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Abstract: Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide
(IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering.
Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the
molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films
at various temperatures to investigate its effect on TFT performances. It was found that annealing
treatment at 350 ◦C for 30 min in air atmosphere yielded the best result, with the high field effect
mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO
thin films were amorphous, even after annealing treatment of up to 350 ◦C.

Keywords: amorphous oxide; thin film transistor; indium zinc tin oxide; RF magnetron sputtering;
high field effect mobility
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1. Introduction

Transparent amorphous oxide semiconductors have received much attention for such applications
as thin film transistor (TFT) devices in liquid crystal displays (LCD), organic light emitting diodes
(OLED), and transparent displays. In 2004, Hosono et al. made a breakthrough in replacing
hydrogenated amorphous silicon (a-Si:H) and low-temperature polysilicon (LTPS) devices with
amorphous oxide semiconductor in the fabrication of thin film transistors which were widely used
in various display panels [1]. More recently, a-Si:H semiconductor has been excluded by most
manufacturers because of its poor mobility, degradation under electrical bias stress, and instability
under illumination [2–5]. In particular, LTPS is mostly used in active-matrix organic light emitting
diode (AMOLED) displays with field effect mobility value of up to 100 cm2/Vs. However, despite its
high mobility characteristics, LTPS usually showed relatively large threshold voltage variation [6–8].
In contrast, TFTs based on metal oxide channel layer created a whole new area to explore with such
advantages as simpler manufacturing process with good characteristics including high on-current and
low off-current [1,9,10].

A lot of amorphous semiconductors have been studied for possible TFT applications, e.g., zinc
oxide (ZnO) [11], indium zinc oxide (IZO) [12], zinc tin oxide (ZTO) [13] and indium gallium zinc
oxide (IGZO) [1]. Since Arai reported the amorphous indium zinc tin oxide (a-IZTO) with good field
effect mobility in the range of ~30 cm2/Vs, it has attracted some attention to see if there exists the
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possibility of an alternative to a-IGZO [6]. IZTO is a ternary oxide semiconductor which is known
to exhibit good electrical conductivity, high transparency, and high mobility, making it a promising
candidate for further enhancement of the performance of display technologies [6]. In the IZTO system,
both indium and tin have similar electron configurations with about the same conduction bands, which
then allows electrons to move easier and faster, even in amorphous state [14].

In this study, the electrical and optical properties of IZTO thin films were examined for the films
deposited from a ceramic target with the nominal chemical composition corresponding to 40 at %
indium, 50 at % zinc, and 10 at % tin on the metallic component basis. The deposition of IZTO
thin films was conducted using radio frequency (RF) magnetron sputtering as reported earlier by
our group [15–17]. The variation of the electrical properties and TFT performance with annealing
treatment was investigated in detail.

2. Experimental Section

Zinc-rich IZTO ceramic target with the metal ratio of In:Zn:Sn = 40:50:10 at % was prepared
using the conventional mixed-oxide process. IZTO thin films were then sputter-deposited onto
15 mm × 15 mm-square commercial glass in order to observe the transparency and morphology of
the films. Top-contact bottom-gate TFTs were fabricated where an IZTO active layer was deposited
onto n++ heavily-doped silicon wafer with 200 nm-thick SiO2 gate insulating layer. Deposition of
IZTO films was conducted using RF magnetron sputtering at room temperature with RF power of
125 W and working pressure of 5 × 10−3 Torr. Prior to deposition, the vacuum chamber was evacuated
to a base pressure of 2 × 10−5 Torr or below. The deposition time was kept for 3 min to obtain the
channel layer thickness of around 50 nm. During deposition, oxygen acted as ambient gas where
O2:Ar ratio was 5%:95% while the gas flow rate was fixed at 20 sccm. After deposition, the films
were annealed at temperature in the range of 150–350 ◦C for 30 min in air inside of the tube furnace.
Titanium and copper bilayer metallic films were subsequently deposited as source and drain contacts
using an e-beam evaporator through shadow mask with width and length dimensions of 350 µm and
150 µm, respectively. The structural and surface topography were characterized and confirmed by
X-ray diffraction (XRD, Rigaku D-500) and atomic force microscopy (AFM, Nanoscope IIIA). The X-ray
photoelectron spectroscopy (XPS) study was performed using an XPS system (Thermo Fisher Scientific
K-Alpha, Waltham, MA, USA) with monochromated Al Kα X-ray source (hν = 1486.6 eV) at a spot
size of 400 µm in diameter with charge compensation. Survey spectra were obtained at pass energy
of 200 eV and a resolution of 1 eV, and high-resolution spectra were acquired at pass energy of 30 eV
and a resolution of 0.1 eV. All of the obtained binding energies (BEs) were compensated with that
of adventitious carbon (C 1s) core level peak at 284.6 eV as a reference [18]. The Avantage software
provided by the manufacturer was used for controlling the spectrometer, analyzing the spectra, and
the deconvolution of O 1s core level spectra.

