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Abstract: A mathematical scheme is proposed here to model a damaged mechanical configuration
for laminated and sandwich structures. In particular, two kinds of functions defined in the reference
domain of plates and shells are introduced to weaken their mechanical properties in terms of
engineering constants: a two-dimensional Gaussian function and an ellipse shaped function. By
varying the geometric parameters of these distributions, several damaged configurations are analyzed
and investigated through a set of parametric studies. The effect of a progressive damage is studied in
terms of displacement profiles and through-the-thickness variations of stress, strain, and displacement
components. To this end, a posteriori recovery procedure based on the three-dimensional equilibrium
equations for shell structures in orthogonal curvilinear coordinates is introduced. The theoretical
framework for the two-dimensional shell model is based on a unified formulation able to study and
compare several Higher-order Shear Deformation Theories (HSDTs), including Murakami’s function
for the so-called zig-zag effect. Thus, various higher-order models are used and compared also to
investigate the differences which can arise from the choice of the order of the kinematic expansion.
Their ability to deal with several damaged configurations is analyzed as well. The paper can be
placed also in the field of numerical analysis, since the solution to the static problem at issue is
achieved by means of the Generalized Differential Quadrature (GDQ) method, whose accuracy and
stability are proven by a set of convergence analyses and by the comparison with the results obtained
through a commercial finite element software.

Keywords: laminated and sandwich structures; damage; stress and strain recovery procedure;
generalized differential quadrature method; higher-order shear deformation theories

1. Introduction

Shell structures are becoming very popular due to their typical curved shapes that can characterize
the structural behavior of these elements. For instance, the capability of transferring and holding
external loads is substantially different from the one of a flat panel. Analogously, the free vibrations,
stresses and strains, as well as the buckling loads, are highly affected by the shell curvature [1,2].
It should be pointed out that the geometry of a shell structure is completely defined when the
corresponding middle surface is accurately described [1–3]. The characterization of these shapes is
often linked to the greatest issues that could be encountered during the mechanical analysis of shells.
These difficulties are even bigger if a doubly-curved surface must be studied, since each point of the
domain is defined by two different radii of curvature. To the best of the authors’ knowledge, this
obstacle can be overcome if the doubly-curved surface at issue is described analytically by means of
the differential geometry principles, as illustrated in the book by Kraus [3].

The mechanical behavior of these structures is even more intriguing to analyze if composite
materials are introduced [1,4]. Indeed, the structural response of a composite shell is completely
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different from the corresponding structure made of conventional materials, such as isotropic mediums.
The aim of these innovative materials is to enhance the mechanical behavior of the structure by
combining two or more constituents, which could not provide the same response if taken separately.
That is the case of a fiber-reinforced material. In this example, high-strength fibers are combined with
an isotropic matrix. In general, the fibers (such as carbon or glass filaments) carry the external stresses,
whereas the matrix keeps them together and acts as a shield to protect the reinforcing phase from
the environmental factors, which could cause a deterioration of mechanical properties [4]. A stack
of these fiber-reinforced mediums can be made to obtain the so-called laminated composites. In this
circumstance, each layer (or ply) represents one of the various constituent of the composite. As a
consequence, the structural response is affected by the number of layers, the orientation of the fibers,
and the way they are combined. In general, each fiber-reinforced lamina is orthotropic, thus the
corresponding constitutive elastic equations are required to describe properly the relation between
stresses and strains. The mechanical analysis of laminated composite plates and shells is currently
a recurring topic in the pertinent literature. In particular, the effect of the fiber orientation and the
stacking sequence on the structural response has been hugely investigated in many papers to analyze
the static [5–17] and dynamic [18–43] behavior of such structures.

In recent years, the idea of variable mechanical properties for a composite medium has begun
to spread in order to optimize the structural performances and reach the best mechanical responses
towards the environmental demands. Firstly, the well-known class of functionally graded materials
(FGMs) should be mentioned [44–60], where a continuous variation of the material properties along
the thickness of the structure is introduced to reduce the stress peaks at the layer interfaces of a
laminate. Indeed, this gradual variation of the mechanical properties is applied to overcome some of
the limitations of laminated composites, such as delamination and interlaminar cracks. Starting from
the same ideas of FGMs, the class of functionally-graded Carbon Nanotube-reinforced composites
is becoming very popular due to the introduction of nanoparticles as the reinforcing phase in the
composite medium [61–69]. Even in this circumstance, the variation of the mechanical properties
is obtained by defining the volume fraction distribution of the constituents by means of different
through-the-thickness laws. It is clear that the mechanical properties of such composites turn out to be
functions of the thickness coordinate. Alternatively, a different kind of composite material has been
developed to obtain a variation of its properties within the domain defined by the middle surface of
the structure. Such variability can be achieved by changing the orientation of the fiber in each point
of the domain. This approach is known in the literature as variable angle tow (VAT) concept [70–83].
Similar variations could be obtained by varying the spatial distribution of the reinforcing fibers by
increasing (or decreasing) the space among them [84], or adding a fiber-reinforced ply only in some
areas of the domain [85]. This last example can be generalized by applying a smooth thickness profile
to the composite structure at issue. As illustrated in [86–94], the thickness variation can affect the
structural response through an optimal distribution of the materials.

The present paper also falls within the topic of variable stiffness structures, since it aims to
investigate the static behavior of composite plates and shells with variable mechanical properties.
Nevertheless, this variation is concentrated in some delimited areas of the composite to model a
sudden deterioration of the material properties. The weakening at issue can occur when damage
spreads within the medium that composes the structure. Consequently, the elastic properties of
the structure are considerably reduced only in limited zones, whereas the undamaged areas of the
structure present unchanged features. This configuration can be mathematically achieved by assigning
particular smooth functions, such as the well-known two-dimensional Gaussian distribution or an
ellipse shaped law, to the elastic parameters that define the mechanical properties of the structure.
As highlighted in the paper by Ladevèze and Le Dantec [95], a generic damage can be described
as a reduction of the material stiffness originating from microcracking and debonding, for instance.
Different kinds of damage are also possible, as presented by Daudeville and Ladevèze [96], such
as transverse matrix cracking and fiber ruptures. A complete review of the failures that can occur



Materials 2017, 10, 811 3 of 51

in a laminated composite medium is presented in the books by Reddy and Miravete [97] and by
Murakami [98], in which it is specified also that the main issues in developing a mathematical
model for damage are related to the various geometric scales involved in the failure progression.
Independently from the scale of the damage, a failure is always associated with a global stiffness
reduction of the structure. The stiffness changes at issue affect deflections, vibration characteristics, and
the stress and strains distribution, as illustrated clearly in the work by Highsmith and Reifsnider [99].
In all the mentioned works, the reasons that cause damage are diverse. Since many variables are
involved in the growth and progression of damage, this topic is often investigated from both the
numerical [100–107] and experimental [108–113] points of view. Analogously, several mechanical
approaches at a different scale were also proposed. Typically, the most exploited ones are variational
methods [97], continuum damage models [97,114–117], or approaches that take into account a plastic
behavior of the structure [95,97,118,119]. The more appropriate approach should be chosen according
to the failure to investigate. It should be mentioned that the causes that give rise to a damage have not
been investigated in the present paper. Analogously, the point of the domain in which this damage
arises is assumed a priori. Bearing in mind these hypotheses, several investigations are presented in
this research to show the effect of the damage parameters (point of application, intensity, and width)
on the linear static behavior of laminated shell structures.

Once the constitutive laws are specified, the governing equations are obtained in the framework
of higher-order shear deformation theories (HSDTs), since these peculiar mechanical configurations
could be ineffectively studied through the well-known first-order shear deformation theory (FSDT),
as highlighted in many works during the last decades [61,78–80,92–94,120–126]. Thus, an analytical
model able to deal with several enriched displacement fields is employed to describe the mechanical
behavior of these structures. The fundamental assumptions of this theoretical formulation can be found
in [1,5,18–20,127–129]. As far as the achievement of the solutions is concerned, a computational method
is introduced. In particular, the strong form of the governing equation is solved numerically by means
of the Generalized Differential Quadrature (GDQ) method [130,131]. The same numerical scheme is
employed to evaluate both the geometric parameters of the doubly-curved surfaces used as reference
domains and the through-the-thickness variations of stress, strain, and displacement components. For
this purpose, a posteriori recovery procedure based on the three-dimensional equilibrium equations
is proposed.

2. Shell Geometry

In this paper, differential geometry is used to evaluate those geometric parameters needed for
the description of the shell middle surface, which are required in the fundamental operators of the
governing equations [1,3]. Let us consider a generic shell element in a global reference system O x1 x2 x3

as shown in Figure 1. Each point P within the three-dimensional medium of thickness h is identified
by the vector R(α1, α2, ζ), which takes the following aspect

R(α1, α2, ζ) = r(α1, α2) + ζ n(α1, α2) (1)

The coordinate ζ specifies the normal direction along the shell thickness, whereas α1, α2 are
the orthogonal and principal curvilinear coordinates of the shell middle surface. By hypothesis, the
coordinates α1, α2 coincide with the parametric lines of curvature of the middle surface. It should
be specified that their meaning is different according to the surface to describe [1,92–94]. As shown
in Figure 1, O α1 α2 ζ denotes the local reference system of the reference surface of the shell, which
corresponds to its middle surface.
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Figure 1. Doubly-curved shell element, edge identification and lamination scheme. The notation 
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Figure 1. Doubly-curved shell element, edge identification and lamination scheme. The notation(
θ(1)/θ(2)/ . . . /θ(k)/ . . . /θ(l)

)
represents the stacking sequence of the composite, where θ(k) is the

orientation of the k -th layer.

Each point P’ of the shell middle surface is located by the position vector r(α1, α2). Once this
position vector is defined, its derivatives with respect to α1, α2 are required. For the first two orders,
one gets

r,1 =
∂r

∂α1
, r,2 =

∂r
∂α2

, r,11 =
∂2r
∂α2

1
, r,22 =

∂2r
∂α2

2
(2)

The normal direction ζ is identified by the following outward unit normal vector n(α1, α2),
described by the following vector product

n =
r,1 × r,2

|r,1 × r,2|
(3)

Once the position vector r(α1, α2) is provided, by means of quantities in Equation (2), the
well-known Lamè parameters A 1(α1, α2), A 2(α1, α2) are computed as scalar products

A 1 =
√

r,1 · r,1, A 2 =
√

r,2 · r,2 (4)

Definitions (4) are based on differential geometry principles. It should be noted that the scalar
parameters in (4) are clearly physical quantities whose magnitude depends on the coordinates α1, α2

defined on the reference domain (middle surface). Further details concerning the Lamè parameters are
illustrated in the book by Tornabene et al. [1].

For a doubly-curved surface, the principal radii of curvature R 1(α1, α2), R 2(α1, α2) are also
required. The definitions below are valid if the coordinates α1, α2 are orthogonal and principal

R 1 = − r,1 · r,1

r,11 · n
, R 2 = − r,2 · r,2

r,22 · n
(5)
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In case of a singly-curved shell or a degenerate shell (which corresponds to a plate), one radius of
curvature (or both of them for a flat structure) tends to infinite value. Finally, the geometric quantities
H1(α1, α2, ζ), H2(α1, α2, ζ) are also needed. They are defined as follows

H1 = 1 +
ζ

R1
, H2 = 1 +

ζ

R2
(6)

and they are introduced to take into account the three-dimensional size effect related to the shell
curvature. It should be stated that a finite domain is specified by setting limited values along each
principal coordinate. In particular, the limitations at issue can be expressed analytically as follows

α0
1 ≤ α1 ≤ α1

1, α0
2 ≤ α2 ≤ α1

2, −h
2
≤ ζ ≤ h

2
(7)

in which α0
i , α1

i , for i = 1, 2, represent the minimum and the maximum boundary values along the
coordinates α1, α2, respectively. When a laminated composite shell is considered, the overall thickness
of the structure is given by

h =
l

∑
k=1

hk (8)

where l is the total number of layers, whereas the index k stands for the geometric and mechanical
parameters of the k-th ply. As it can be noted from Figure 1, hk represents the thickness of the k-th ply
and it can be evaluated as follows

hk = ζk+1 − ζk (9)

in which ζk and ζk+1 are the lower and upper coordinates of the k-th layer, respectively.

