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Abstract: It is important that we understand the mechanism of the penetration of particles into
a living cell to achieve advances in bionanotechnology, such as for treatment, visualization within
a cell, and genetic modification. Although there have been many studies on the application of
functional particles to cells, the basic mechanism of penetration across a biological membrane is still
poorly understood. Here we used a model membrane system to demonstrate that lateral membrane
tension drives particle penetration across a lipid bilayer. After the application of osmotic pressure,
fully wrapped particles on a liposome surface were found to enter the liposome. We discuss the
mechanism of the tension-induced penetration in terms of narrow constriction of the membrane at
the neck part. The present findings are expected to provide insight into the application of particles to
biological systems.
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1. Introduction

Nano/submicron particles have been actively studied because of their potential for controlling
living cells, such as for drug delivery [1–5], local heating [6], and the visualization of proteins [7].
To express these functions, particles need to be transported into cells, and this process normally
involves cellular uptake functions that are controlled by proteins [8]. Cells wrap particles within their
membranes, and membrane-wrapped particles then enter the cells through fission of the membrane.

Membrane fission in a living cell has been shown to be controlled by dynamin proteins,
which induce bilayer constriction and lateral tension to achieve fission of the tube (see Figure 5
for a definition of “neck” and “tube”) [9–12]. These results imply that the application of lateral tension
at a constricted bilayer can promote the penetration of particles through a membrane. We previously
reported a high-efficiency particle penetration system that did not involve proteins, where the
self-penetration of oxide carbon particles on artificial lipid vesicles was observed [13]. The particles
tended to be wrapped by membranes when the particles strongly adhered to the membrane surface.
Excess surface area of the membrane was then decreased to create wrapping regions. Due to the
increase in lateral tension caused by the wrapping of numerous particles, the membrane could be cut
at the neck region of fully wrapped particles.

In this study, we demonstrate particle penetration through a membrane induced by an increase
in membrane lateral tension using a cell-sized liposome without the aid of proteins. Previously,
we reported the preparation of liposomes with fully wrapped or partially wrapped particles with
the use of centrifugal force [14]. In this experiment, we used fully wrapped particles. Lateral tension
drives the release of wrapped particles from the mother liposome.
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2. Results

First, we prepared liposomes with fully wrapped particles by applying centrifugal force to the
mixture of liposomes and particles (the detailed procedure is indicated in the Materials and Methods
section) [14]. Next, we observed the response of the particles to the application of lateral tension under
a decrease of the sucrose concentration in the bulk solution (a video of this penetration is available in the
SI). Figure 1a shows a phase-contrast image of wrapped particles on the liposome before the application
of lateral tension. Each particle is indicated by a circle. After the application of lateral tension,
the particles penetrated into the liposome (Figure 1b). In addition, an experiment with a fluorescent
lipid shows that penetrated particles were covered by the membrane (Figure 2). This implies that the
penetration was caused by membrane scission at the neck of a fully wrapped particle.
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dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt) and (b) YG-particle 
fluorescence. The red circles indicate penetrated particles. Scale bar is 10 µm. 

Next, we focused on the equatorial plane of the liposomes to observe the dynamic process of 
particle penetration. Figure 3 shows time-lapse images of the penetration of a wrapped particle under 
the application of lateral tension (calculation of the lateral tension is mentioned in the Materials and 
Methods section). Membrane fission occurred within 0.03 s. Notably, we did not observe any 
structural connection between the mother liposome and the penetrated particles after fission. 
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Next, we focused on the equatorial plane of the liposomes to observe the dynamic process of
particle penetration. Figure 3 shows time-lapse images of the penetration of a wrapped particle under
the application of lateral tension (calculation of the lateral tension is mentioned in the Materials and
Methods section). Membrane fission occurred within 0.03 s. Notably, we did not observe any structural
connection between the mother liposome and the penetrated particles after fission.
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Figure 3. (a–e) Time-lapse images of the particle-uptake into a liposome (the time 0 s means the 
initiation of the particle penetration.). The black circle surrounds a 200 nm fully wrapped particle.  
The gray broken line shows the edge of the liposome. Scale bar is 10 µm. 

We measured the time-dependent change in lateral tension and the particle penetration ratio for 
a single liposome (Figure 4). Membrane lateral tension was estimated by a change in the liposome 
surface area. Lateral tension increased just after the application of osmotic pressure at 0 to 250 s, and 
stayed between 0.02–0.03 N/m, as shown in Figure 4a. The temporary decrease in the tension at 
approximately 500 s may result from the formation of transient pores at the flat space of the 
membrane [15]. Conversely, the penetration ratio only began to increase 100 s after the increase in 
lateral tension, and became almost constant after 400 s (Figure 4b). We confirmed that all the 
liposomes with fully wrapped particles show the penetration when lateral tension of >0.01 N/m was 
applied (N = 11). 

