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Abstract: Fabrication of metallic foams by sintering metal powders mixed with thermally degradable
compounds is of interest for numerous applications. Compounds releasing gaseous nitrogen,
minimizing interactions between the formed gases and metallic foam by diluting other combustion
products, were applied. Cysteine and phenylalanine, were used as gas releasing agents during the
sintering of elemental Fe and Al powders in order to obtain metallic foams. Characterization was
carried out by optical microscopy with image analysis, scanning electron microscopy with energy
dispersive spectroscopy, and gas permeability tests. Porosity of the foams was up to 42 ± 3% and
46 ± 2% for sintering conducted with 5 wt % cysteine and phenylalanine, respectively. Chemical
analyses of the formed foams revealed that the oxygen content was below 0.14 wt % and the carbon
content was below 0.3 wt %. Therefore, no brittle phases could be formed that would spoil the
mechanical stability of the FeAl intermetallic foams. The gas permeability tests revealed that only the
foams formed in the presence of cysteine have enough interconnections between the pores, thanks to
the improved air flow through the porous materials. The foams formed with cysteine can be applied
as filters and industrial catalysts.

Keywords: intermetallics; sintering; powder metallurgy; FeAl; combustion; cysteine; phenyalanine;
gas releasing agents

1. Introduction

Iron aluminides, including FeAl intermetallic alloys, are well-known materials for their
remarkable mechanical properties and excellent corrosion resistance at room and elevated
temperatures [1–4]. Thus, these materials are often used as protective coatings for exploitation
in high temperature aggressive environments due to the formation of the protective oxide layer on
their surface [5–10]. Also for this reason, application of FeAl intermetallic alloys can be a key for the
development of filtrating elements in chimneys, where extremely hot outlet gasses are being ejected.
To achieve this goal, surface area development of FeAl must be researched. Classical methods, like
the melting of metal in foaming agents, are hard to apply for intermetallics due to their high melting
points. Thus, alternative approaches must be worked out.

Powder metallurgy is one of the methods applied for fabrication of intermetallic components [11].
In the case of intermetallics, like FeAl, self-propagating high-temperature synthesis (SHS) occurs,
locally enhancing the temperature during sintering, which is advantageous to the quality of the formed
massive element [12–14]. To obtain porous materials with sintering, various approaches are being
applied. One of the most popular approaches is the application of a leachable space holder, like NaCl,
during sintering. After formation of the massive, porous element, the NaCl is leached out and porosity
is revealed. Following this approach, metallic foams made of Al [15–17], Cu [18], FeAl [19], Mg [20,21],
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Ti [22], Ti5Si3 [23], TiAl [24], and TiAl3 [25] have been obtained. Nevertheless, using sodium chloride
as the space holder may bring some risks since, when the leaching out process is too long, potentially
galvanic cells may be formed and corrosion may occur. Moreover, not-fully leached out NaCl would
also be detrimental for the same reason. Other materials, like poly methyl methacrylate (PMMA)
and stearic acid, are sometimes used as the space holders [26]. However, other approaches have also
been developed in order to obtain metallic foams. For example, Shi et al. reported the fabrication of
porous Ti-Al alloy with thermal explosion (TE) reaction during the sintering [27]. Another approach
that is easy to apply during sintering is in-situ gas release. One of the most explored techniques is
the lost carbonate sintering (LCS). This technique employs carbonates and during sintering at high
temperatures, the carbonate decomposes into metal oxide and carbon dioxide, where CO2 works as a
foaming agent, according to the following reaction

n
X2(CO3)n

T→
n
X2On + nCO2 ↑, (1)

where X is the element and n is its valence.
Using this approach, compounds like K2CO3 [28–30], (NH4)2CO3 [31], and NH4HCO3 [31] were

used and foams made of Cu [28–30] and Ti [31] were formed, respectively. The major disadvantage of
the LCS approach is the formation of metal oxide when the metal carbonate is applied. Remaining basic
oxide may be corrosive to the d-electronic metals, due to its amphoterism. On the other hand, Laptev
et al. reported the application of ammonia carbonate and ammonium hydro-carbonate as gas releasing
agents. Thus, the above-mentioned issue has been partially solved, because gaseous ammonia was
released instead of metal oxide, enhancing the foaming performance of the carbonate [31]. However,
the products of the combustion are not chemically ambient, and thus could go into reactions with the
sintered metals.

