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Abstract: Hydrocarbon contamination accumulated on titanium (Ti) implant surfaces during storage
and sterilization is unavoidable and difficult to remove. It impairs the bioactivity of implants, restricts
initial interactions between implants and the surrounding biological environment, and has become a
common challenge for Ti implants. To overcome this problem, sterilization was considered as the
final surface modification and a novel method, hydrothermal sterilization (HS), was proposed. Briefly,
stored sandpaper-polished Ti specimens were sterilized in a glass container with pure water at 121 °C
for 20 min and kept in the same water until utilization. As a control, another group of specimens
was sterilized with conventional autoclaving (AC) at 121 °C for 20 min and stored in sterilization
pouches after being dried at 60 °C. Compared with AC, HS deposited numerous nano-sized particles
on the substrates, reduced the atomic percentage of the surface carbon, and transformed the Ti
surface to a super hydrophilic status. HS also increased the attachment rate, spread, proliferation,
and the mineralized nodule areas of rat bone marrow-derived osteoblasts. These results suggest
that HS enhances the bioactivity of Ti implants for osteoblasts, and that this biofunctionalization
was attributed to nanostructure construction, hydrophilic conversion, and the effective removal of
hydrocarbons. Hydrothermal sterilization is proposed to be used as a universal sterilization method
for all kinds of titanium implants without apatite coating.
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1. Introduction

Titanium has been used as raw material for dental implants for over 40 years because of its
chemical inertness, outstanding biocompatibility, and mechanical strength suitable to match with
natural bone [1]. Nevertheless, since the very beginning of its orthopedic application, surface
modification was imposed to improve osseointegration under the expectations of the material engineer
and clinician. Various techniques, including apatite coating, topology reconstruction, and chemical
modulation have been studied [2-4]. Nowadays, it seems that the development of novel surface
modification methods with sophisticated procedures has become the trend.

However, recently, some simple measurements after production have enhanced the bioactivity
of classical implants with a pleasant surprise. These studies implied that the osseointegration of
Ti implants without apatite coating could be further improved, with great potential. For instance,
NaCl solution storage, ultraviolet (UV) irradiation, and plasma treatment of rough surfaces, such
as sandblast and acid-etched (SLA) and only acid-etched treatments, have greatly improved their
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osseointegration [5-7]. These cases also drew people’s attention to the fact that we might have designed
implant with a promising surface, but never prepared it for high-efficiency performance immediately
before implantation. Accumulated carbon-containing contamination, wettability degradation during
storage, and improper sterilization will severely impair the osteoconductivity of implants [6,8].
Unfortunately, all kinds of non-apatite-coated Ti implants are confronted with such an issue [9].
Therefore, strategies for creating a favorable initial surface status of implants immediately before
implantation are worth studying.

Among all of the handling steps, sterilization is the last for both aseptically packaged and
non-aseptically packaged implants. It induces physical and chemical changes on implant surfaces,
depending on the specific method. The effects of these changes on cell and bone tissue responses in the
initial stage were noticed by Kasemo and Stanford et al. more than 20 years ago, and were considered
to have a profound influence on the bone remolding [10,11]. However, similar opinions have rarely
been reported since then, because major efforts were made for ingenious surface modification methods.
It is noted that, in the existing literature, sterilization methods for the same kind of implant were
hardly consistent and researchers usually employed a method according to their convenience and
facility. Such a situation made it difficult to compare results from different groups accurately [8,12,13].

As discussed above, the contradiction between storage and bioactivity degradation, as well
as the uncertain and even negative influences of sterilization, have created a dilemma for current
titanium implants. However, if we consider sterilization as the final surface modification and use a
well-chosen method, the dilemma may be solved. Previously, we have modified the Ti surface for
better osteoconductivity by hydrothermal treatment over 200 °C. However, recently we found that the
surface of titanium nitride (TiN) could be decontaminated through low temperature hydrothermal
treatment at 120 °C, after which the cell responses were improved [14,15]. Inspired by this finding, we
proposed hydrothermal sterilization (HS) and tested this method on long-term stored SLA surfaces,
acquiring promising results both in vitro and in vivo [16]. It seems that this new method can sterilize
stored Ti implants reliably in addition to improving their bioactivity.

Besides those with rough surfaces, endousseus implants with relatively smooth surfaces are
also widely used in some countries and regions due to their simple producing procedure, lower
cost, and particular needs. Therefore, in this work we applied our novel sterilization method
to sandpaper-polished Ti in order to further explore the potential applications of this method.
Physiochemical properties and initial osteoblast responses on HS-treated specimens were evaluated.
Traditional autoclaving (AC) was used for comparison.