The electrical properties of the IZTO films and TFTs were characterized using Hall
effect measurement (Ecopia HMS-5000, Anyang, Republic of Korea) and I–V measurement
(Keithley 4200-SCS, Beaverton, OR, USA). The optical transmittance of the films across visible spectrum
was observed using ultraviolet-visible spectrophotometer (UV/Vis/NIR spectrophotometer, Cary 5000,
Agilent, Santa Clara, CA, USA).

3. Results and Discussion

X-ray diffraction patterns of the IZTO films deposited onto glass substrates at room temperature
by RF magnetron sputtering are shown in Figure 1. The amorphous nature is clearly seen in all
samples. This commonly happens in many multicomponent complex mixed oxide films where the
crystallization energy is considerably higher than the thermal energy available at room temperature.
Similar results were reported elsewhere [19,20], where IZTO films with low zinc content deposited
at room temperature remained in amorphous state [20]. The crystallinity of the films is known
to be affected by the processing variables, such as gas ambient, deposition temperature, working
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pressure, annealing temperature, and chemical composition [17–19]. However, even after annealing
with temperature of up to 350 ◦C, no particular diffraction peaks corresponding to crystalline phases
were observed from all IZTO films we had prepared. Furthermore, the surface topography observed
using AFM revealed that subsequently, all films showed very smooth and uniform surface, which is
very important for TFT application to minimize defects at the interlayers [21]. There was no prominent
change in root-mean-square surface roughness values (Rq), which increased from about 0.2 nm to
0.3 nm for all IZTO films as the annealing temperature increased, as summarized in Table 1.
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Figure 1. X-ray diffraction patterns of the indium zinc tin oxide (IZTO) films deposited at room
temperature onto glass substrates at various annealing temperatures in the range of 150–350 ◦C.

Table 1. Root-mean-square values of the IZTO films from atomic force microscopy (AFM) data.

Annealing Temperature Rq (nm)

As-Deposited 0.21
150 ◦C 0.31
250 ◦C 0.23
350 ◦C 0.33

The optical transmittance was determined by taking the average value in the visible light region
ranging between 400 nm and 700 nm in wavelength. Figure 2 illustrates the optical transmittance of the
IZTO films deposited on glass substrate. Among all films, as-deposited IZTO film showed the lowest
average transmittance of about 84%. The band gap energy value of IZTO films was estimated from the
inset in Figure 2, which was done by extrapolating the linear part of hν versus (αhν)2 graph to the x axis
according to Tauc equation [22,23]. The average optical band gap energy value was estimated at 3.25 eV,
while there was no significant difference, even after annealing treatment. An optical band gap value
of about 3 eV was reported from IZTO with composition of 50 at % zinc and 30 at % indium [20], as
increasing indium and zinc deteriorated the optical transmittance and decreased the optical band gap
energy of IZTO thin films [15,20]. Nevertheless, a shift in band gap energy and average transmittance
values was reported elsewhere by composition variation of IZTO [15]. This is why an annealing
treatment did not alter the band gap value of the IZTO film. Overall, the optical properties of all IZTO
films exhibited high average transmittance above 80% and relatively high band gap energy, which is
desirable for transparent display application.
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Figure 2. Optical properties of IZTO films deposited at room temperature onto glass substrates at
various annealing temperatures in the range of 150–350 ◦C.

Table 2 summarizes the typical electrical property data (i.e., carrier concentration and resistivity)
of IZTO films. The carrier concentration value increased, while resistivity value decreased with the
increase of annealing temperature. Lower values of resistivity led to an active layer with more electrons,
resulting in the threshold voltage shift to the negative direction [24].

Table 3 shows relative peak area ratio and binding energy of the IZTO thin films deposited
by RF magnetron sputtering on silicon substrates at various annealing temperatures in the range
of 150–350 ◦C. The related binding energies existed in metal-oxide (In-O, Zn-O, and Sn-O), oxygen
vacancy (Oxy. Vac), and impurities such as hydroxides (O-OH) known as trapping sites on the interface
of the TFT [25]. Based on the detailed O 1s XPS spectra of IZTO films shown in Figure 3a, the oxygen
vacancy peak existed at the binding energy of 530.4 eV. It was seen that the oxygen vacancy tended to
increase slightly with the increase of annealing temperature. This rather unusual result could only
be explained by the rearrangement of oxygen ions in the film to thermodynamically more stable
positions, thereby yielding slightly more oxygen vacancies. However, as shown in Table 2, the increase
of electron concentration is much higher than the increase of oxygen vacancy, and thereby is not just
because of the increase of oxygen vacancy concentration but rather because of the increase of singly-
or doubly-ionized oxygen vacancy concentration yielding mobile electrons. As-deposited films should
have a greater number of neutral oxygen vacancies with the two electrons trapped at or near the
vacancy and does not contribute to mobile carriers [26]. In turn, this electron concentration increase
brought the negative shift of the threshold voltage to be further explained below.

Table 2. Electrical property data of the IZTO thin films deposited by RF magnetron sputtering on glass
substrates at various annealing temperatures in the range of 150–350 ◦C.

