that the ANN-GA model with a
higher value of R2 and a lower value of average error could provide more accurate predictions than the
RSM model in the estimation of process parameters for the Cd(II) removal (initial Cd(II) concentration,
initial pH, contact time, and operating temperature). Both ANOVA and sensitivity analysis indicated
that initial concentration was the most significant variable for the Cd(II) removal. Using the ANN-GA
model, the Cd(II) removal from aqueous solutions was improved by 2.02% in comparison with the
RSM model. Therefore, the ANN-GA model may be an ideal alternative for predicting the removal
efficiency of Cd(II) by the nZVI/rGO composites, which indicated its potential in predicting the
behavior of a complex water treatment process. In addition, the adsorption isotherm and the kinetic
model follow the Langmuir isotherm and the pseudo-second-order model, respectively. The result
from the Langmuir isotherm illustrated that the Cd(II) removal by the nZVI/rGO composites took
place via the monolayer physical adsorption. The calculated thermodynamics parameters exhibit that
the removal process was spontaneous and exothermic in nature. The XPS analysis demonstrated that
the mechanism for the removal of Cd(II) ions from aqueous solutions was controlled by the adsorption
of nZVI/rGO composites. Further studies by using advanced optimization algorithms (particle swarm
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optimization, Monte Carlo simulation, simulated annealing, etc.) is currently on the way to improving
the optimization of pollutant removal from aqueous solutions.
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