2. Results

2.1. Surface Morphology and Roughness

Figure 1 shows the surface morphologies of specimens under SEM observation. A lower
magnification observation of 1000 x revealed an identical micron-scaled topography on all types
of specimens, which featured scratches from wet-abrasion during sandpaper polishing. At a higher
magnification of 50,000 x, changes were not found on AC specimens, whereas numerous scattering
nano-sized particles (20 nm, approximately) were found on HS-treated specimens. Nevertheless, all
specimens showed similar surface roughness. The R, values for the control, AC, and HS specimens
were 0.32, 0.30, and 0.31 um, respectively. Namely, the formation of nanoparticles did not affect the
surface roughness significantly in the micron scale.
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Figure 1. Surface morphology of (a) Control; (b) Autoclaving (AC); (c) Hydrothermal sterilization (HS);

(d—f), magnified (a—c), respectively.

2.2. Surface Chemical Compositions

Table 1 shows the surface element ratio calculated from X-ray photoelectron spectroscopy (XPS)
spectra. Ti, O, and C were the major elements on the surface of all three types of specimens. After four
weeks of storage, the C ratio on the polished specimens was high. After AC, the C ratio increased
significantly whereas Ti and O decreased. On the contrary, surface C was greatly reduced and Ti,
O increased after HS. Figure 2a shows the XPS survey spectra of different samples. As shown, the
intensity of Cls peak decreased apparently on the HS specimen. Figure 2b shows the high resolution
Cl1s spectra of different surfaces. The peak could be decomposed into three components; those
centered at 284.8 eV, 288.4 eV, and 288.1 eV were assigned to C—H/C—-C, C—0, and O—C=0 bonding,
respectively. HS effectively removed carbon contamination with both low and high binding energy.

Table 1. Element percentages at the surface of different samples.

Element Ratio (at %)

Specimens
(0] Ti C
Control 519+1.8 21.7 £ 1.50 264+13
AC 486 +21 201+11 313+1.6

HS 58.1 2.5 238 £1.5 181+£1.2
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Figure 2. X-ray photoelectron spectroscopy survey scans (a) and Cls scans (b) of different specimens.

2.3. Wettability

After being stored in a poly ethylene (PE) bag for four weeks, the contact angle on the polished Ti
surface was 46°. After AC treatment and drying, the water contact angle increased to 53°, as shown in
Figure 3. In contrast, the water drops spread out quite fully on HS specimens and the contact angle was
as low as 0°. However, the effect of storage condition on time-related changes of surface wettability
was obvious. As can be seen from Figure 4, the initial superhydrophilicity of HS specimens was quickly
impaired in the atmosphere, whereas the specimens kept in water remained superhydrophilic after two
weeks of storage. The wettability of AC specimens could be improved when kept in water; however,
the process was slow as it took about two weeks for the contact angle to reduce to less than 5°.
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Figure 3. Water contact angles on different specimens.
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Figure 4. Changes of contact angle on specimens stored under different conditions.
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2.4. Cell Attachment

Quantified results of cell attachment on AC and HS specimens are presented in Figure 5. After
3-h cultures, HS specimens showed significantly higher (p < 0.01) cell attachment compared with
autoclaved ones.
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Figure 5. Cell attachment ratio on different specimens 3 h after seeding. * Significantly different
compared with PS; ** Significantly different compared with AC.

2.5. Cell Spreading

Figure 6 presents the SEM images of cells on AC and HS specimens after 3 h of incubation.
Their morphologies were quite different depending on the substrates. On AC specimens, cells
presented relatively round or oval configuration and their matrix did not spread extensively. On the
other hand, cells on HS specimens showed polygonal shapes and had spread out fully, occupying large
areas, indicating a firm contact with the substrate. The lamellipodia was also much better developed
compared with that on AC specimens, implying that the spreading was more progressive and cells
were more active on HS specimens.

(@) (b)

Figure 6. Morphologies of cells on (a) AC; (b) HS specimens 3 h after seeding.

2.6. Cell Proliferation (Viability Assessment)

Cell proliferation assayed by Alamar Blue is shown in Figure 7. During the testing period,
osteoblasts proliferated continuously; however, their number varied significantly at each testing time
point depending on the different sterilization methods. Cells on HS surfaces showed statistically
higher proliferative activity than those on the AC surfaces at all test points (p < 0.05).
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Cell number / (10° / well)

Culture time / day

Figure 7. Cell proliferative activity of osteoblasts on different specimens. * Significantly different

compared with AC.