 
Figure 4. Time course of (a) lateral tension σ and (b) the particle penetration ratio. The time 0 s 
indicates the time at which hypo-osmotic solution was added to the liposome solution.  

Next, we examined the dependence of penetration behavior on lateral tension. We applied 
several different osmotic pressures to induce different lateral tensions, and confirmed whether fully 
wrapped particles penetrated the membrane under five final osmotic pressures (Table 1). We 
determined six final lateral tensions (σf) 600 s after the application of osmotic pressure, because these 
tensions became almost constant at 600 s, as shown in Figure 4a. Note that the negative penetration 
ratio of 0.003 N/m is attributed from error of measurements. We determined the penetration ratio by 
counting the number of fully wrapped particles on the membrane surface and those penetrated into 
the liposome from sectional images (the detailed calculation is indicated in the Materials and 
Methods section). Fluctuation of those particle numbers results in the error of measurements.  
  

Figure 3. (a–e) Time-lapse images of the particle-uptake into a liposome (the time 0 s means the
initiation of the particle penetration.). The black circle surrounds a 200 nm fully wrapped particle.
The gray broken line shows the edge of the liposome. Scale bar is 10 µm.

We measured the time-dependent change in lateral tension and the particle penetration ratio for
a single liposome (Figure 4). Membrane lateral tension was estimated by a change in the liposome
surface area. Lateral tension increased just after the application of osmotic pressure at 0 to 250 s,
and stayed between 0.02–0.03 N/m, as shown in Figure 4a. The temporary decrease in the tension
at approximately 500 s may result from the formation of transient pores at the flat space of the
membrane [15]. Conversely, the penetration ratio only began to increase 100 s after the increase in
lateral tension, and became almost constant after 400 s (Figure 4b). We confirmed that all the liposomes
with fully wrapped particles show the penetration when lateral tension of >0.01 N/m was applied
(N = 11).
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Figure 4. Time course of (a) lateral tension σ and (b) the particle penetration ratio. The time 0 s indicates
the time at which hypo-osmotic solution was added to the liposome solution.

Next, we examined the dependence of penetration behavior on lateral tension. We applied several
different osmotic pressures to induce different lateral tensions, and confirmed whether fully wrapped
particles penetrated the membrane under five final osmotic pressures (Table 1). We determined six
final lateral tensions (σf) 600 s after the application of osmotic pressure, because these tensions became
almost constant at 600 s, as shown in Figure 4a. Note that the negative penetration ratio of 0.003 N/m
is attributed from error of measurements. We determined the penetration ratio by counting the
number of fully wrapped particles on the membrane surface and those penetrated into the liposome
from sectional images (the detailed calculation is indicated in the Materials and Methods section).
Fluctuation of those particle numbers results in the error of measurements.

Table 1. Relationship between the final lateral tension and penetration ratio.

Concentration Difference ∆C (Cin − Cout) (mM) 2.5 10 10 12.5 25 50

Lateral tension σf (N/m) 0.003 0.017 0.027 0.032 0.027 0.026
Penetration ratio (%) −0.6 4.7 100 6.2 7.9 69
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3. Discussion

The present results show that the application of lateral tension induces the penetration of fully
wrapped particles into giant liposomes. The penetrated particles were covered by the membrane
(as shown in Figure 2), which implies that the penetration was caused by membrane scission at the
neck of a fully wrapped particle (Figure 5). Penetration was observed when applied lateral tension
was over the order of 0.01 N/m (Table 1). Now we assume that the membrane neck consists of a tube
structure with radius rt, as in Figure 5. In Reference [16], the tube radius rt is given by

rt =

√
Kb
2σ

(1)

where we assumed, for simplicity, that the neck tube is driven by the force of particle adhesion.
Kb is bending modulus (~20 kBT, kB is Boltzmann constant, T is room temperature) and σ is

lateral tension. After the application of osmotic pressure, the tube radius decreased with increasing
lateral tension. If we substitute σ ~0.01 N/m required to induce the particle penetration into
Equation (1), rt ~2 nm, which is shorter than bilayer thickness (~4 nm). Thus, when the tube radius
is constricted to become close to bilayer thickness, the tube probably transitions into a hemi-fission
state. Further increase in lateral tension would generate the scission of hemi-fission structure so that
wrapped particles penetrate into the liposome. The process from constricted tube to hemi-fission
has been reported with dynamin-mediated membrane fission, where the driving force of constriction
is the polymerization of dynamin [9]. Although here we found that fully wrapped particles show
penetration when lateral tension of >0.01 N/m was applied, there is dispersion of the penetration ratio
with the tension value (Figure 1). Two possible factors can be considered. (1) Fully wrapped particles
prepared by applying centrifugal force have some differences in membrane deformation degree at the
connection to a mother liposome, although there is no apparent difference in their microscopic images.
The subtle difference in the connection may affect the tension-induced instability of the membrane
neck; (2) Liposomes may initially have some tension, because sucrose concentration inside liposomes
is stochastically determined during the process of liposome formation. It is difficult to determine
absolute membrane tension including the initial tension, and we used relative tension value deduced
from a change in liposomal size after the application of osmotic pressure. The initially tensed liposomes
probably show high penetration ratio.
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4. Materials and Methods

DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) was obtained from Avanti Polar Lipids
(Alabaster, AL, USA). N-(rhodamine red-X)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine
triethylammonium salt (rho-DHPE) was obtained from Invitrogen (Waltham, MA, USA).
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Surfactant-free YG fluorescent polystyrene particles with a radius of 200 nm were obtained from
Polyscience (Warrington, PA, USA). Giant unilamellar vesicles were made by the electro-formation
method [17] using 100 mM sucrose solution. Liposomes with fully wrapped particles were obtained as
previously reported [14]. First, we prepared 5.0 × 10−3 g/L polystyrene particles with YG-fluorescence
in 100 mM glucose solution for the adhesion of particles to the liposome. To remove the potential for
including residual surfactants in the particle solution, the solution was centrifuged (20,685 RCF, 30 min),
and the supernatant was replaced with deionized water. This procedure was repeated three times.
The particles were then dispersed in 100 mM glucose solution. Second, we mixed 30 µL liposome
solution and 30 µL particle solution, where the particles and liposomes are heavier than the outer
solution. Finally, we applied 1600 RCF centrifugal forces to the mixture for 10 min and obtained fully
wrapped particles that were associated with liposomes (a video of fully wrapped particles is available
in the SI). The number of the liposomes with fully wrapped particles obtained in this procedure was
3–10 in 3 µL.

To observe the dynamics of fully wrapped particles under lateral tension, we built a handmade
chamber (Figure 6). First, we put a sample solution in the lower space of the chamber, and looked for
membrane-associated particles within 5 min. Immediately after finding the liposomes, we focused on
their equatorial plane to distinguish between fully wrapped and partially wrapped particles. Next,
we filled the upper cylindrical space with 0 to 95 mM glucose solution to dilute the liposome solution,
and placed a cover glass on the top. We then observed the liposome under the application of lateral
tension for 20 min.
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Figure 6. Schematic illustration of time-lapse observation under the application of tension.

To estimate lateral tension, we measured the radius of liposomes. The lateral tension can be
calculated as

σ = Ka

(
∆S
S0

)
(2)

where ∆S = 4πR2 − 4πR2
0 is the difference between the liposome surface area under osmotic

pressure and the initial surface area (R0 is the initial radius of a liposome and R is the radius of
the liposome under osmotic pressure), S0 = 4πR2

0, and Ka is the membrane elastic modulus of DOPC
(0.265 ± 18 N/m) [18]. To determine the penetration ratio, we counted the number of fully wrapped
particles on the membrane surface and the number of particles that had penetrated into the liposome
from sectional images using Image-J version 1.49o (National Institutes of Health, Bethesda, MD, USA).
Figure 7 shows the region for counting the average number of fully wrapped particles Nwrap

av and the
average number of penetrated particles Npe

av in 2000 consecutive frames (60 s: the value was estimated
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as ∆t = (typical cross sectional area of liposomes)/(diffusion coefficient of 200 nm diameter particles)),
respectively. The total number of particles in one liposome, Nwrap and Npe, are calculated as

Npe
AV

πR2hdepth
=

Npe

4
3 πR3

(3)

Nwrap
AV

2πRhdepth
=

Nwrap

4πR2 (4)

The penetration ratio P is given by

P =
Npe(t + ∆t)− Npe(0)

Nwrap(0)
(5)

where t indicates the duration of the application of osmotic pressure, Npe(t + ∆t) is the number of
penetrated particles at time t during ∆t = 60 s, Npe(0) is the number of penetrated particles before the
application of lateral tension, Nwrap(0) is the number of fully wrapped particles before the application
of lateral tension, and hdepth is the depth of the focus (hdepth ≈ 400 nm).
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5. Conclusions

We prepared fully wrapped particles on a cell-sized liposome surface, and found that the
particles entered the inner aqueous phase of the liposome under the application of lateral tension.
The penetration was caused by tension-induced constriction of the neck part, which increases the
probability of membrane hemi-fission. The scission of the hemi-fission leads to the detachment of fully
wrapped particles. Our findings could lead to new technologies based on the mechanical properties of
the membrane for transporting objects such as large plasmids and nanoparticles into a cell.
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