3. Shell Structural Model

The displacement field of a generic laminated composite shell is defined by the three-dimensional
displacements U1(α1, α2, ζ), U2(α1, α2, ζ), U3(α1, α2, ζ), which assume the following aspect

U1 =
N+1
∑

τ=0
Fτu(τ)

1

U2 =
N+1
∑

τ=0
Fτu(τ)

2

U3 =
N+1
∑

τ=0
Fτu(τ)

3

(10)

in which the order of kinematic expansion τ can be chosen arbitrarily. For conciseness purposes, the
displacement components in Equation (10) can be collected into the vector U = U(α1, α2, ζ). According
to the present formulation, which is able to deal with both the shear deformations and the stretching
effect along the thickness of the structure, several HSDTs can be obtained by setting the maximum order
of expansion N. The degrees of freedom of the model are given by the generalized displacements of the
shell middle surface u(τ)

1 (α1, α2), u(τ)
2 (α1, α2), u(τ)

3 (α1, α2), which can be collected in the corresponding
vector u(τ)(α1, α2)

u(τ) =
[

u(τ)
1 u(τ)

2 u(τ)
3

]T
(11)

for τ = 0, 1, 2, . . . , N, N + 1. It should be specified that the present theory belongs to the class of
Equivalent Single Layer (ESL) approaches, since all the geometric and mechanical parameters are
evaluated on the middle surface of the structure. It is also important to specify that only the orders
τ = 0, 1 have a physical meaning. In particular, the translational displacement along α1, α2, ζ are
obtained for τ = 0, whereas τ = 1 provides the corresponding rotational components. Further details
about these aspects can be found in the book by Tornabene et al. [1]. The kinematic model in (10) is
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well-defined once the shear functions (or thickness functions) Fτ(ζ) are specified for each order of
kinematic expansion. A complete list of functions that can be chosen for this purpose is shown in [5].
In this paper, the power-law function ζ τ is used to define the displacement field up to the N-th order
of expansion. As far as the (N + 1)-th expansion order is concerned, the corresponding thickness
function FN+1(ζ) coincides with the well-known Murakami’s function Z = Z(ζ), whose analytical
expression is given by

Z = (−1)kzk (12)

where the dimensionless parameter zk(ζ) ∈ [−1, 1] is defined as

zk =

(
2

ζk+1 − ζk
ζ − ζk+1 + ζk

ζk+1 − ζk

)
(13)

This function could be required to capture the so-called zig-zag effect that could happen when
peculiar lamination schemes are considered. Further details concerning the Murakami’s function can
be found in [92–94,129,130]. For the sake of completeness, it should be mentioned that this function
allows the description of continuous three-dimensional displacements characterized by discontinuities
in their derivatives at the interface between two adjacent layers. To sum up, the thickness functions
are chosen as follows, for the corresponding orders of kinematic expansion

Fτ(ζ) =

{
ζτ for τ = 0, 1, . . . , N

(−1)kzk for τ = N + 1
(14)

It is clear that the maximum order of expansion N defines the structural model. Consequently, the
acronyms ED N and EDZ N are used to specify the theory. As illustrated in the previous papers [93–95],
the letter “E” specifies that the theory is based on an ESL approach, whereas the letter “D” states that
the governing equations are deduced in terms of the generalized displacements. The letter “Z” is
added to the notation only when the Murakami’s function is embedded in the model.

The generalized strains of the middle surface ε(τ)(α1, α2) are evaluated for each order τ as a
function of the generalized displacements as follows

ε(τ) = DΩu(τ) (15)

in which the kinematic operator DΩ is given by

DΩ =


1

A 1
∂

∂α1
1

A 1 A 2

∂A 2
∂α1

− 1
A 1 A2

∂A1
∂α2

1
A 2

∂
∂α2

− 1
R 1

0 1 0 0
1

A 1 A 2

∂A 1
∂α2

1
A 2

∂
∂α2

1
A 1

∂
∂α1

− 1
A 1 A2

∂A2
∂α1

0 − 1
R 2

0 1 0
1

R 1
1

R 2
0 0 1

A 1
∂

∂α1
1

A 2
∂

∂α2
0 0 1


T

(16)

For the sake of completeness, the quantities collected in the generalized strain vector are
shown below

ε(τ) =
[

ε
(τ)
1 ε

(τ)
2 γ

(τ)
1 γ

(τ)
2 γ

(τ)
13 γ

(τ)
23 ω

(τ)
13 ω

(τ)
23 ε

(τ)
3

]T
(17)

The complete treatise concerning the generalized strains and their definitions in extended notation
can be found in the book by Tornabene et al. [1]. The meaning of higher-order terms is also explained.
Quantities in (17) allow the evaluation also of the three-dimensional strains of the structure ε(α1, α2, ζ)

ε =
N+1

∑
τ=0

Z(τ)ε(τ) (18)
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where the strain vector is given by

ε =
[

ε1 ε2 γ12 γ1n γ2n εn

]T
(19)

whereas the matrix Z(τ)(ζ) assumes the following form

Z(τ) =



Fτ
H1

0 0 0 0 0 0 0 0

0 Fτ
H2

0 0 0 0 0 0 0
0 0 Fτ

H1

Fτ
H2

0 0 0 0 0

0 0 0 0 Fτ
H1

0 ∂Fτ
∂ζ 0 0

0 0 0 0 0 Fτ
H2

0 ∂Fτ
∂ζ 0

0 0 0 0 0 0 0 0 ∂Fτ
∂ζ


(20)

As far as the linear elastic constitutive relations are concerned, the stress componentsσ(k)(α1, α2, ζ)

for the generic k-th orthotropic layer can be written as follows

σ(k) = C(k)
ε(k) (21)

where the stress vector is given by

σ(k) =
[

σ
(k)
1 σ

(k)
2 τ

(k)
12 τ

(k)
1n τ

(k)
2n σ

(k)
n

]T
(22)

whereas the matrix C(k)
(α1, α2) collects the elastic coefficients as shown below

C(k)
=



E(k)
11 E(k)

12 E(k)
16 0 0 E(k)

13

E(k)
12 E(k)

22 E(k)
26 0 0 E(k)

23

E(k)
16 E(k)

26 E(k)
66 0 0 E(k)

36

0 0 0 E(k)
44 E(k)

45 0

0 0 0 E(k)
45 E(k)

55 0

E(k)
13 E(k)

23 E(k)
36 0 0 E(k)

33


(23)

The elements of the constitutive matrix E(k)
nm(α1, α2) represent the material constants. They can be

assumed equal to the reduced elastic coefficients if the hypothesis of plane stress is introduced

E(k)
nm = Q(k)

nm (24)

Conversely, they are set equal to the non-reduced coefficients

E(k)
nm = C(k)

nm (25)

It should be noted that the normal stress σn and the normal strain εn are neglected if the plane

stress hypothesis is introduced. Independently from this assumption, the elastic coefficients E(k)
nm must

be evaluated in the geometric local reference system O α1 α2 ζ. This aspect is extremely important when
each orthotropic layer of the laminate has a different orientation. By means of the proper relations that
allow the orientation in hand to be taken into account [1,4], the elastic coefficients can be evaluated as
a function of the corresponding elastic coefficients related to the local reference system of the oriented
ply C(k)

nm (or Q(k)
nm for the reduced coefficients). These quantities are given in terms of the engineering

constants of the medium, which are the Young’s moduli (E(k)
1 , E(k)

2 , E(k)
3 ), the shear moduli (G(k)

12 , G(k)
13 ,
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G(k)
23 ), and the Poisson’s ratios (ν(k)12 , ν

(k)
13 , ν

(k)
23 ). The plane stress-reduced elastic coefficients written in

the material reference system are defined as follows

Q(k)
11 =

E(k)
1

1−ν
(k)
12 ν

(k)
21

, Q(k)
22 =

E(k)
2

1−ν
(k)
12 ν

(k)
21

, Q(k)
12 =

ν
(k)
12 E(k)

2

1−ν
(k)
12 ν

(k)
21

Q(k)
66 = G(k)

12 , Q(k)
44 = G(k)

13 , Q(k)
55 = G(k)

23

(26)

The following expression must be introduced instead for the non-reduced coefficients

C(k)
11 =

1−ν
(k)
23 ν

(k)
32

E(k)
2 E(k)

3 ∆(k)
, C(k)

12 =
ν
(k)
21 +ν

(k)
31 ν

(k)
23

E(k)
2 E(k)

3 ∆(k)
, C(k)

13 =
ν
(k)
31 +ν

(k)
21 ν

(k)
32

E(k)
2 E(k)

3 ∆(k)

C(k)
22 =

1−ν
(k)
13 ν

(k)
31

E(k)
1 E(k)

3 ∆(k)
, C(k)

23 =
ν
(k)
32 +ν

(k)
12 ν

(k)
31

E(k)
1 E(k)

3 ∆(k)
, C(k)

33 =
1−ν

(k)
12 ν

(k)
21

E(k)
1 E(k)

2 ∆(k)

C(k)
44 = G(k)

13 , C(k)
55 = G(k)

23 , C(k)
66 = G(k)

12

(27)

in which the quantity ∆(k) is given by

∆(k) =
1− ν

(k)
12 ν

(k)
21 − ν

(k)
23 ν

(k)
32 − ν

(k)
31 ν

(k)
13 − 2ν

(k)
21 ν

(k)
32 ν

(k)
13

E(k)
1 E(k)

2 E(k)
3

(28)

With reference to definitions (26)–(28), all the remaining engineering constants can be deduced by
means of the following relations

ν
(k)
ij

E(k)
i

=
ν
(k)
ji

E(k)
j

, G(k)
ij = G(k)

ji for i, j = 1, 2, 3 (29)

In addition, the orientation of the material properties θ(k) must be specified for each layer for a
complete mechanical characterization of the laminate. The notation

(
θ(1)/θ(2)/ . . . /θ(k)/ . . . /θ(l)

)
is

used to specify the stacking sequence of the composite structure (Figure 1). For completeness purposes,
it should be recalled that an isotropic medium requires only two independent engineering constants
and its properties are evaluated independently from the orientation of the material reference system.
In the present paper, the aspect of damaged structures is introduced. A generic damage can be seen
as a relatively concentrated deterioration of the mechanical properties of the elastic medium. Thus,
peculiar functions can be introduced to model this rapid variation of the mechanical features of a
layer. In particular, each engineering constant is affected by this sudden decay. Analytically speaking,
all the engineering constants of the medium are multiplied by the factor Ψ(k), which assumes the
aspect below

Ψ(k) =

 1− δ(k) exp
(

ψ
(k)
G

)
1− δ(k) exp

(
ψ
(k)
E

) (30)

where δ(k) ∈ [0, 1] denotes the intensity of the damage. On the other hand, the functions ψ
(k)
G (α1, α2),

ψ
(k)
E (α1, α2) represent the two-dimensional normalized Gaussian function and an elliptic variation,

respectively. The variation at issue are defined as follows

ψ
(k)
G = − 1

2
(

1−
(

ρ
(k)
12

)2
)
(α1 − α

(k)
1m

Λ(k)
1

)2

+

(
α2 − α

(k)
2m

Λ(k)
2

)2

− 2ρ
(k)
12

α1 − α
(k)
1m

Λ(k)
1

α2 − α
(k)
2m

Λ(k)
2

 (31)

ψ
(k)
E = −

( (α1−α
(k)
1m

)
cos β(k)+

(
α2−α

(k)
2m

)
sin β(k)

Λ(k)
1

)2

+

(
−
(

α1−α
(k)
1m

)
sin β(k)+

(
α2−α

(k)
2m

)
cos β(k)

Λ(k)
2

)2
 (32)
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It should be noted that such variations are applied at the point
(

α
(k)
1m , α

(k)
2m

)
of the domain, with

α
(k)
1m ∈

[
α0

1, α1
1
]
, α

(k)
2m ∈

[
α0

2, α1
2
]
. On the other hand, the width of the damaged area is controlled by

the size parameters Λ(k)
1 , Λ(k)

2 , which can be evaluated as a function of the corresponding quantities

∆(k)
1 , ∆(k)

2 as follows

Λ(k)
1 =

∆(k)
1

100

(
α1

1 − α0
1

)
, Λ(k)

1 =
∆(k)

2
100

(
α1

2 − α0
2

)
(33)

with ∆(k)
1 , ∆(k)

2 > 0. Quantities ρ
(k)
12 ∈ [−1, 1] and β(k) ∈ [0, 2π] denote respectively the

correlation parameter of the Gaussian distribution and the rotation of the ellipse, which is evaluated
counterclockwise from the axis α1. For the sake of clarity, two examples of the application of the
functions at issue are depicted in Figure 2 to understand the meaning of the various geometric
quantities just introduced. The superscript k which characterizes each parameter means that the
variations can assume different shapes through the various layers of the laminate. As a result, the
engineering constants of each layer depend on the local coordinate α1, α2 of the reference surface as
can be observed from the following relations

E(k)
1 (α1, α2) = E(k)

1 Ψ(k), E(k)
2 (α1, α2) = E(k)

2 Ψ(k), E(k)
3 (α1, α2) = E(k)

3 Ψ(k)

G(k)
12 (α1, α2) = G(k)

12 Ψ(k), G(k)
13 (α1, α2) = G(k)

13 Ψ(k), G(k)
23 (α1, α2) = G(k)

23 Ψ(k)

ν
(k)
12 (α1, α2) = ν

(k)
12 Ψ(k), ν

(k)
13 (α1, α2) = ν

(k)
13 Ψ(k), ν

(k)
23 (α1, α2) = ν

(k)
23 Ψ(k)