2.7. Alkaline phosphatase (ALP) Activity

Figure 8 shows the ALP activities of cells cultured on the surface of AC and HS specimens. After
seven days of culture, ALP activity was significantly higher on HS specimens compared with that
on AC specimens. After 14 days culture, ALP activity on both kinds of specimens increased, and
significant difference could also be observed between the two groups.

1.64

1.2+

0.8+

0.4+

ALP activity (nM/min/ug protein)

14
Culture duration/ Day

Figure 8. Alkaline phosphatase activities of cells on AC and HS specimens after seven and 14 days of
culture. * Significantly different compared with AC.

2.8. Bone-Like Nodule Formation

Figure 9 shows the Alizarin Red S staining results of different specimens after 21 days of culture.
As shown, cell mineralization had progressed on both kinds of specimens at the testing time point.
However, many blank areas could be observed on AC surfaces, whereas cell calcification took place
homogenously on HS surfaces, and bone-like nodules had fully covered the surface. The mineralized
area on HS surfaces was significantly larger than that on AC surfaces.

(@) (b)

Figure 9. Osteoblast mineralization on (a) AC and (b) HS specimens.
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3. Discussion

In this study, the effects of hydrothermal sterilization on in vitro osteoconductivity of
sandpaper-polished Ti were proved to be substantial, and the osteoblastic phenotype was greatly
enhanced as evidenced by the results of ALP activity and mineralized nodules assays. Such a
phenomenon seems to have arisen from the augmented cell attachment, enhanced cell spreading, and
accelerated cell proliferation. These results once again proved that HS could be used as a universal
sterilization method for Ti-based bone implants.

Previously, we reported that the micron- and submicron-scaled micromorphology of SLA surface
was not changed after HS under SEM observation with a magnification of 5000 x [16]. However, freshly
obtained FSEM results showed that the treatment at 120 °C for 20 min was enough to change the Ti
surface at the nano-scale, as shown in Figure 1. These results implied that the surface of Ti could be
remodeled at the nano-scale during the HS process. We hence suggested that dissolution-precipitation
happened in 120 °C pure water within 20 min; nevertheless, the reaction was milder and Ti ions could
not be transferred as efficiently as under higher temperatures [17].

The nano-scaled morphology change could well explain the decontamination that occurred on HS
specimens, as shown in Figure 2 and Table 1. The HS process was more efficient than UV and Ozone
treatment, which usually require more than 24 h to achieve a clean Ti surface [6,18]. In stark contrast,
the surface C ratio on AC specimens increased. After autoclaving, surface contamination could be
worsening as we had found on the SLA surface, since C-containing molecules from the atmosphere and
sterilization package would be deposited onto implants during the cooling and drying stages [10,16].

It has been demonstrated that a clean status was necessary for the good wettability of Ti substrates,
and such a precondition was especially important for a surface with micro/nano-scale hybrid
structures [16,19]. It is well accepted that if such structures were seriously contaminated, they would
entrap air stubbornly and increase the contact angle, whereas, if they were clean, a superhydrophilicity
could be obtained. UV and plasma treatments could impose superhydrophilicity to rough surfaces
based on the decomposition of hydrocarbons molecules; however, the HS process seemed to achieve
it by forming a nano-scaled structure and achieving decontamination simultaneously, Figure 3.
Moreover, it could preserve the clean status for a much longer time, as Ti specimens were kept from
recontamination by pure water after sterilization. The results in Figure 4 highlighted the combination
of HS and wet storage. Although the AC specimens could obtain a superhydrophilic surface as well by
immersion in water, it would take a much longer time and would hence hinder the subsequent steps of
healing, as immediate interactions between the implant and the surrounding biological environment
are very important.