Organic compound assisted sintering is currently being explored and provides chemically
ambient products like carbon dioxide and water steam. During sintering of elemental powders,
the added organic compounds—e.g., oxalic acid [32], eosin [33], stearic acid [34] or cholesteryl
myristate [34]—combust to those compounds. Nonetheless, this approach also provides an issue
that has to be solved: at low air (oxygen) admission, namely that the added organic does not combust
to carbon dioxide but to carbon monoxide or simply to carbon. At the decomposition sites, much carbon
is being found [32–34], which at elevated temperatures may result in the formation of brittle carbides,
spoiling the performance of the intermetallic foam material. The carbon content may be minimized by
thermal post-treatment, like annealing at high temperatures in air. An elegant alternative approach to
solve this issue is the use of organic compounds decomposing with ambient gases like nitrogen.

In this work, the formation of FeAl intermetallic foams with the use of amino acids as gas
releasing agents was studied. The main advantage of the proposed approach is the decomposition of
the organic foaming agent with formation of nitrogen that is an ambient gas. The more nitrogen is
formed, the lower the risk of secondary reactions (i.e., carburization) of the formed compounds with
the sintered metals.

Decomposition of amino acids can eject nitrogen. Thus, an inert gas works as the foaming agent,
decreasing the risk of carburization of the surface pores and formation of brittle carbides. In order
to investigate this, two different amino acids were used as the additive, namely phenylalanine and
cysteine. Phenylalanine is composed only of carbon, oxygen, nitrogen, and hydrogen and decomposes
according to the following equation

4C9H11NO2 + 43O2
T→ 36CO2 ↑ +22H2O ↑ +2N2 ↑, (2)

On the other hand, cysteine poses also sulfur and decomposes with sulfur dioxide release

4C3H7NO2SH + 19O2
T→ 12CO2 ↑ +14H2O ↑ +4N2 ↑ +4SO2 ↑ , (3)
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By adding cysteine to the Fe and Al powder elements, we are thus also able to check whether the
formation of sulfur oxides may have any influence on the pore formation.

The major motivations of the use of the amino acids as gas releasing agents are the volume of the
in situ produced gases (Table 1) and the formation of gaseous nitrogen, diluting remaining gaseous
products including carbon dioxide, and thus decreasing the chemical interaction between the formed
sinter and produced gas. Moreover, amino acids as well as other organic compounds [32–34] work as
mentioned gas releasing agent, but first they act as space holders in the same way as e.g., NaCl [15–25].

Table 1. Comparison of added organic compounds as gas release foaming agents.

Name, Formula,
and Molar Mass Structural Formula Produced Gases Produced Gas

Volume 1/dm3 Reference

Cysteine,
C3H7NO2S,

121.16 g/mol
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Table 1 compares various organic compounds suitable to be applied as gas-releasing foaming
agents. Chemical compounds used up to date release only carbon dioxide and water steam, as well as
bromine [32–34] (Table 1). In this study we have selected amino acids that also form chemically inert
nitrogen. However, the most important consideration is the foaming efficiency, namely the volume of
formed gases estimated at ambient conditions from the combustion of 1 g of the additive. According
to Table 1, cysteine (1.5 dm3/g) and phenylalanine (2.0 dm3/g) are much better options than the
previously used oxalic acid and eosin Y (0.9 dm3/g), although significantly more gas is produced by
palmitic acid combustion (3.0 dm3/g). Combustion of the latter additive, however, results in relatively
large amounts of CO2.

2. Results and Discussion

In Figure 1, one can see that the addition of amino acids resulted in a significant increase of
porosity of the FeAl intermetallic alloys: from 28 ± 3% when sintering without additive, up to 42 ± 3%
and 46 ± 2% when adding 5 wt % of either cysteine or phenylalanine, respectively. The samples above
5 wt % were falling apart (see Figure S2).



Materials 2017, 10, 746 4 of 9Materials 2017, 10, 746  4 of 9 

 

 
Figure 1. Porosity of the formed intermetallic FeAl foams as a function of the amount of amino acid 
added. Phe (blue diamonds): phenylalanine, Cys (red squares): cysteine. 

Apparently, differences in the morphology of the formed intermetallic sinters were also observed, 
as shown by the micrographs in Figure 2: larger pores, with size up to ~50 µm, are sometimes present 
in the sample formed with cysteine Figure 2A as compared to the pores formed with phenylalanine 
Figure 2B. For potential applications in filtration systems, the formation of pores is extremely useful, 
together with their interconnectivity, because it this increases the path length of the flowing gas.  
In the case of samples prepared with phenylalanine in Figure 2B, a larger amount of smaller pores 
can be noticed, likely with a high number of interconnections between them. 