(34)

Once the generalized strain components (15) are evaluated, it is possible to compute also the stress
resultants S(τ)(α1, α2) for each order of kinematic expansion. For this purpose, the corresponding
vector can be conveniently introduced

S(τ) =
[

N(τ)
1 N(τ)

2 N(τ)
12 N(τ)

21 T(τ)
1 T(τ)

2 P(τ)
1 P(τ)

2 S(τ)
3

]T
(35)

for τ = 0, 1, 2, . . . , N, N + 1. The stress resultant in hand is defined by the following matrix notation

S(τ) =
N+1

∑
η=0

A(τη)ε(η) (36)

where the stiffness matrix of the laminate A(τη) is given by

A(τη) =
l

∑
k=1

ζk+1∫
ζk

(
Z(τ)

)T
C(k)Z(η)H1H2dζ (37)

for τ, η = 0, 1, 2, . . . , N, N + 1. As mentioned above, the definitions and the meaning of higher-order
stress resultants are illustrated in the book by Tornabene et al. [1].
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Figure 2. Geometric meaning of the corresponding parameters for the two-dimensional distributions
employed to model a generic damage, within a square reference domain with α1, α2 ∈ [0, 1 m]: (a)
Gaussian function; (b) ellipse shaped function.
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The constitutive operator A(τη) is a 9× 9 matrix that assumes the following aspect

A(τη) =



A(τη)
11(20) A(τη)

12(11) A(τη)
16(20) A(τη)

16(11) 0 0 0 0 A(τη̃)
13(10)

A(τη)
12(11) A(τη)

22(02) A(τη)
26(11) A(τη)

26(02) 0 0 0 0 A(τη̃)
23(01)

A(τη)
16(20) A(τη)

26(11) A(τη)
66(20) A(τη)

66(11) 0 0 0 0 A(τη̃)
36(10)

A(τη)
16(11) A(τη)

26(02) A(τη)
66(11) A(τη)

66(02) 0 0 0 0 A(τη̃)
36(01)

0 0 0 0 A(τη)
44(20) A(τη)

45(11) A(τη̃)
44(10) A(τη̃)

45(10) 0

0 0 0 0 A(τη)
45(11) A(τη)

55(02) A(τη̃)
45(01) A(τη̃)

55(01) 0

0 0 0 0 A(τ̃η)
44(10) A(τ̃η)

45(01) A(τ̃η̃)
44(00) A(τ̃η̃)

45(00) 0

0 0 0 0 A(τ̃η)
45(10) A(τ̃η)

55(01) A(τ̃η̃)
45(00) A(τ̃η̃)

55(00) 0

A(τ̃η)
13(10) A(τ̃η)

23(01) A(τ̃η)
36(10) A(τ̃η)

36(01) 0 0 0 0 A(τ̃η̃)
33(00)



(38)

In extended notation, relation (36) can be written as follows for a generic HSDT whose maximum
order of expansion is given by N (embedded with the Murakami’s function)

S(0)

S(1)

...

...
S(N)

S(N+1)


=



A(00) A(01) · · · · · · A(0(N)) A(0(N+1))

A(10) A(11) · · · · · · A(1(N)) A(1(N+1))

...
...

. . .
...

...
...

...
. . .

...
...

A((N)0) A((N)1) · · · · · · A((N)(N)) A((N)(N+1))

A((N+1)0) A((N+1)1) · · · · · · A((N+1)(N)) A((N+1)(N+1))





ε(0)

ε(1)

...

...
ε(N)

ε(N+1)


(39)

With reference to the well-known FSDT, the following correspondences can be deduced

A(00) = A, A(01) = B, A(10) = B, A(11) = D (40)

in which A, D, B are classically known as membrane stiffness matrix, bending stiffness matrix, and
coupling stiffness matrix [1]. In fact, τ = 0 and τ = 1 are related respectively to the membrane stresses
and bending moments (analogously for the strains), denoted by S(0) and S(1) (ε(0) and ε(1) as far as
the generalized strains are concerned). On the other hand, for τ ≥ 2, relations among higher-order
stresses and strains exist. Thus, higher-order terms could be coupled or uncoupled according to the
mechanical properties of the structure (lamination scheme), following the same principles of the FSDT.
For instance, it is well-known that the elements in B assume zero values for symmetric laminates. The
same feature is repeated also for higher-order coupling terms. Each element inside the matrix (38) can
be evaluated as follows

A(τη)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nmFη Fτ

H1 H2
Hp

1 Hq
2

dζ

A(τ̃η)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nmFη

∂Fτ
∂ζ

H1 H2
Hp

1 Hq
2

dζ

A(τη̃)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nm

∂Fη

∂ζ Fτ
H1 H2
Hp

1 Hq
2

dζ

A(τ̃η̃)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nm

∂Fη

∂ζ
∂Fτ
∂ζ

H1 H2
Hp

1 Hq
2

dζ

(41)

for τ, η = 0, 1, 2, . . . , N, N + 1, n, m = 1, 2, 3, 4, 5, 6, and p, q = 0, 1, 2. It should be highlighted that the
considerations just illustrated, in particular the correspondences in (40), are valid if the power-law
function ζ τ is taken as thickness functions. For a different choice of thickness functions, in fact,
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definitions (41) provide stiffness matrices that are different from the classic ones (A, D, B) related to

first-order terms. The symbols B(k)
nm(α1, α2) in (41) stand for the elastic coefficients of the k-th layer.

They can be computed as shown below

B(k)
nm = E(k)

nm for n, m = 1, 2, 3, 6

B(k)
nm = E(k)

nm
χ for n, m = 4, 5

(42)

in which the shear correction factor is identified by χ. Such distinction is essential to introduce the
possibility to correct the distributions of the shear stresses. In fact, HSDTs in general do not require
this coefficient. Nevertheless, in the present paper this correction is applied to the structural models up
to the second order of kinematic expansion. Further details concerning the use of the shear correction
factor in higher-order theories can be found in the works [93–95]. Some comments related to this
correction are presented also in the next sections. Finally, it should be specified that integrals in (41)
must be solved numerically. As illustrated in the previous paper by the authors [95], the Generalized
Integral Quadrature (GIQ) method represents an accurate numerical tool to deal with this kind of issue.
Classic integration schemes could be used as well [2].

By means of Hamilton’s variational principle [1,4], a set of three equilibrium equations are
obtained for each order of kinematic expansion τ. The structures are loaded only on their external
surfaces by normal or shear pressures. These applied forces per unit surface are denoted by
q(+)

1 , q(+)
2 , q(+)

3 and q(−)1 , q(−)2 , q(−)3 . It should be noted that the superscript (+) specifies that the top
surface is loaded, whereas the superscript (−) is used to identify a load applied on the other external
surface. On the other hand, the subscript represents the coordinate along which the force is applied.
The static equivalence principle is employed to evaluate the generalized load components acting on
the shell middle surface, given by q(τ)1 , q(τ)2 , q(τ)3 , which can be collected in the corresponding vector

q(τ) =
[

q(τ)1 q(τ)2 q(τ)3

]T
(43)

The following expressions can be used to define each quantity in (43) for each order of
kinematic expansion

q(τ)1 = q(−)1 F(−)
τ H(−)

1 H(−)
2 + q(+)

1 F(+)
τ H(+)

1 H(+)
2

q(τ)2 = q(−)2 F(−)
τ H(−)

1 H(−)
2 + q(+)

2 F(+)
τ H(+)

1 H(+)
2

q(τ)3 = q(−)3 F(−)
τ H(−)

1 H(−)
2 + q(+)

3 F(+)
τ H(+)

1 H(+)
2

(44)

where H(±)
1 , H(±)

2 , and F(±)
τ represent the values that both the geometric quantities in (6) and the

thickness functions assumes on the shell external surfaces (for ζ = ±h/2). At this point, the equilibrium
equations are carried out for τ = 0, 1, 2, . . . , N, N + 1

D∗ΩS(τ) + q(τ) = 0 (45)
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where the operator D∗Ω is given by

D∗Ω =



1
A1

∂
∂α1

+ 1
A1 A2

∂A2
∂α1

− 1
A1 A2

∂A 1
∂α2

− 1
R 1

− 1
A1 A2

∂A 2
∂α1

1
A2

∂
∂α2

+ 1
A1 A2

∂A1
∂α2

− 1
R 2

1
A1 A2

∂A1
∂α2

1
A1

∂
∂α1

+ 1
A1 A2

∂A2
∂α1

0
1

A2
∂

∂α2
+ 1

A1 A2

∂A1
∂α2

1
A1 A2

∂A2
∂α1

0
1

R 1
0 1

A1
∂

∂α1
+ 1

A1 A2

∂A2
∂α1

0 1
R 2

1
A2

∂
∂α2

+ 1
A1 A2

∂A1
∂α2

−1 0 0
0 −1 0
0 0 −1



T

(46)

By means of relations (36) and (15), the equilibrium equations can be written as a function of the
generalized displacements of the middle surface

N+1

∑
η=0

L(τη)u(η) + q(τ) = 0 (47)

where the fundamental operator L(τη) is given by the following 3× 3 matrix

L(τη) = D∗ΩA(τη)DΩ (48)

for τ, η = 0, 1, 2, . . . , N, N + 1. A proper set of boundary conditions must be introduced to solve this
system of partial differential equations. For the sake of conciseness, the boundary conditions are
summarized in Table 1 for the external edges of the shell element depicted in Figure 1. In the following
sections, the boundary conditions are specified by following the order “WSEN”, where the four letters
stand for the lateral edges of the shell (Figure 1). For instance, “SSSS” and “CCCC” mean that all the
four edges are simply-supported and clamped, respectively. On the other hand, “FCFC” is used to
define a structure with the western and eastern edges free, whereas the others are clamped. A shell
with only the northern edge free is specified as “CCCF”. Finally, due to the considerable number of
variables and definitions, a nomenclature section is included in Appendix A for the sake of clarity.

Table 1. Boundary conditions for the ESL model (τ = 0, 1, 2, . . . , N, N + 1).

Edge coordinates
α0

2 ≤ α2 ≤ α1
2 and α1 = α0

1 or α1 = α1
1

Edge coordinates
α0

1 ≤ α1 ≤ α1
1 and α2 = α0

2 or α2 = α1
2

Clamped (C)

u(τ)
1 = u(τ)

2 = u(τ)
3 = 0 u(τ)

1 = u(τ)
2 = u(τ)

3 = 0

Free (F)

N(τ)
1 = N(τ)

12 = T(τ)
1 = 0 N(τ)

21 = N(τ)
2 = T(τ)

2 = 0

Simply-supported (S)

N(τ)
1 = 0, u(τ)

2 = u(τ)
3 = 0 u(τ)

1 = 0, N(τ)
2 = 0, u(τ)

3 = 0

4. Numerical Solution

The GDQ technique is used to obtain and solve the discrete form of the governing equations.
Indeed, the present numerical method provides the solution of the strong formulation of the
fundamental Equation (47) by approximating the partial derivatives. For completeness purposes, the
main aspects of this technique are presented briefly [131]. Let us consider a two-dimensional domain
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in which IN , IM denote respectively the total number of discrete points along x and y, where x, y
represents the principal coordinates of the domain itself. The n-th order derivative with respect to x,
the m-th order derivative with respect to y, and the n + m order mixed derivative of a generic function
f (x, y) evaluated at the discrete point

(
xi, yj

)
are given by

f (n)x
(

xi, yj
)
=

∂(n) f (x, y)
∂x(n)

∣∣∣∣∣
x=xi ,y=yj

=
IN

∑
k=1

ς
(n)
x(ik) f(kj) (49)

f (m)
y
(

xi, yj
)
=

∂(m) f (x, y)
∂y(m)

∣∣∣∣∣
x=xi ,y=yj

=
IM

∑
l=1

ς
(m)
y(jl) f(il) (50)

f (n+m)
xy

(
xi, yj

)
=

∂(n+m) f (x, y)
∂x(n)∂y(m)

∣∣∣∣∣
x=xi ,y=yj

=
IN

∑
k=1

ς
(n)
x(ik)

(
IM

∑
l=1

ς
(m)
y(jl) f(kl)

)
(51)

where the notation f
(

xi, yj
)
= f(ij) is employed. The weighting coefficients are specified by ς

(n)
x(ik) and

ς
(m)
y(jl). They can be evaluated by using the Lagrange polynomials. For conciseness purpose, only the

definition of the coefficients related to the first coordinate x is given here. For the first-order derivatives,
one gets

ς
(1)
x(ik) =

L (1)(xi)

(xi − xk)L (1)(xk)
(52)

whereas the weighting coefficients for higher-order derivatives can be computed recursively as

ς
(n)
x(ik) = n

ς
(n−1)
x(ii) ς

(1)
x(ik) −

ς
(n−1)
x(ik)

xi − xk

 for i 6= k (53)

ς
(n)
x(ii) = −

IN

∑
k=1,k 6=i

ς
(n)
x(ik) for i = k (54)

assuming i, k = 1, 2, . . . , IN . The Lagrange polynomials are denoted by L(x) and they are defined as
follows

L(x) =
IN

∏
j=1

(
x− xj

)
(55)

from which the corresponding first-order derivatives L (1)(xi) can be deducted and evaluated at the
point xi. The weighting coefficients ς

(m)
y(jl) can be computed following the me procedure. The weighting

coefficients ς
(n)
x(ik) and ς

(m)
y(jl) can be conveniently collected in the corresponding matrices ς

(n)
x and ς

(n)
y ,

whose size is given by IN × IN and IM× IM, respectively. A simplified approach for the implementation
of this technique can be used by collecting the grid points of the domain as specified by the blue arrow
in Figure 3.
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Figure 3. Grid point order for the implementation of the Generalized Differential Quadrature (GDQ)
technique within a two-dimensional domain [2].