Both the superhydrophilicity and nanostructure were reported to benefit the initial interactions.
Hydrophilic surfaces increase the adsorption of Arg-Gly-Asp (RGD)-containing proteins and promote
conformational changes that benefit cell functions, whereas nanostructures usually promote the
osteoblastic phenotype. In this study, improved initial responses including attachment and spreading
were observed, as shown in Figures 5 and 6. Recently, initial cell spreading was thought to
be an indicator for further cell activities. For example, the full spreading of cells on UV or
hydrothermally treated Ti was believed to release intercellular stress and triggered a series of enhanced
cell performances [6,16,20]; appropriately, high cellular matrix perimeter and aspect ratio (1.5-8)
implied higher ALP activity [21]. Cell spreading on HS specimens was much more extensive compared
with that on AC specimens, and this might have led to the more rapid cell proliferation, as shown in
Figure 7. Both cell number and cell-cell contact would be increased as proliferation was accelerated,
and thus would promote cell differentiation, such as ALP activity, as shown in Figure 8. Bone-like
nodule formation was the marker of late stage differentiation, and there was a positive correlation
between ALP activity and bone-like nodule formation. Therefore, the above hypothesis could be
verified as the mineralization on HS specimens was significantly enhanced, Figure 9.

The underlying mechanisms at present are poorly understood, yet and there are still many
challenges concerning bone-implant integration. Among them, the most puzzling is that a literature
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review found that the average bone-to-implant contact ratio (BIC) of integrated Ti implants without
apatite coating was only 45 £+ 16%, far from the ideal 100% [22]. Coincidentally, this level met
the minimum bone contact fraction requirement of integrated implants, according to finite element
analysis [23,24]. This coincidence may be due to either negative factors in the working environment,
such as stress and micromotion, or a common bottleneck of Ti implants that inhibits higher BIC.
Nevertheless, as higher BIC can be commonly achieved through the application of hydroxyapatite
(HA) coating, the predicament should be ascribed to Ti implants themselves.

Currently, the vast majority of commercial Ti implants are suffering from hydrocarbons
contamination, which is unavoidable and difficult to remove by conventional cleaning in the clinic. It is
believed to be the universal challenge for all kinds of non-apatite-coated Ti implants and will depress
the initial interactions between an implant and its surrounding biological environment [6,13,25,26].
This fact was confirmed again by systemic in vitro results in this work. Actually, after 21 days of culture,
round-shaped blank areas of rat bone marrow cells (RBMcs) mineralization were observed on SLA with
a hydrophobic surface that had been stored for four weeks. Interestingly, these same locations had been
occupied by air bubbles in the first several hours after cell seeding [16]. Hereby, we hypothesized that
a similar phenomenon may occur in vivo, that is, the cells and their passages may “remember and/or
mark” those initially infertile areas on the implant surface and decline immigration and mineralization
there, and this may lead to a low BIC. According to the in vivo and in vitro results acquired in our
studies, we believe that the proposed HS is a promising method to solve the current predicament.

In the predicable future years, Ti will still be the most important metal for osseous implants.
This work revealed a great amount of hydrocarbon contamination on simply sandpaper-polished
Ti surfaces as well as its effective removal by HS. Similar phenomena had been observed on SLA
surfaces. In both works, HS was considered to be the final surface modification and it provided a
novel way to develop more osseointegrative Ti implants in the clinic. Thus, its synthetic influences on
Ti-based implants are worth further and deeper exploration. Studies have been planned for thorough
investigations, such as a quantitative histological analysis. Furthermore, based on our previous studies,
bioactive elements, such as Ca, Mg, Sr, 5i, and Ag etc., can be easily doped onto Ti surfaces during the
HS process and more promising results from these combinations are expected.

4. Materials and Methods

4.1. Specimens Preparation and Storage

Commercially pure (Grade 2) titanium plate (Baoji Titanium Industry, Baoji, China) was used
as a substrate. Specimens were cut into ® 14 mm x 1 mm pieces by linear cutting. After removing
cutting oils, specimens were polished with SiC sandpaper of 280, 400, 800, and 1000 #, successively.
Then they were washed with acetone, ethanol, and ultra-pure water in an ultrasonic cleaner for 10 min
each. Cleaned specimens were kept individually in an airtight PE bag in a dark box for four weeks.

4.2. Sterilization

Specimens were divided into two groups and sterilization was carried out in different ways.
For the first group, specimens were transferred into sterilization pouches (A.R. Medicom Inc., Lachine,
QC, Canada) with clean tweezers and then thermal-sealed. For the second group, specimens were
put into clean reagent glass bottles (Boro 3.3, Shuniu, Chengdu, China) and, after adding ultrapure
water (18 M()/cm) of 10 mL per disc, the bottles were sealed with propene polymer (PP) screw caps.
For safety, the water in each bottle was controlled to be less than 1/3 of the volume. Both groups
were transferred into the same clinical autoclave (BXM-30R, Boxun, China) and a normal autoclaving
procedure of 121 °C, 20 min was conducted. After autoclaving, specimens in pouches, coded as AC,
were dried at 60 °C for 30 min and then used for characterization and cell test as soon as possible.
In contrast, specimens sterilized in pure water, coded as HS, were kept in bottles and dried by pure
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N gas right before the surface characterizations and cell tests. Stored specimens without sterilization
were used as the control in surface characterizations.