  
Figure 2. SEM images of metallic foams obtained after sintering of elemental Fe and Al powders with 
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Figure 1. Porosity of the formed intermetallic FeAl foams as a function of the amount of amino acid
added. Phe (blue diamonds): phenylalanine, Cys (red squares): cysteine.

Apparently, differences in the morphology of the formed intermetallic sinters were also observed,
as shown by the micrographs in Figure 2: larger pores, with size up to ~50 µm, are sometimes present
in the sample formed with cysteine Figure 2A as compared to the pores formed with phenylalanine
Figure 2B. For potential applications in filtration systems, the formation of pores is extremely useful,
together with their interconnectivity, because it this increases the path length of the flowing gas. In the
case of samples prepared with phenylalanine in Figure 2B, a larger amount of smaller pores can be
noticed, likely with a high number of interconnections between them.
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Elemental maps of the formed intermetallic foams are shown in Figure 3, from which it appears
that there are only traces of oxygen in the formed samples Figure 3D,I. This shows that no brittle
oxides were formed, which would be detrimental to the mechanical stability of the foams.
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Figure 3. SEM images (A,F) and elemental EDS maps showing the distributions of aluminum (B,G),
iron (C,H), oxygen (D,I), and carbon (E,J) in FeAl intermetallic foams formed via cysteine (A–E) and
phenylalanine (F–J) assisted sintering.

Moreover, due to the application of amino acids, a considerable amount of nitrogen gas was
formed during the sintering process, and consequently also a low amount of carbon was found at
the pore bottoms of the foams Figure 3E,J. This is advantageous because at elevated temperature the
system cannot form brittle carbides either, thanks to the lack of carbon. The qualitative picture given
in the images of Figure 3 is confirmed in the results of quantitative EDS analyses reported in Table 2.

Table 2. Light elements EDS analyses of the porous FeAl intermetallic foams formed via sintering of Fe
and Al elemental powders with 5 wt % of foaming agent.

Foaming Agent Carbon Content Oxygen Content

wt % at % wt % at %

Cysteine 0.2 ± 0.1 0.9 ± 0.1 0.3 ± 0.1 1.1 ± 0.6
Phenylalanine 0.11 ± 0.04 0.3 ± 0.1 0.14 ± 0.06 0.4 ± 0.2

According to them, the concentration of oxygen and carbon in the formed foams is relatively
small. In particular, oxygen is only present in 0.11 ± 0.04 wt % and 0.14 ± 0.06 wt % for the foams
formed with 5 wt % cysteine and phenylalanine, respectively. One has to be aware that during sintering
and chemical combustion of the added amino acids, access to the oxygen may be limited and carbon
monoxide or carbon may be formed instead of carbon dioxide. This would significantly contaminate
the surface with carbon and allow carburization to occur during the process. Another issue is the
oxidation of aluminum during the sintering. As one can notice from the elemental analyses, thanks to
the use of amino acids those effects have been minimized, likely because formed nitrogen is allowed to
dilute and leach out the formed gases, so their interaction with the foam was significantly shortened.
According to Table 1, cysteine has a much higher number ratio of nitrogen atoms to those of other
elements in the molecule, thus much more inert gas is formed during the sintering than is the case
with phenylalanine.

The morphology analyses of the foams in the core of the material, summarized in Table 3, reveals
that the average pore diameter of the foams is ~30 µm in both cases of phenylalanine and cysteine
additive. However, the standard deviations of the pore diameters are very large, confirming their
broad distribution. Analysis of the sub-surface zones reveals small differences: the foams formed with
cysteine have ECD values of the pores comparable to those in the core of the sample, as well as the
foams formed with phenylalanine having comparable mean pore size close to the surface (~25 µm).
The ECD of pores of reference material formed without additive is comparable, however the number
of pores (porosity) is greater.
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Table 3. Equivalent circle diameter of the pores of the FeAl intermetallic foams formed via elemental
powder sintering with 5 wt % of amino acid foaming agent.