Thus, the order of the point is given by (x1, y1), (x2, y1), . . . ,
(
xIN , y1

)
, (x1, y2), . . . ,

(
xIN , y2

)
,(

x1, yIM

)
, . . . ,

(
xIN , yIM

)
. The values that the generic function f (x, y) assume in each point are also

collected by following the same order, so that the following algebraic vector f is obtained

f =
[

f (x1, y1)1 f (x2, y1)2 . . . f
(
xIN , y1

)
IN︸ ︷︷ ︸

first column

. . . . . .

. . . . . . f (x1, y2)IN+1 . . . f
(

xIN , y2
)

2IN︸ ︷︷ ︸
second column

. . . . . .

. . . . . . f
(

x1, yIM

)
IN ·IM−IN+1 . . . f

(
xIN , yIM

)
IN ·IM︸ ︷︷ ︸

last column

]T

(56)

where fk = f
(

xi, yj
)

k, for i = 1, 2, . . . , IN , j = 1, 2, . . . , IM and k = i + (j− 1)IN . The size of f is given
by (IN · IM)× 1. The weighting coefficients can be computed as

C(n)
x

(IN ·IM)×(IN ·IM)
= I

IM×IM

⊗ ς
(n)
x

IN×IN

(57)

C(m)
y

(IN ·IM)×(IN ·IM)

= ς
(m)
y

IM×IM

⊗ I
IN×IN

(58)

C(n+m)
xy

(IN ·IM)×(IN ·IM)

= ς
(m)
y

IM×IM

⊗ ς
(n)
x

IN ·IN

(59)

where I is the identity matrix, whereas the symbol ⊗ stands for the Kronecker product. The size
of each operator in (57)–(59) is specified under the various matrices. C(n)

x , C(m)
y , and C(n+m)

xy are the
weighting coefficients matrices that allow the corresponding derivatives in each point of the domain to
be computed as simple matrix products

f(n)x = C(n)
x f (60)

f(m)
y = C(m)

y f (61)

f(n+m)
xy = C(n+m)

xy f (62)

where f(n)x , f(m)
y , and f(n+m)

xy represent the vectors of size (IN · IM)× 1 which collect the derivatives of
the function f (x, y) within the whole domain, following the same order employed in (56). It should be
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highlighted that this approach does not set any restriction on the choice of the grid distribution. The
points can be placed within the domain following different schemes. In the present paper, the discrete
points of the shell reference surface are given by

α1i =
α1

1 − α0
1

rIN − r1
(ri − r1) + α0

1 (63)

α2j =
α1

2 − α0
2

rIM − r1

(
rj − r1

)
+ α0

2 (64)

where the meaning of ri and rj, for i = 1, 2, . . . , IN and j = 1, 2, . . . , IM, is specified in Table 2 for various
distributions.

Table 2. Different kinds of discrete grid distributions for the Generalized Differential Quadrature
(GDQ) method [130]. Symbols k and N stand for i and IN respectively, along the α1 direction. On the
other hand, k and N specify j and IM respectively, along the α2 direction. Notations LN , LN+1 are
introduced to denote the corresponding Legendre polynomials.

(a) Quadratic (Quad) rk = 2
(

k−1
N−1

)2
, k = 1, 2, . . . , N+1

2

rk = −2
(

k−1
N−1

)2
+ 4
(

k−1
N−1

)
− 1, k = N+1

2 + 1, . . . , N − 1, N

(b) Chebyshev I kind (Cheb I)

rk = cos
(

2(N−k)+1
2N π

)
, k = 1, 2, . . . , N, r ∈ [−1, 1]

(c) Chebyshev II kind (Cheb II)

rk = cos
(

N−k+1
N+1 π

)
, k = 1, 2, . . . , N, r ∈ [−1, 1]

(d) Legendre-Gauss (Leg-Gau)

rk = roots of
(
1− r2) · LN−1(r), k = 1, 2, . . . , N, r ∈ [−1, 1]

(e) Chebyshev-Gauss (Cheb-Gau)

r 1 = −1, r N = 1, rk = cos
(

2(N−k)−1
2(N−2) π

)
,

k = 2, 3, . . . , N − 1, r ∈ [−1, 1]

(f) Legendre-Gauss-Lobatto (Leg-Gau-Lob)

rk = roots of
(
1− r2) · d

dr (LN(r)), k = 1, 2, . . . , N, r ∈ [−1, 1]

(g) Legendre (Leg)

rk = roots of LN+1(r), k = 1, 2, . . . , N, r ∈ [−1, 1]

with LN+1(r) =
(−1)N

2N N!
dN

drN

((
1− r2)N

)
(h) Chebyshev-Gauss-Lobatto (Cheb-Gau-Lob)

rk = cos
(

N−k
N−1 π

)
, k = 1, 2, . . . , N, r ∈ [−1, 1]

5. Solution of the Static Problem

The static solution of the problem is obtained applying the GDQ technique, which allows the
following discrete form of the governing equations to be written

Kδ = f (65)

where K is the stiffness matrix of size (3× (N + 2)× (IN × IM))× (3× (N + 2)× (IN × IM)), δ the
displacement vector, and f the external load vector. Both δ and f are given by a vector characterized
by the same size (3× (N + 2)× (IN × IM))× 1. It should be noted that the degrees of freedom of the
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problem are ordered following the scheme shown in Figure 3 for each order of kinematic expansion.
By means of the so-called static condensation procedure, the size of the problem can be reduced by
separating the degrees of freedom linked to the inner points of the domain (d) from the ones related
to the boundary nodes (b). As a consequence, all the quantities in (65) are evaluated to consider this
classification as follows [

Kbb Kbd
Kdb Kdd

][
δb
δd

]
=

[
fb
fd

]
(66)

The generalized displacements of the boundary points δb are easily obtained as

δb = K−1
bb (fb −Kbdδd) (67)

whereas the generalized displacements collected in δd can be deduced from the following relation(
Kdd −KdbK−1

bb Kbd

)
δd = fd −KdbK−1

bb fb (68)

It can be observed that the size of the problem turns out to be 3× (N + 2)× ((IN − 2)× (IM − 2)),
which represents a reduced value if compared to the original size of the problem shown in (65). Finally,
it should be specified that the derivatives needed to compute the stress resultants (36) involved in
the boundary conditions for free or simply-supported edges (Table 1) are computed through the
GDQ method.

6. Strain and Stress Recovery Procedure

Once the static solution is obtained, the three-dimensional elasticity equations in terms of stresses
can be used to evaluate the through-the-thickness variation of all these quantities. In fact, the three
indefinite equilibrium equations of elasticity written in an orthogonal curvilinear coordinate system
allows the three-dimensional profiles of stresses and strains to be obtained, consequently, even if the
higher-order structural model illustrated above is two-dimensional. The following treatise presents
the main aspects of the recovery procedure at issue. Once the generalized displacements of the middle
surface are computed, the kinematic model (10) is employed to obtain the three-displacements of the
solid medium in each point α1i, α2 j of the reference surface

U1(ijm)

(
α1i, α2j, ζm

)
=

N+1
∑

τ=0
F

τ(m)(ζm)u
(τ)
1(ij)

(
α1i, α2j

)
U2(ijm)

(
α1i, α2j, ζm

)
=

N+1
∑

τ=0
F

τ(m)(ζm)u
(τ)
2(ij)

(
α1i, α2j

)
U3(ijm)

(
α1i, α2j, ζm

)
=

N+1
∑

τ=0
F

τ(m)
(ζm)u

(τ)
3(ij)

(
α1i, α2j

) (69)

for i = 1, 2, . . . , IN , j = 1, 2, . . . , IM, and m = 1, 2, . . . , IT , where IT denotes the number of discrete
points along the thickness for each ply of the laminate. The Cheb-Gau-Lob distribution with IT = 25 is
used to obtain a discrete distribution of points ζm along the thickness of each layer

ζm =
ζk+1 − ζk

2

(
1 + cos

(
IT −m
IT − 1

π

))
+ ζk (70)

for m = 1, 2, . . . , IT . It should be specified that F
τ(m) represents the value that the corresponding

thickness function assumes at the point ζm.
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By means of the GDQ technique, the generalized strains (15) can be computed in each grid point.
As a consequence, the three-dimensional strain components related to each discrete point of the middle
surface can be evaluated by using expression (18). The strains at issue assume the following aspect

ε(ijm) =
[

ε1(ijm) ε2(ijm) γ12(ijm) γ13(ijm) γ23(ijm) εn(ijm)

]T
(71)

In particular, quantities ε1(ijm), ε2(ijm), γ12(ijm) collected in (71) are required to obtain the
membrane stresses σ1(ijm), σ2(ijm), and τ12(ijm) in each point of the domain, by means of the constitutive
relations (21). The three-dimensional equilibrium equations along the principal curvilinear coordinates
are presented below

∂τ1n
∂ζ + τ1n

(
2

R 1+ζ + 1
R 2+ζ

)
= − 1

A 1(1+ζ/R 1)
∂σ1
∂α1

+ σ2−σ1
A 1 A 2(1+ζ/R 2)

∂A 2
∂α1

+

− 1
A 2(1+ζ/R 2)

∂τ12
∂α2
− 2τ12

A 1 A 2(1+ζ/R 1)
∂A 1
∂α2

(72)

∂τ2n
∂ζ + τ2n

(
1

R 1+ζ + 2
R 2+ζ

)
= − 1

A 2(1+ζ/R 2)
∂σ2
∂α2

+ σ1−σ2
A 1 A 2(1+ζ/R 1)

∂A 1
∂α2

+

− 1
A 1(1+ζ/R 1)

∂τ12
∂α1
− 2τ12

A 1 A 2(1+ζ/R 2)
∂A 2
∂α1

(73)

∂σn
∂ζ + σn

(
1

R 1+ζ + 1
R 2+ζ

)
= − 1

A 1(1+ζ/R 1)
∂τ1n
∂α1
− τ1n

A 1 A 2(1+ζ/R 2)
∂A 2
∂α1

+

− 1
A 2(1+ζ/R 2)

∂τ2n
∂α2
− τ2n

A 1 A 2(1+ζ/R 1)
∂A 1
∂α2

+ σ1
R 1+ζ + σ2

R 2+ζ

(74)

The GDQ method is employed to approximate the partial derivatives of the membrane stresses
as follows

∂σ1
∂α1

∣∣∣
(ijm)
∼=

IN
∑

k=1
ς

α1(1)
ik σ1(kjm),

∂σ2
∂α2

∣∣∣
(ijm)
∼=

IM
∑

k=1
ς

α2(1)
jk σ2(ikm)

∂τ12
∂α1

∣∣∣
(ijm)
∼=

IN
∑

k=1
ς

α1(1)
ik τ12(kjm),

∂τ12
∂α2

∣∣∣
(ijm)
∼=

IM
∑

k=1
ς

α2(1)
jk τ12(ikm)

(75)

where ς
α1(1)
ik , ς

α2(1)
jk represents the weighting coefficients for the derivatives within the shell middle

surface. The discrete form of the equilibrium Equations (72)–(74) is obtained numerically through the
GDQ technique as well

IT
∑

k=1
ς

ζ(1)
mk τ1n(ijk) + τ1n(ijm)

(
2

R 1(ij)+ζm
+ 1

R 2(ij)+ζm

)
=

= − 1
A 1(ij)(1+ζm/R 1(ij))

∂σ1
∂α1

∣∣∣
(ijm)

+
σ2(ijm)−σ1(ijm)

A 1(ij)A 2(ij)(1+ζm/R 2(ij))
∂A 2
∂α1

∣∣∣
(ij)

+

− 1
A 2(ij)(1+ζm/R 2(ij))

∂τ12
∂α2

∣∣∣
(ijm)
− 2τ12(ijm)

A 1(ij)A 2(ij)(1+ζm/R 1(ij))
∂A 1
∂α2

∣∣∣
(ij)

(76)

IT
∑

k=1
ς

ζ(1)
mk τ2n(ijk) + τ2n(ijm)