Annealing Temperature Carrier Concentration (cm−3) Resistivity (Ω·cm)

As-Deposited 5.4 × 1016 10
150 ◦C 6.7 × 1016 9.5
250 ◦C 7.2 × 1017 0.60
350 ◦C 1.0 × 1018 0.33
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Table 3. Relative peak area ratio and binding energy of the IZTO thin films deposited by RF magnetron
sputtering on silicon substrates at various annealing temperatures in the range of 150–350 ◦C.

Annealing Temperature Binding Energy (eV) Peak Area (%)

Metal-Oxide O-OH Oxy. Vac Metal-Oxide Oxy. Vac

As-Deposited 529.42 531.39 530.40 82 18
150 ◦C 529.28 531.33 530.40 77 23
250 ◦C 529.32 531.34 530.40 75.8 24.2
350 ◦C 529.31 531.39 530.40 71.2 28.8

To investigate TFT device performance based on IZTO semiconductor channel layer, the transistor
prepared using heavily-doped silicon wafer substrate was examined in n-channel mode. Figure 4
depicts the transfer characteristic of IZTO TFT device deposited by RF magnetron sputtering with
annealing temperature variation. It is seen that field effect mobility (µFE), on/off current ratio (Ion/off),
and subthreshold swing (SS) values improved as annealing temperature increased from 150 ◦C to
350 ◦C, as shown in Table 4. Threshold voltage (VT) value tended to shift to zero voltage by controlling
the carrier concentration of IZTO channel layer with the increasing annealing temperature. As the
carrier concentration increased, the threshold voltage and subthreshold swing values shifted to more
desirable values [27,28]. The enhancement of TFT performance was noticed by lowering resistivity
and reducing SS values of IZTO channel layer with increasing annealing temperature, which might
be mainly due to oxygen diffusion from IZTO layer and rearrangement of molecular bonding during
annealing process, thus inducing the acceleration of electrons to pass through channel region between
source and drain [29].

Our TFT devices made from a zinc-rich IZTO channel layer demonstrated excellent performance
with a field effect mobility value of 34 cm2/Vs, which is higher than the values reported by other
research groups [24,30]. It is also noticed that interface defect concentration (NT) value, which was
estimated from SS value, was reduced with increasing annealing temperature. It is obvious the mobility
of charge carriers would then be improved as electrons travel from source to drain through the a-IZTO
channel layer [19].
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Figure 3. X-ray photoelectron spectroscopy (XPS) spectra of (a) detailed and (b) O 1s for IZTO
films at various annealing temperatures in the range of 150–350◦C. Metal-O: metal oxide; Oxy. Vac:
oxygen vacancy.
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Figure 4. Transfer curve of IZTO thin film transistors deposited at various annealing temperatures in
the range of 150–350 ◦C.

Table 4. Summary of transistor parameters of IZTO thin film transistors (TFTs) deposited by RF
magnetron sputtering at various annealing temperatures in the range of 150–350 ◦C.

Annealing Temperature µFE (cm2/Vs) Ion/off (A) VT (V) SS (V/dec) NT (cm−2)

As-Deposited 2.5 ~106 18.6 1.22 2.1 × 1012

150 ◦C 4.0 ~107 4.6 0.38 5.8 × 1011

250 ◦C 14 ~107 −0.8 0.15 1.6 × 1011

350 ◦C 34 ~108 −4.6 0.12 1.1 × 1011

The stability of the a-IZTO thin film transistor annealed at 350 ◦C was explored under both
positive bias stress (PBS) and negative bias stress (NBS). The tests were performed at drain voltage
(VDS) of ±10 V with stress time of up to 1200 s. As shown in Figure 5, the transfer characteristics curve
shifted to the positive direction, and thus threshold voltage also changed to the positive direction with
the increase of bias stress time. This voltage shift of transfer characteristics was attributed to electron
trapping at the gate/insulator interface in n-type TFTs [31]. The threshold voltage shift under PBS is
about +1.9 V while the NBS is about +3.1 V. Higher bias instability of a-IZTO thin film transistor would
be expected to decrease further by applying passivation layer to prevent humidity [32].
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4. Summary and Conclusions

Room-temperature-deposited IZTO films remained uniform amorphous phase even after
annealing at temperatures of up to 350 ◦C, indicating that the enhancement of TFT performance was not
due to the crystallization of the IZTO layer. IZTO films deposited by RF magnetron sputtering showed
transparency values higher than 84%, regardless of the annealing treatment across the visible light
range, which is desirable for transparent electronic device applications. It was found that annealing
treatment affected TFT parameters in such a way as to increase the carrier mobility and on/off current
ratio, and to decrease the sub-threshold swing value. The threshold voltage value also shifted to the
negative direction, and the carrier concentration value increased upon annealing. Interface defect
concentration also reduced, resulting in the movement of more electrons without being trapped
between the active layer and the source or drain electrode. However, stability improvement under
bias stress still remains as an issue to enhance the performance of a-IZTO thin film transistors in the
near future.
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