Foaming Agent ECD/µm

In the Sample Core At the sample surface

Without additive 28 ± 20 30 ± 17
Cysteine 29 ± 15 28 ± 16

Phenylalanine 32 ± 15 25 ± 11

The foams have been made by sintering of elemental powders, however self-propagating
high-temperature synthesis enabled the formation intermetallic phases, where FeAl intermetallic
phase is a dominant Figure 4. Therefore, such obtained foams can be suitable for exploitation in
corrosive and high-temperature environments, like catalysts, or industrial filters in chimneys.
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To examine whether the formed intermetallic foams may be used in filtering systems, permeability
experiments were performed, which are presented in Figure 5.
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Surprisingly, compared to the foam formed without any additives [34], the foam formed with
the use of phenylalanine showed a much greater flow resistance during the permeability experiments.
With an overpressure of 20 kPa applied there was no air flow through the foam, meaning that pore
interconnection in the samples was not appropriate for the devised application. Thus, metallic foams
formed by sintering with phenylalanine cannot be used in gas filtering systems. This limitation is
probably caused by the inhomogeneity in the distribution of the pores. Larger and bigger pores are
likely found only locally and the interconnections among pores are absent. On the other hand, FeAl
intermetallic foam formed with the use of 5 wt % cysteine showed much lower flow resistance than
the foams formed without any additive. Therefore, this intermetallic foam is a promising material in
filtering systems due to the specific porous morphology, the low residual carbon and oxygen content,
and high-temperature resistance (FeAl intermetallic alloy).

In summary, FeAl intermetallic foams were formed via amino acid assisted sintering of elemental
powders. Analysis of the samples allowed us to draw the following conclusions:

• Intermetallic foams were formed with porosity up to 42 ± 3% and 46 ± 2% for 5 wt % addition of
cysteine and phenylalanine, respectively.

• Only traces of carbon and oxygen were noticed after the sintering, which allows us to conclude
that gaseous nitrogen formed during the process made the leaching out of the combustion
products easier.

• Only the intermetallic foams formed with the use of cysteine showed improved gas permeability,
likely provided by numerous pore interconnections and thus enlarged path for the flowing gases,
making them possible candidate materials for use as porous gas filters.

3. Materials and Methods

The starting materials used in the research were: 99.9% purity Fe powder (average diameter of
particle ~100 µm, NC 100.24/99.7%, ABCR GmbH & Co KG, Karlsruhe, Germany) and 99% purity
Al powder (particle size <75 µm, AG 30–100/99.7%, BENDA–LUTZ SKAWINA, Skawina, Poland)
(see Figure S1 for SEM images of the particles; and p.a. glycine and p.a. phenylalanine (all by POCh,
Gliwice, Poland). Various amounts of amino acids, cysteine (Cys) or phenyalanine (Phe), were added
to the reference composition (RC) in order to study the influence of the additive on the porosity. The
RC was Fe-45Al (at %) and following mixtures were prepared: RC + 0.5 wt % Cys or PHe, RC + 1 wt %
Cys or Phe, RC + 2 wt % Cys or Phe, and RC + 5 wt % Cys or Phe. Then, the powder mixtures were
consolidated by uniaxial cold pressing under 700 MPa pressure into cylindrical 25-mm diameter and
6-mm high pellets. The sintering was carried out in the volume controlled environmental reactor, as
previously reported [34], for 3 h at 700 ◦C in Ar atmosphere.

Porosity of the sinters was estimated from optical micrographs obtained with a Nikon MA200
optical microscope integrated with NIS-Elements software (both from Advanced Research Nikon,
Shinagawa-Tokyo, Japan). To quantify the pore sizes of the formed FeAl intermetallic foams, optical
microscopy and NIS-Elements software were used to obtain Equivalent Circle Diameter (ECD) of the
pores. The ECD was estimated from the following equation [35]

ECD = 2

√
A
π

(4)

where A is the surface area of the analyzed grain.
Scanning Electron Microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses

were done using a QUANTA 3D FEG scanning microscope (Philips, Amsterdam, the Netherlands)
integrated with the X-ray DX4i/EDAX microanalysis device.

The permeability examinations were performed using a lab-made equipment. The samples for the
examinations were circular with 25 mm diameter and 10 mm thickness. The samples were placed into
a steel tube to seal the system from the side. Synthetic air was used as the working gas. The pressure
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drop on the sample was used as a direct measure of the permeability. Permeability measurements
were conducted thrice for each sample.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/10/7/746/s1.
Figure S1: Iron (left) and Aluminum (right) powders used as starting materials, Figure S2: Images of samples
decomposed during sintering when too much additive was used.
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