(
1

R 1(ij)+ζm
+ 2

R 2(ij)+ζm

)
=

= − 1
A 2(ij)(1+ζm/R 2(ij))

∂σ2
∂α2

∣∣∣
(ijm)

+
σ1(ijm)−σ2(ijm)

A 1(ij)A 2(ij)(1+ζm/R 1(ij))
∂A 1
∂α2

∣∣∣
(ij)

+

− 1
A 1(ij)(1+ζm/R 1(ij))

∂τ12
∂α1

∣∣∣
(ijm)
− 2τ12(ijm)

A 1(ij)A 2(ij)(1+ζm/R 2(ij))
∂A 2
∂α1

∣∣∣
(ij)

(77)

IT
∑

k=1
ς

ζ(1)
mk σn(ijk) + σn(ijm)

(
1

R 1(ij)+ζm
+ 1

R 2(ij)+ζm

)
=

=
σ1(ijm)

R 1(ij)+ζm
+

σ2(ijm)

R 2(ij)+ζm
− 1

A 1(ij)(1+ζm/R 1(ij))
∂τ1n
∂α1

∣∣∣
(ijm)
− τ1n(ijm)

A 1(ij)A 2(ij)(1+ζm/R 2(ij))
∂A 2
∂α1

∣∣∣
(ij)

+

− 1
A 2(ij)(1+ζm/R 2(ij))

∂τ2n
∂α2

∣∣∣
(ijm)
− τ2n(ijm)

A 1(ij)A 2(ij)(1+ζm/R 1(ij))
∂A 1
∂α2

∣∣∣
(ij)

(78)

in which ς
ζ(1)
mk are the weighting coefficients for the derivatives along ζ. The Lamè parameters

A 1(ij), A 2(ij) and the radii of curvature R 1(ij), R 2(ij) are also computed in each discrete point of the
reference surface. Relations (76) and (77), which must be written for each layer of the laminate, allow
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the shear stresses τ1n, τ2n to be obtained by imposing the boundary conditions on the bottom surface
of the structure

τ1n(ij1) = q(−)1(ij)

τ2n(ij1) = q(−)2(ij)

(79)

where q(−)1(ij), q(−)2(ij) denote the shear forces applied at the bottom surface. The actual
through-the-thickness profiles of the shear stresses in hand can be computed by enforcing a second
couple of boundary condition at the top surface of the upper layer of the laminated shell

τ1n(ijIT)
= q(+)

1(ij)

τ2n(ijIT)
= q(+)

2(ij)

(80)

Conditions (80) are imposed through the following expressions, which represent the effective
through-the-thickness variations of the shear stresses in each point of the domain

τ1n(ijm) = τ1n(ijm) +
q(+)

1(ij) − τ1n(ijIT)

h

(
ζm +

h
2

)
(81)

τ2n(ijm) = τ2n(ijm) +
q(+)

2(ij) − τ2n(ijIT)

h

(
ζm +

h
2

)
(82)

for m = 1, 2, . . . , IT . It is evident that the symbol ζm used in (81) and (82) takes into account the discrete
grid distribution applied along each ply, since the correction of the stress components at issue affects
the whole laminate thickness. Relations (79) must be seen as interlaminar compatibility conditions
when the shear stresses of inner layers are computed. The GDQ method can be applied also to evaluate
the derivatives of (81) and (82) with respect to α1, α2, respectively

∂τ1n
∂α1

∣∣∣∣
(ijm)

∼=
IN

∑
k=1

ς
α1(1)
ik τ13(kjm),

∂τ2n

∂α2

∣∣∣∣
(ijm)

∼=
IM

∑
k=1

ς
α2(1)
jk τ23(ikm) (83)

Equation (78) can be now employed to obtain the normal stress by applying the corresponding
boundary condition at the bottom surface

σn(ij1) = q(−)3(ij) (84)

Analogously, another boundary condition must be introduced at the external surface of the
top layer

σn(ijIT)
= q(+)

3(ij) (85)

where q(−)3(ij), q(+)
3(ij) stand for the applied normal loads on the external surfaces of the shell. Finally, the

effective through-the-thickness profile of the normal stress at issue is achieved

σn(ijm) = σn(ijm) +
q(+)

n(ij) − σn(ijIT)

h

(
ζm +

h
2

)
(86)

for m = 1, 2, . . . , IT . The same considerations introduced for the previous profiles (81) and (82) are
valid also in this circumstance. It should be mentioned that the stresses τ1n, τ2n, σn just computed
are continuous at the interfaces among the various layers of the structure. For any point of the
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three-dimensional solid, the shear strains γ1n, γ2n can be evaluated through the constitutive laws (21)
as follows

γ1n (ijm) =
C(m)

55 τ1n(ijm) − C(m)
45 τ2n(ijm)

C(m)
55 C(m)

44 −
(

C(m)
45

)2 (87)

γ2n(ijm) =
C(m)

44 τ2n(ijm) − C(m)
45 τ1n(ijm)

C(m)
55 C(m)

44 −
(

C(m)
45

)2 (88)

where C(m)
pq represent the values that the elastic coefficients assume at the m-th discrete point of the

layer. The normal strain εn is computed by means of the constitutive relations (21) as well

εn(ijm) =
σn(ijm) − C(m)

13 ε1(ijm) − C(m)
23 ε2(ijm) − C(m)

36 γ12(ijm)

C(m)
33

(89)

It should be noted that the quantity in (89) is evaluated neglecting the hypothesis of plane
stress, thus the non-reduced elastic coefficients are employed. Moreover, the strain components
(87)–(89) could be discontinuous at the layer interfaces since no compatibility interlaminar conditions
are enforced.

Finally, the actual through-the-thickness variations of the membrane stresses σ1, σ2, τ12 is
computed through the constitutive laws (21) by using the effective value of the normal strain εn.
Consequently, the membrane stresses are computed without taking into account the hypothesis of
plane stress, even for those structural theories that require that assumption.

7. Evaluation of the Elastic Coefficients

As mentioned in the previous sections, the integrals which appear in the definitions of the elastic
coefficients A(τη)

nm (pq), A(τ̃η)
nm (pq), A(τη̃)

nm (pq), A(τ̃η̃)
nm (pq) shown in (41) are computed numerically by means of

the GIQ method, whose key aspects are summarized here for a one-dimensional domain in which the
only variable x is defined in the interval [ax, bx]. Let us assume that the reference domain is discretized
by NP points. One of the grid distribution of Table 2 could be equally chosen. The integral of a generic
function f (x) within the interval

[
xi, xj

]
, with xi, xj ∈ [ax, bx] is given by

xj∫
xi

f (x)dx =
NP

∑
k=1

wij
k f (xk) (90)

The procedure to compute the weighting coefficients for the integration wij
k are briefly presented

in this paragraph. The following weighting coefficients are required

ς
(1)
x(ij) =

xi−c̃
xj−c̃ ς

(1)
x(ij) for i 6= j

ς
(1)
x(ij) = ς

(1)
x(ii) +

1
xi−c̃ for i = j

(91)

for i, j = 1, 2, . . . , NP, where ς
(1)
x(ij) represents the corresponding weighting coefficients for the first-order

derivatives that can be easily deducted from Equations (53) and (54). On the other hand, c̃ denotes an
arbitrary constant which can be assumed equal to c̃ = bx + 10−10 for accuracy purposes [131]. The
weighting coefficients can be conveniently collected in the corresponding matrix ς

(1)
x , whose size is

given by NP × NP. Its inverse must be computed as

W =
(

ς
(1)
x

)−1
(92)
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A generic element of the matrix W is denoted by wij for i, j = 1, 2, . . . , NP. These quantities are

used to evaluate the weighting coefficients wij
k for the integral (90) as shown below

wij
k = wjk − wik (93)

assuming k = 1, 2, . . . , NP, where the indices i, j are related to the boundary points of the interval
chosen for the integration. In this paper, the Cheb-Gau-Lob grid distribution is employed in each layer
to obtain the quantities in in (41) as presented in (70), with m = 1, 2, . . . , NP. The total number of points
is set equal to NP = 51 for each ply.

8. Applications

The present GDQ based approach is implemented in MATLAB code developed by the
authors [132], which is employed to achieve the linear static solution of several damaged laminated
plates and shells. All the numerical results are shown in this section, which is organized as follows:
firstly, a set of convergence analyses in terms of displacements is carried out to prove the stability
features of the numerical method for several lamination schemes and HSDTs; then, the recovery
procedure is used to obtain the through-the-thickness variations of strain, stress, and displacement
components of different structures. For the sake of conciseness, the structural elements are presented
in Figure 4, where the employed discrete grid distribution is also specified. In particular, a square plate
(Figure 4a), a singly-curved cylindrical panel with parabolic profile (Figure 4b), and a doubly-curved
panel of revolution with parabolic meridian (Figure 4c), are considered.

All the mechanical and geometric characteristics of these structures are summarized in Table 3
for brevity purposes. On the other hand, Table 3 provides position vectors, boundary conditions,
applied loads, lamination schemes, as well as the points of the domain for the evaluation of the
through-the-thickness quantities, for each structural element. On the other hand, the mechanical
properties of each constituent are listed in terms of engineering constants in Table 4. Finally, all the
functions used for the damage modeling are specified in Table 5, together with all the parameters
needed to represent correctly the Gaussian (or elliptic) distributions. Several HSDTs are employed
in the following examples. In particular, it should be remarked that the theories up to the second
order without the Murakami’s function (FSDTχ=1.2

RS and ED2χ=1.2) are always taken with the shear
correction factor χ = 1.2, whereas the corresponding zig-zag models can be used also without
correction for peculiar lamination schemes, as specified in [12,81,93–95]. On the other hand, the
first-order theories FSDTχ=1.2

RS , FSDTZχ=1.2
RS , and FSDTZχ=1

RS , require the hypothesis of plane-stress and
the reduced stiffnesses are employed, consequently. In general, the results are presented in terms of
displacement variations and through-the-thickness profiles of strains, stresses, and displacements to
show the effect of the increase of the damage extent.
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Figure 4. Representation of the geometry of the considered structures: (a) Square plate; (b)
singly-curved cylindrical panel with parabolic profile; (c) doubly-curved panel of revolution with
parabolic meridian; (d) geometric parameters for the parabolic curves. The grid distribution and the
number of sampling points required by the GDQ method are also specified.

Table 3. Geometric and mechanical properties of the structures.

(a) Square Plate

Position vector: r(x, y) = x e 1 + y e 2, with x ∈ [0, Lx], y ∈
[
0, Ly

]
, Lx = Ly = 1 m

Boundary conditions: SSSS (for the convergence analyses) and CCCC (for the stress and strain recovery
procedure)
Applied loads: q(+)

3 = −10 kPa
Thickness and lamination scheme (isotropic): h = 0.05 m (Aluminum)
Thickness and lamination scheme (laminated): h = 0.05 m, (−45/45), with h1 = h2 = 0.025 m (Glass-epoxy)
Thickness and lamination scheme (laminated): h = 0.05 m, (−45/0/45), with h1 = h3 = 0.015 m, h2 = 0.02 m
(Glass-epoxy)
Evaluation point for strains, stresses and displacements: A ≡

(
0.2569Lx, 0.2569Ly

)
(b) Singly-Curved Cylindrical Panel with Parabolic Profile

Position vector: r(ϕ, y) = k tan ϕ
2 e1 − y e2 +

k tan2 ϕ
4 e3, with ϕ ∈ [ϕ0, ϕ1], y ∈

[
0, Ly

]
, ϕ0 = −0.78540,

ϕ1 = 0.78540, Ly = 4 m, k =
(
a2 − d2)/b, a = 2 m, b = 1 m, c = −2 m, d = 0 m

Boundary conditions: FCFC
Applied loads: q(+)

1 = 10 kPa, q(+)
3 = −5 kPa

Thickness and lamination scheme: h = 0.16 m, (0/Foam/0), with h1 = h3 = 0.04 m (Glass-epoxy), h2 = 0.08 m
(Foam)
Evaluation point for strains, stresses and displacements: B ≡

(
0.7431(ϕ1 − ϕ0) + ϕ0, 0.7431Ly

)
(c) Doubly-Curved Panel of Revolution with Parabolic Meridian

Position vector: r(ϕ, ϑ) =
k tan ϕ cos ϑ

2 e1 −
k tan ϕ sin ϑ

2 e2 +
k tan2 ϕ

4 e3, with ϕ ∈ [ϕ0, ϕ1], ϑ ∈ [ϑ0, ϑ1],
ϕ0 = 0.41822, ϕ1 = 0.41822, ϑ0 = −π/3, ϑ1 = π/3, k =

(
a2 − d2)/b, a = 3 m, b = 2 m, c = 1 m, d = 0 m

Boundary conditions: CCCF
Applied loads: q(+)

2 = 5 kPa, q(+)
3 = −10 kPa

Thickness and lamination scheme: h = 0.16 m, (0/60/30/90), with h1 = h2 = h3 = h4 = 0.04 m
(Graphite-epoxy)
Evaluation point for strains, stresses and displacements: C ≡ (0.2569(ϕ1 − ϕ0) + ϕ0, 0.7431(ϑ1 − ϑ0) + ϑ0)
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Table 4. Mechanical properties of the materials.

Aluminum Foam

Young’s modulus: E = 70 GPa
Poisson’s ratio: ν = 0.3

Young’s modulus: E = 0.232 GPa
Poisson’s ratio: ν = 0.2

Glass-Epoxy Graphite-Epoxy

Young’s moduli: E1 = 53.78 GPa,
E2 = E3 = 17.93 GPa
Shear moduli: G12 = G13 = 8.96 GPa, G23 = 3.45 GPa
Poisson’s ratios: ν12 = ν13 = 0.25, ν23 = 0.34

Young’s moduli: E1 = 137.9 GPa, E2 = E3 = 8.96 GPa
Shear moduli: G12 = G13 = 7.1 GPa, G23 = 6.21 GPa
Poisson’s ratios: ν12 = ν13 = 0.3, ν23 = 0.49

Table 5. Analytical expressions of the functions used to model the damage.

(a) Function 1 (Gau-1)

ψG, δ = 0.99, α1m = 0.5 m, α2m = 0.5 m, ∆1 = ∆2 = ∆ = 5, ρ12 = 0

(b) Function 2 (Gau-2)

ψG, δ, α1m = 0.5 m, α2m = 0.5 m, ∆1 = ∆2 = ∆ = 10, ρ12 = 0
Variation : δ = 0.00, 0.25, 0.50, 0.75, 0.99

(c) Function 3 (Gau-3)

ψG, δ = 0.75, α1m = 0.5 m, α2m = 0.5 m, ∆1 = ∆2 = ∆, ρ12 = 0
Variation : ∆ = 0, 5, 10, 15, 20

(d) Function 4 (Gau-4)

ψ
(k)
G , δ(k), α

(k)
1m = 0.5 m, α

(k)
2m = 0.5 m, ∆(k)

1 = ∆(k)
2 = ∆(k), ρ

(k)
12 = 0, for k = 1, 2, 3

Case (a) − δ(k) = 0.00
Case (b) − δ(k) = 0.25, ∆(k) = 5
Case (c) − δ(k) = 0.50, ∆(k) = 10
Case (d) − δ(k) = 0.75, ∆(k) = 15
Case (e) − δ(k) = 0.99, ∆(k) = 20

(e) Function 5 (Gau-5)

ψ
(k)
G , δ(n), α

(k)
1m = 0.5 m, α

(k)
2m = 0.5 m, ∆(n)

1 = ∆(n)
2 = ∆(n), ρ

(k)
12 = 0, for k = 1, 2, 3

Case (a) − δ(n) = 0.00 for n = 1, 2, 3
Case (b) − δ(n) = 0.99, ∆(n) = 5 for n = 1

Case (c) − δ(n) = 0.99, ∆(1) = 10, ∆(2) = 5, for n = 1, 2
Case (d) − δ(n) = 0.99, ∆(1) = 15, ∆(2) = 10, ∆(3) = 5 for n = 1, 2, 3

(f) Function 6 (Ell-1)

ψ
(k)
E , δ(k) = 0.50, α

(k)
1m = 0.35(ϕ1 − ϕ0) + ϕ0, α

(k)
2m = 2 m, ∆(k)

1 , ∆(k)
2 = 1000, ρ

(k)
12 = 0, for k = 1, 3

Case (a) − ∆(k)
1 = 0

Case (b) − ∆(k)
1 = 10

Case (c) − ∆(k)
1 = 30

Case (d) − ∆(k)
1 = 50

(g) Function 7 (Gau-6)

ψ
(k)
G , δ(k) = 0.75, α

(k)
1m = 0.75(ϕ1 − ϕ0) + ϕ0, α

(k)
2m = 0.50(ϑ1 − ϑ0) + ϑ0,

∆(k)
1 = ∆(k)

2 = ∆(k) = 20, ρ
(k)
12 = 0, for k = 1, 2, . . . , n

8.1. Convergence Analyses

The convergence analyses are performed for a simply supported (SSSS) square plate (Figure 4a),
considering both isotropic and laminated configurations. The FSDTχ=1.2

RS is taken into account for
both these two cases, whereas the corresponding theory embedded with the Murakami’s function
(FSDTZχ=1.2

RS ) is also used for the laminated composite, whose stacking sequence is given by (−45/45).
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The function Gau-1 shown in Table 5 is employed to define the variable mechanical properties
of each layer. It should be noted that the convergence analyses are carried out for an extremely
concentrated damage characterized by a high deterioration of the mechanical properties. All the
grid distributions shown in Table 2 are considered assuming IN = IM and increasing the number
of points up to 51. The convergence graphs are presented in Figure 5 in terms of central deflection
u(0)

3
(
0.5Lx, 0.5Ly

)
. Analogously, the numerical values of the same quantity are shown in Table 6 for all

the grid distributions.
From the various plots depicted in Figure 5, it can be noted that both the Legendre-Gauss

(Leg-Gau) and Chebyshev-Gauss (Cheb-Gau) grid distributions provide a convergent behavior when
the static analysis of damaged structures has to be performed. Nevertheless, the Leg-Gau distribution
turned out to be the best discrete grid also when the GDQ method is employed to obtain the static
response of plates and shells subjected to point or line loads [12]. Since both damages and concentrated
forces represent mechanical discontinuities which this approach is able to deal with, the Leg-Gau
distribution is used also in this paper.

Finally, it should be highlighted that a good convergence is reached by using many sampling
points. Nevertheless, the test at issue is characterized by a noticeable mechanical discontinuity. For
this reason, the value IN = IM = 51 is set in all the following examples independently from the
damage features.

8.2. Isotropic Square Plate

The same flat structure of the convergence analysis is also used in this application, assuming
completely clamped boundary conditions (CCCC). Two damage configurations are considered: Gau-2
and Gau-3. The former provides the increase of damage intensity δ, whereas the latter deals with the
extension increase (∆1 = ∆2 = ∆). The damage is applied in the center of the plate in both these cases
(α1m = α2m = 0.5 m). The vertical displacement profiles evaluated along the x direction for y = 0.5Ly

are shown in Figure 6a,b, respectively.
As expected, the displacements increase when the damage grows or when it involves a bigger area

of the domain. The results are compared with the solution obtained with a finite element commercial
software (Strand 7) for the undamaged case, by using a three-dimensional model (3D-FEM). The
profiles in hand are shown in the graphs through a dotted notation and match perfectly with the
corresponding GDQ curves. The through-the-thickness variations of strain, stress, and displacement
components are presented in Figures 7–9 for the Gau-2 damage model, whereas Figures 10–12 deal with
the results related to the Gau-3 damage. Even in these circumstances, the 3D-FEM for the undamaged
plate is depicted by black dots and it is in good agreement with the present solutions. It can be
noted that the damage features can modify the structural response. In particular, displacements are
mostly affected by the damage properties. It should be specified that all the HSDTs considered in this
application do not require Murakami’s function since the structure is made of a sole isotropic layer.
By comparing also the strain profiles related to these cases (shown respectively in Figures 7 and 10),
it is possible to observe that a greater extension of damage (keeping the magnitude constant) has
more influence on the strain patter than an extremely high decay of mechanical properties although
concentrated in a smaller area of the domain. These two circumstances are modeled respectively
through Gau-3 and Gau-2 functions.
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the number of grid points N MI I  for various grid distributions related to the GDQ method. 

Different mechanical configurations are considered: (a) Isotropic (Aluminum); (b,c) Laminated 
(Glass-Epoxy) with  45 / 45  as stacking sequence. The laminated structure in (b,c) is investigated 
by means of the 1.2FSDTRS

   (case b) and the 1.2FSDTZ RS
   (case c). The same function Gau-1 is applied 

in each layer to model the damage features. 

  

Figure 5. Convergence analysis in terms of central deflection [m] for the SSSS square plate increasing
the number of grid points IN = IM for various grid distributions related to the GDQ method. Different
mechanical configurations are considered: (a) Isotropic (Aluminum); (b,c) Laminated (Glass-Epoxy)
with (−45/45) as stacking sequence. The laminated structure in (b,c) is investigated by means of the
FSDTχ=1.2

RS (case b) and the FSDTZχ=1.2
RS (case c). The same function Gau-1 is applied in each layer to

model the damage features.
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Table 6. Convergence analysis in terms of central deflection [m] for the SSSS square plate increasing
the number of grid points IN = IM for several grid distributions, lamination schemes and Higher-order
Shear Deformation Theories (HSDTs).

IN Cheb-Gau-Lob Quad Cheb I Cheb II Leg-Gau Cheb-Gau Leg-Gau-Lob Leg

Isotropic Plate (Aluminum)—FSDTχ=1.2
RS

21 −7.073 × 10−5 −1.154 × 10−4 −7.622 × 10−5 −1.353 × 10−4 −7.262 × 10−5 −7.545 × 10−5 −7.105 × 10−5 −9.173 × 10−5

23 −6.546 × 10−5 −9.973 × 10−5 −5.685 × 10−5 −3.301 × 10−5 −6.734 × 10−5 −6.909 × 10−5 −6.246 × 10−5 −4.732 × 10−5

25 −6.355 × 10−5 −8.846 × 10−5 −6.770 × 10−5 −1.003 × 10−4 −6.414 × 10−5 −6.515 × 10−5 −6.417 × 10−5 −7.731 × 10−5

27 −6.149 × 10−5 −8.023 × 10−5 −5.648 × 10−5 −3.504 × 10−5 −6.221 × 10−5 −6.282 × 10−5 −6.002 × 10−5 −4.902 × 10−5

29 −6.094 × 10−5 −7.432 × 10−5 −6.409 × 10−5 −8.665 × 10−5 −6.107 × 10−5 −6.141 × 10−5 −6.153 × 10−5 −7.095 × 10−5

31 −6.011 × 10−5 −7.006 × 10−5 −5.686 × 10−5 −3.779 × 10−5 −6.040 × 10−5 −6.061 × 10−5 −5.929 × 10−5 −5.086 × 10−5

33 −6.002 × 10−5 −6.703 × 10−5 −6.249 × 10−5 −8.078 × 10−5 −6.002 × 10−5 −6.012 × 10−5 −6.052 × 10−5 −6.794 × 10−5

35 −5.966 × 10−5 −6.487 × 10−5 −5.731 × 10−5 −4.035 × 10−5 −5.979 × 10−5 −5.986 × 10−5 −5.914 × 10−5 −5.231 × 10−5

37 −5.971 × 10−5 −6.335 × 10−5 −6.168 × 10−5 −7.783 × 10−5 −5.967 × 10−5 −5.970 × 10−5 −6.010 × 10−5 −6.631 × 10−5

39 −5.952 × 10−5 −6.227 × 10−5 −5.770 × 10−5 −4.244 × 10−5 −5.960 × 10−5 −5.962 × 10−5 −5.915 × 10−5 −5.341 × 10−5

41 −5.960 × 10−5 −6.150 × 10−5 −6.122 × 10−5 −7.589 × 10−5 −5.956 × 10−5 −5.957 × 10−5 −5.991 × 10−5 −6.525 × 10−5

43 −5.949 × 10−5 −6.096 × 10−5 −5.801 × 10−5 −4.414 × 10−5 −5.954 × 10−5 −5.954 × 10−5 −5.921 × 10−5 −5.426 × 10−5

45 −5.956 × 10−5 −6.058 × 10−5 −6.090 × 10−5 −7.430 × 10−5 −5.953 × 10−5 −5.953 × 10−5 −5.981 × 10−5 −6.444 × 10−5

47 −5.949 × 10−5 −6.030 × 10−5 −5.827 × 10−5 −4.556 × 10−5 −5.952 × 10−5 −5.952 × 10−5 −5.927 × 10−5 −5.496 × 10−5

49 −5.955 × 10−5 −6.010 × 10−5 −6.067 × 10−5 −7.290 × 10−5 −5.952 × 10−5 −5.952 × 10−5 −5.975 × 10−5 −6.380 × 10−5

51 −5.950 × 10−5 −5.996 × 10−5 −5.848 × 10−5 −4.678 × 10−5 −5.952 × 10−5 −5.952 × 10−5 −5.932 × 10−5 −5.554 × 10−5

Laminated Plate (−45/45)—FSDTχ=1.2
RS

21 −1.662 × 10−4 −2.752 × 10−4 −1.759 × 10−4 −2.830 × 10−4 −1.709 × 10−4 −1.778 × 10−4 −1.661 × 10−4 −2.056 × 10−4

23 −1.532 × 10−4 −2.365 × 10−4 −1.343 × 10−4 −8.009 × 10−5 −1.577 × 10−4 −1.619 × 10−4 −1.465 × 10−4 −1.132 × 10−4

25 −1.481 × 10−4 −2.086 × 10−4 −1.561 × 10−4 −2.167 × 10−4 −1.496 × 10−4 −1.520 × 10−4 −1.491 × 10−4 −1.749 × 10−4

27 −1.430 × 10−4 −1.883 × 10−4 −1.322 × 10−4 −8.429 × 10−5 −1.447 × 10−4 −1.461 × 10−4 −1.398 × 10−4 −1.160 × 10−4

29 −1.414 × 10−4 −1.736 × 10−4 −1.476 × 10−4 −1.888 × 10−4 −1.418 × 10−4 −1.426 × 10−4 −1.425 × 10−4 −1.609 × 10−4

31 −1.394 × 10−4 −1.629 × 10−4 −1.325 × 10−4 −9.043 × 10−5 −1.400 × 10−4 −1.405 × 10−4 −1.376 × 10−4 −1.198 × 10−4

33 −1.390 × 10−4 −1.551 × 10−4 −1.438 × 10−4 −1.761 × 10−4 −1.390 × 10−4 −1.392 × 10−4 −1.399 × 10−4 −1.542 × 10−4

35 −1.381 × 10−4 −1.493 × 10−4 −1.333 × 10−4 −9.648 × 10−5 −1.384 × 10−4 −1.385 × 10−4 −1.370 × 10−4 −1.229 × 10−4

37 −1.381 × 10−4 −1.449 × 10−4 −1.419 × 10−4 −1.694 × 10−4 −1.380 × 10−4 −1.381 × 10−4 −1.388 × 10−4 −1.505 × 10−4

39 −1.376 × 10−4 −1.413 × 10−4 −1.340 × 10−4 −1.016 × 10−4 −1.378 × 10−4 −1.378 × 10−4 −1.369 × 10−4 −1.253 × 10−4

41 −1.377 × 10−4 −1.381 × 10−4 −1.408 × 10−4 −1.653 × 10−4 −1.376 × 10−4 −1.377 × 10−4 −1.383 × 10−4 −1.481 × 10−4

43 −1.375 × 10−4 −1.350 × 10−4 −1.346 × 10−4 −1.057 × 10−4 −1.376 × 10−4 −1.376 × 10−4 −1.369 × 10−4 −1.272 × 10−4

45 −1.376 × 10−4 −1.317 × 10−4 −1.401 × 10−4 −1.623 × 10−4 −1.375 × 10−4 −1.375 × 10−4 −1.380 × 10−4 −1.465 × 10−4

47 −1.374 × 10−4 −1.277 × 10−4 −1.351 × 10−4 −1.090 × 10−4 −1.375 × 10−4 −1.375 × 10−4 −1.370 × 10−4 −1.286 × 10−4

49 −1.375 × 10−4 −1.228 × 10−4 −1.395 × 10−4 −1.599 × 10−4 −1.374 × 10−4 −1.374 × 10−4 −1.378 × 10−4 −1.452 × 10−4

51 −1.374 × 10−4 −1.166 × 10−4 −1.354 × 10−4 −1.118 × 10−4 −1.374 × 10−4 −1.374 × 10−4 −1.370 × 10−4 −1.298 × 10−4

Laminated Plate (−45/45)—FSDTZχ=1.2
RS

21 −1.673 × 10−4 −2.773 × 10−4 −1.770 × 10−4 −2.829 × 10−4 −1.721 × 10−4 −1.791 × 10−4 −1.672 × 10−4 −2.064 × 10−4

23 −1.542 × 10−4 −2.383 × 10−4 −1.352 × 10−4 −8.037 × 10−5 −1.587 × 10−4 −1.629 × 10−4 −1.475 × 10−4 −1.140 × 10−4

25 −1.490 × 10−4 −2.103 × 10−4 −1.570 × 10−4 −2.168 × 10−4 −1.505 × 10−4 −1.530 × 10−4 −1.500 × 10−4 −1.756 × 10−4

27 −1.439 × 10−4 −1.898 × 10−4 −1.331 × 10−4 −8.469 × 10−5 −1.456 × 10−4 −1.470 × 10−4 −1.407 × 10−4 −1.168 × 10−4

29 −1.422 × 10−4 −1.749 × 10−4 −1.484 × 10−4 −1.890 × 10−4 −1.426 × 10−4 −1.434 × 10−4 −1.433 × 10−4 −1.617 × 10−4

31 −1.402 × 10−4 −1.641 × 10−4 −1.334 × 10−4 −9.092 × 10−5 −1.409 × 10−4 −1.413 × 10−4 −1.384 × 10−4 −1.205 × 10−4

33 −1.398 × 10−4 −1.561 × 10−4 −1.445 × 10−4 −1.763 × 10−4 −1.398 × 10−4 −1.400 × 10−4 −1.407 × 10−4 −1.548 × 10−4

35 −1.389 × 10−4 −1.500 × 10−4 −1.341 × 10−4 −9.702 × 10−5 −1.392 × 10−4 −1.393 × 10−4 −1.378 × 10−4 −1.237 × 10−4

37 −1.388 × 10−4 −1.453 × 10−4 −1.426 × 10−4 −1.698 × 10−4 −1.388 × 10−4 −1.388 × 10−4 −1.396 × 10−4 −1.511 × 10−4

39 −1.384 × 10−4 −1.412 × 10−4 −1.348 × 10−4 −1.022 × 10−4 −1.385 × 10−4 −1.386 × 10−4 −1.376 × 10−4 −1.261 × 10−4

41 −1.385 × 10−4 −1.374 × 10−4 −1.415 × 10−4 −1.657 × 10−4 −1.384 × 10−4 −1.384 × 10−4 −1.390 × 10−4 −1.488 × 10−4

43 −1.382 × 10−4 −1.335 × 10−4 −1.353 × 10−4 −1.063 × 10−4 −1.383 × 10−4 −1.383 × 10−4 −1.376 × 10−4 −1.279 × 10−4

45 −1.383 × 10−4 −1.290 × 10−4 −1.408 × 10−4 −1.628 × 10−4 −1.382 × 10−4 −1.382 × 10−4 −1.387 × 10−4 −1.472 × 10−4

47 −1.381 × 10−4 −1.235 × 10−4 −1.358 × 10−4 −1.096 × 10−4 −1.382 × 10−4 −1.382 × 10−4 −1.377 × 10−4 −1.293 × 10−4

49 −1.382 × 10−4 −1.165 × 10−4 −1.403 × 10−4 −1.604 × 10−4 −1.382 × 10−4 −1.381 × 10−4 −1.386 × 10−4 −1.459 × 10−4

51 −1.381 × 10−4 −1.076 × 10−4 −1.361 × 10−4 −1.124 × 10−4 −1.381 × 10−4 −1.381 × 10−4 −1.377 × 10−4 −1.305 × 10−4

Materials 2017, 10, 811  27 of 52 

 

8.2. Isotropic Square Plate 

The same flat structure of the convergence analysis is also used in this application, assuming 
completely clamped boundary conditions (CCCC). Two damage configurations are considered: 
Gau-2 and Gau-3. The former provides the increase of damage intensity  , whereas the latter deals 
with the extension increase ( 1 2     ). The damage is applied in the center of the plate in both 
these cases ( 1 2 0.5mm m   ). The vertical displacement profiles evaluated along the x  direction 
for 0.5 yy L  are shown in Figure 6a,b, respectively. 

 
(a) Damage: Gau-2 

 
(b) Damage: Gau-3 

Figure 6. Evaluation of the central vertical displacement profile [m] for the completely clamped 
boundary conditions (CCCC) isotropic square plate varying the mechanical parameters of the 
damage: (a) Gau-2; (b) Gau-3. The results are obtained by means of several Higher-order Shear 
Deformation Theories (HSDTs). 

As expected, the displacements increase when the damage grows or when it involves a bigger 
area of the domain. The results are compared with the solution obtained with a finite element 
commercial software (Strand 7) for the undamaged case, by using a three-dimensional model 
(3D-FEM). The profiles in hand are shown in the graphs through a dotted notation and match 
perfectly with the corresponding GDQ curves. The through-the-thickness variations of strain, stress, 
and displacement components are presented in Figures 7–9 for the Gau-2 damage model, whereas 
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Figure 8. Through-the-thickness profiles of stress components [Pa] for the CCCC isotropic square 
plate computed at the point A for different HSDTs. The effect of the damage is investigated by 
varying the parameters of the function Gau-2. 
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Figure 9. Through-the-thickness profiles of displacement components [m] for the CCCC isotropic 
square plate computed at the point A for different HSDTs. The effect of the damage is investigated by 
varying the parameters of the function Gau-2. 
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Figure 10. Through-the-thickness profiles of strain components for the CCCC isotropic square plate 
computed at the point A for different HSDTs. The effect of the damage is investigated by varying the 
parameters of the function Gau-3. 
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the parameters of the function Gau-3.
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Figure 12. Through-the-thickness profiles of displacement components [m] for the CCCC isotropic 
square plate computed at the point A for different HSDTs. The effect of the damage is investigated by 
varying the parameters of the function Gau-3. 

8.3. Laminated Square Plate 

A completely clamped (CCCC) laminated plate is considered in this paragraph. The geometric 
features are the same as of the previous test, but the lamination scheme is given by  45 / 0 / 45 , in 
which each layer is made of the same material (see Table 3). Two damage types are considered and 
they are mathematically described by functions Gau-4 and Gau-5 of Table 4. As in the previous 
application, the damage is located in the central node of the structure ( 1 2 0.5mm m   ). Both the 
intensity and the size of the deterioration of the mechanical properties are increased in the first case 
(Gau-4), involving each lamina in the same manner. On the other hand, the damage described by 
Gau-5 affects the three layers progressively, starting from the bottom ply. In addition, when the 
damage expands across the upper layers the damaged areas in the lower ones are increased. The 
graphs of the vertical displacement evaluated along coordinate x  with 0.5 yy L  are depicted in 
Figure 13a,b for the two damage models, respectively. The 3D-FEM profiles are also shown for 

Figure 12. Through-the-thickness profiles of displacement components [m] for the CCCC isotropic
square plate computed at the point A for different HSDTs. The effect of the damage is investigated by
varying the parameters of the function Gau-3.

8.3. Laminated Square Plate

A completely clamped (CCCC) laminated plate is considered in this paragraph. The geometric
features are the same as of the previous test, but the lamination scheme is given by (−45/0/45), in
which each layer is made of the same material (see Table 3). Two damage types are considered and they
are mathematically described by functions Gau-4 and Gau-5 of Table 4. As in the previous application,
the damage is located in the central node of the structure (α1m = α2m = 0.5 m). Both the intensity
and the size of the deterioration of the mechanical properties are increased in the first case (Gau-4),
involving each lamina in the same manner. On the other hand, the damage described by Gau-5 affects
the three layers progressively, starting from the bottom ply. In addition, when the damage expands
across the upper layers the damaged areas in the lower ones are increased. The graphs of the vertical
displacement evaluated along coordinate x with y = 0.5Ly are depicted in Figure 13a,b for the two
damage models, respectively. The 3D-FEM profiles are also shown for comparison purposes. On the
other hand, the through-the-thickness variations of strains, stresses, and displacements related to the
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function Gau-4 are presented in Figures 14–16. Figures 17–19 show the same quantities for the function
Gau-5. The same considerations of the previous example are still valid in this circumstance. It should
be noted that similar profiles are obtained by means of the various HSDTs. For completeness purposes,
the third-order shear deformation theory is taken with and without the Murakami’s function. No
significant differences are observable between the ED3 and the EDZ3.
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obtained by means of several HSDTs. 
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by means of several HSDTs.
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Figure 14. Through-the-thickness profiles of strain components for the CCCC laminated square plate 
with  45 / 0 / 45  as stacking sequence computed at the point A for different HSDTs. The effect of the 

damage is investigated by varying the parameters of the function Gau-4. 

Figure 14. Through-the-thickness profiles of strain components for the CCCC laminated square plate
with (−45/0/45) as stacking sequence computed at the point A for different HSDTs. The effect of the
damage is investigated by varying the parameters of the function Gau-4.
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Figure 15. Through-the-thickness profiles of stress components [Pa] for the CCCC laminated square 
plate with  45 / 0 / 45  as stacking sequence computed at the point A for different HSDTs. The effect 

of the damage is investigated by varying the parameters of the function Gau-4. 

 

 

 

Figure 16. Through-the-thickness profiles of displacement components [m] for the CCCC laminated 
square plate with  45 / 0 / 45  as stacking sequence computed at the point A for different HSDTs. 

The effect of the damage is investigated by varying the parameters of the function Gau-4. 

Figure 15. Through-the-thickness profiles of stress components [Pa] for the CCCC laminated square
plate with (−45/0/45) as stacking sequence computed at the point A for different HSDTs. The effect
of the damage is investigated by varying the parameters of the function Gau-4.
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square plate with (−45/0/45) as stacking sequence computed at the point A for different HSDTs. The
effect of the damage is investigated by varying the parameters of the function Gau-4.
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Figure 17. Through-the-thickness profiles of strain components for the CCCC laminated square plate 
with  45 / 0 / 45  as stacking sequence computed at the point A for different HSDTs. The effect of the 

damage is investigated by varying the parameters of the function Gau-5. 

Figure 17. Through-the-thickness profiles of strain components for the CCCC laminated square plate
with (−45/0/45) as stacking sequence computed at the point A for different HSDTs. The effect of the
damage is investigated by varying the parameters of the function Gau-5.

Materials 2017, 10, 811  36 of 52 

 

Figure 17. Through-the-thickness profiles of strain components for the CCCC laminated square plate 
with  45 / 0 / 45  as stacking sequence computed at the point A for different HSDTs. The effect of the 

damage is investigated by varying the parameters of the function Gau-5. 

Figure 18. Cont.



Materials 2017, 10, 811 36 of 51

Materials 2017, 10, 811  37 of 52 

 

Figure 18. Through-the-thickness profiles of stress components [Pa] for the CCCC laminated square 
plate with  45 / 0 / 45  as stacking sequence computed at the point A for different HSDTs. The 

effect of the damage is investigated by varying the parameters of the function Gau-5. 

8.4. Cylindrical Panel 

A FCFC sandwich structure with a central soft-core is investigated in this paragraph. The shell 
geometry is given by the singly-curved cylindrical surface with parabolic profile depicted in  
Figure 4b. The geometric parameters required to represent the surface at issue are listed in Table 3. 
For the sake of clarity, Figure 4d is added to explain the meaning of the parameters related to the 
parabolic arch which represents the profile of this cylinder. The same figure can be used as a 
reference to describe the parabolic meridian of the shell investigated in the following paragraph. A 
sandwich lamination scheme is considered here. In particular, the mechanical properties of the 
isotropic soft-core are considerably lower in comparison with the ones of the external orthotropic 
sheets (Tables 3 and 4). The damage is modeled through the elliptic function defined as Ell-1 in Table 5. 
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plate with (−45/0/45) as stacking sequence computed at the point A for different HSDTs. The effect
of the damage is investigated by varying the parameters of the function Gau-5.
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expected. Similar graphs are obtained by the various HSDTs. The through-the-thickness variations 
of strains, stresses, and three-dimensional displacements are depicted respectively in Figures 21–23, 
where the so-called zig-zag effect is clearly observable. In general, comparable profiles are obtained 
through all the structural models, even though the 1FSDTZRS
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detached, especially when the plotted quantities present a lower order of magnitude. 
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Figure 19. Through-the-thickness profiles of displacement components [m] for the CCCC laminated
square plate with (−45/0/45) as stacking sequence computed at the point A for different HSDTs. The
effect of the damage is investigated by varying the parameters of the function Gau-5.
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8.4. Cylindrical Panel

A FCFC sandwich structure with a central soft-core is investigated in this paragraph. The shell
geometry is given by the singly-curved cylindrical surface with parabolic profile depicted in Figure 4b.
The geometric parameters required to represent the surface at issue are listed in Table 3. For the sake
of clarity, Figure 4d is added to explain the meaning of the parameters related to the parabolic arch
which represents the profile of this cylinder. The same figure can be used as a reference to describe the
parabolic meridian of the shell investigated in the following paragraph. A sandwich lamination scheme
is considered here. In particular, the mechanical properties of the isotropic soft-core are considerably
lower in comparison with the ones of the external orthotropic sheets (Tables 3 and 4). The damage is
modeled through the elliptic function defined as Ell-1 in Table 5.

The deterioration of the mechanical properties involves only the external layers and the elliptic
shape describes a damage that affects the shell along all its length along the coordinate y. The
parametric study aims to investigate the effect of a damage that gradually expands itself along the first
coordinate ϕ, as can be noticed from the parameters of the elliptic function Ell-1 in Table 5 (∆(k)

1 � ∆(k)
2 ,

for k = 1, 3). On the other hand, the intensity of the damage is kept constant. As highlighted in many
works [93–95], Murakami’s function is needed to deal with this kind of mechanical configuration.
Thus, only the corresponding structural theories are considered up to the third-order of expansion
(FSDTZχ=1

RS , EDZ2χ=1, and EDZ3). The first-order and second-order models are taken without the
shear correction factor χ = 1, as explained in [93–95]. The results of the displacement analysis are
shown in Figure 20. In particular, both the tangential component u(0)

1 (Figure 20a) and the vertical

one u(0)
3 (Figure 20b) increase when the damage affects wider areas, as expected. Similar graphs

are obtained by the various HSDTs. The through-the-thickness variations of strains, stresses, and
three-dimensional displacements are depicted respectively in Figures 21–23, where the so-called
zig-zag effect is clearly observable. In general, comparable profiles are obtained through all the
structural models, even though the FSDTZχ=1

RS provides curves that are slightly detached, especially
when the plotted quantities present a lower order of magnitude.
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Figure 20. Evaluation of the central displacements profile [m] for the FCFC soft-core cylindrical 
surface varying the mechanical parameters of the damage (Ell-1): (a) Tangential displacement  0
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(b) Vertical displacement  0
3u . The results are obtained by means of several HSDTs. 

Figure 21. Through-the-thickness profiles of strain components for the FCFC soft-core cylindrical 
surface computed at the point B for different HSDTs. The effect of the damage is investigated by 
varying the parameters of the function Ell-1. 

Figure 20. Evaluation of the central displacements profile [m] for the FCFC soft-core cylindrical surface

varying the mechanical parameters of the damage (Ell-1): (a) Tangential displacement u(0)
1 ; (b) Vertical

displacement u(0)
3 . The results are obtained by means of several HSDTs.

Materials 2017, 10, 811  39 of 52 

 

 
(b) Vertical displacement  0

3u  

Figure 20. Evaluation of the central displacements profile [m] for the FCFC soft-core cylindrical 
surface varying the mechanical parameters of the damage (Ell-1): (a) Tangential displacement  0

1u ; 

(b) Vertical displacement  0
3u . The results are obtained by means of several HSDTs. 

Figure 21. Through-the-thickness profiles of strain components for the FCFC soft-core cylindrical 
surface computed at the point B for different HSDTs. The effect of the damage is investigated by 
varying the parameters of the function Ell-1. 

Figure 21. Through-the-thickness profiles of strain components for the FCFC soft-core cylindrical
surface computed at the point B for different HSDTs. The effect of the damage is investigated by
varying the parameters of the function Ell-1.
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Figure 22. Through-the-thickness profiles of stress components [Pa] for the FCFC soft-core 
cylindrical surface computed at the point B for different HSDTs. The effect of the damage is 
investigated by varying the parameters of the function Ell-1. 
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Figure 23. Through-the-thickness profiles of displacement components [m] for the FCFC soft-core 
cylindrical surface computed at the point B for different HSDTs. The effect of the damage is 
investigated by varying the parameters of the function Ell-1. 

8.5. Doubly-Curved Panel of Revolution 

A branch of a parabolic arch is employed to describe the meridian curve of a CCCF 
doubly-curved panel of revolution (Figure 4c). As illustrated in the previous application, the 
meaning of the geometric parameters of the parabola listed in Table 3 is shown in Figure 4d for the 
sake of clarity. The damage is modeled using the mathematical expression denoted as Gau-6. In this 
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Figure 23. Through-the-thickness profiles of displacement components [m] for the FCFC soft-core
cylindrical surface computed at the point B for different HSDTs. The effect of the damage is investigated
by varying the parameters of the function Ell-1.

8.5. Doubly-Curved Panel of Revolution

A branch of a parabolic arch is employed to describe the meridian curve of a CCCF doubly-curved
panel of revolution (Figure 4c). As illustrated in the previous application, the meaning of the geometric
parameters of the parabola listed in Table 3 is shown in Figure 4d for the sake of clarity. The damage is
modeled using the mathematical expression denoted as Gau-6. In this circumstance, the origin of the
Gaussian variation is located at α

(k)
1m = 0.75(ϕ1 − ϕ0) + ϕ0, α

(k)
2m = 0.50(ϑ1 − ϑ0) + ϑ0, for k = 1, 2, . . . , n,

where n represents the layers progressively involved by the damage (the count goes from the bottom
to the upper layer of the laminated structure). Both the intensity and the size of the damage are kept
constant in each ply. The displacement analysis is presented in Figure 24 for the tangential u(0)

2 and

vertical u(0)
3 components, from which it is possible to observe that the plotted quantities, measured

along the first coordinate ϕ for ϑ = 0, increase by expanding the damage to the upper layers.
The effect of the damage parameters on the strain, stress, and displacement profile along the shell

thickness is investigated in Figures 25–27. By comparing all the curves in these figures, it is possible to
note that different through-the-thickness profiles are obtained varying the order of kinematic expansion
of the structural theory. Such differences are more evident in the normal strains and stresses (εn and
σn, respectively). Finally, it should be noted that the boundary conditions at the external surface are
always well-enforced for all the static analyses presented in this section.
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9. Conclusions and Remarks

A numerical analysis was proposed in the paper to deal with the linear static behavior of damaged
plates and shells. The solutions were obtained through the application of the GDQ method, which
was also employed to evaluate the through-the-thickness variations of stress and strain components
by means of a recovery procedure based on the three-dimensional equilibrium equations for a shell
structure. Several boundary conditions, geometric shapes, stacking sequences, and load combinations
were considered and investigated through a variety of higher-order structural models, including the
Murakami’s function for the zig-zag effect when needed. The mechanical properties of the shells were
taken as variable to model a damaged configuration. In particular, the two-dimensional Gaussian
function and an elliptic expression were introduced to model a damage which affects all the engineering
constants of the corresponding medium in concentrated areas of the shell domain. Several parametric
investigations were carried out to study the effect of the various parameters that describe those
functions. The following observations are noted:

• The results were presented in terms of displacement profiles related to the shell middle surface
and through-the-thickness variations of strain, stress, and displacement components at specific
points of the domain. It was proven that the damage affects all these static quantities.

• The numerical approach shows a convergent behavior when applied to this kind of
structural problems.

• It was proven that the damage modifies the structural response. In general, the displacement
increases when the damage intensity grows or when it involves a bigger area of the domain;
analogously, the overall displacement is greater when the damage spreads to the adjacent layers.

• As far as stresses and strains are concerned, the effects of the damage on their
through-the-thickness profiles are lower than the effects caused on the corresponding
displacements; nevertheless, it is possible to observe noticeable differences between the profiles
which are related respectively to the minimum and maximum values of the parameters used in
the parametric analyses to model the deterioration of the mechanical properties.

• Similar profiles in terms of strains, stresses, and displacements are obtained by means of different
HSDTs. Consequently, all these enriched kinematic models are able to deal with damaged
composite plates and shells.

• No significant differences are observable between a higher-order model and the corresponding
one embedded with the Murakami’s function when a laminated composite is analyzed. On
the other hand, the Murakami’s function is required to deal with sandwich structures with an
inner soft-core.

As a future development, the authors believe that the present damage model should be also
employed in the dynamic field to investigate how the deterioration of the mechanical properties of a
generic medium affects the corresponding structural response. In addition, the authors will attempt to
compare the present approach with some experimental and numerical tests available in the literature.
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Appendix A

In order to facilitate the understanding of the presented higher-order model based on a variable
kinematic expansion of the displacement field, in this section a complete list of the symbols and
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notations used in the paper are presented. In particular, the nomenclature employed in the previous
sections is schematically presented in Table A1.

Table A1. Nomenclature.

Symbols Definition

R(α1, α2, ζ) Three-dimensional position vector
O′α1α2ζ Local reference system of origin O′

r(α1, α2) Shell reference surface position vector
n(α1, α2) Outward unit normal vector
R 1, R 2 Principal radii of curvatures
A 1, A 2 Lamé parameters
α1, α2 Principal curvilinear coordinates

h Shell thickness
U = U(α1, α2, ζ) 3D displacement component vector

u(τ) = u(τ)(α1, α2) τ-th order generalized displacement component vector
Fτ Thickness function
Z Murakami’s function (zig-zag effect)

ε(k) = ε(k)(α1, α2, ζ) 3D strain component vector
DΩ Kinematic differential operator
Z(τ) Matrix containing the terms related to the shell thickness

σ(k) = σ(k)(α1, α2, ζ) 3D stress component vector

C(k) Constitutive operator

E(k)
nm Elastic constants of the stiffness matrix

S(τ) = S(τ)(α1, α2) τ-th order generalized stress resultant vector
A(τη) Stiffness matrix

κ Shear correction factor
D∗Ω Equilibrium differential operator

L(τη) Fundamental operator
Ψ(k) Variation of the mechanical properties (damage)

ψ
(k)
G , ψ

(k)
E

Gaussian and Elliptic variation (damage)(
α
(k)
1m , α

(k)
2m

)
Application point of the damage

Λ(k)
1 , Λ(k)

2
Size parameters of the damage
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