4.3. Surface Characterizations

For both groups, specimens were characterized immediately after drying. Surface morphology
was analyzed with a field emission scanning electronic microscope (FESEM, 54800, Hitachi Co.,
Tokyo, Japan). Roughness was measured by a 3D laser scanning microscope (VX9000, Keyence Co.,
Osaka, Japan). Surface chemical composition was analyzed by X-ray photoelectron spectroscopy
(XPS, ESCALAB 250Xi, Thermo Fisher Scientific Inc, Waltham, MA, USA). Surface wettability was
evaluated on a contact angle meter (JC2000D, Zhong Chen Co., Shanghai, China) using the sessile drop
method with 2.5 uL distilled water. HS and AC specimens were also kept either in water or in air and
then contact angle changes were recorded at day 3, 5, 7, and 14 to evaluate the influences of different
storage conditions.

4.4. Cell Culture

Rat bone marrow cells (RBMcs) collected from the femur of a 4-week-old Sprague Dawley (SD)
rat were cultured in o-medium supplemented with 15% fetal bovine serum, 50 mg/L ascorbic acid,
10 mmol/L Na-B-glycerophosphate, 10~8 mol/L dexamethasone, 1% penicillin, 1% streptomycin, and
0.292 mg/mL L-glutamine in a humidified atmosphere containing 5% CO, at 37 °C. The medium was
replaced every two days and, after seven days, they were detached and seeded onto specimens.

4.5. Cell Attachment, Proliferation, and Mineralization

Freshly sterilized specimens were put into 24-well plates and 1 mL cell suspension with
4 x 10* cells was added into each well. After 3 h of incubation, the medium was sucked and specimens
were washed with phosphate buffer saline (PBS) three times. Attached cells were then trypsinized
and counted using a hemocytometer. As a control, cell attachment on the bottom of polystyrene (PS)
culture wells was also assessed.

Cells were seeded at an initial density of 4 x 10* cells/well and after 3 h of culture, they were
washed with PBS three times and then fixed with 3% glutaraldehyde in PBS for 30 min at 4 °C. Straight
after, they were dehydrated with an ascending series of ethanol solution up to 100%. Finally, after
removing ethanol with hexamethyldisilazane (HMDS), morphologies of cells attached onto the surface
were observed by SEM.

For proliferation evaluation (viability assessment), 1 x 10% cells were seeded onto a disc in each
well and Alamar Blue assay (Biosource International, Camarillo, CA, USA) was performed after two,
four, and six days of culture. At each time point, the old medium was removed and the specimens were
washed once with fresh culture medium. After that, freshly mixed 10% Alamar Blue-containing culture
medium was added. After incubation for another 3 h, 100 uL medium from each well was transferred
to a 96-well plate and the fluorescence was measured (Aex = 560 nm, Aem = 590 nm). The remaining
Alamar Blue-containing medium in the wells was replaced with normal culture medium and the cells
were further incubated.

Alkaline phosphatase (ALP) activity was assessed by measuring the transformation of
p-nitrophenylphosphate. Initially, 1 x 10* cells were seeded and after seven and 14 days culture,
then cells were collected by trypsinization and centrifugation. After lysis by diluted Triton, ALP
activity was determined using a colorimetric assay kit (Wako, Osaka, Japan). Total protein amount
was evaluated by BCA protein assay reagent kit (Pierce Chemical Co., Rockford, IL, USA) using the
enhanced protocol. ALP activity was normalized by total protein content.

Cell mineralization was marked by Alizan Red S staining. Briefly, 1 x 10* cells were seeded on
to the specimens and culture medium was refreshed every two days. After 21 days, specimens were
washed sufficiently with PBS and then the cells were fixed with 10% formalin-PBS solution. After
removing formalin with pure water, the specimens were immersed in 1.5% Alizan Red S solution for
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5 min. Finally, the unreacted dye was removed with pure water and the specimens were dried in air
for photographing.

4.6. Statistical Analysis

For physiochemical characterization, three samples were used for each test. For cell tests, a single
batch of osteoblast was prepared and three samples were used for each evaluation. A t-test was
performed using Origin 8.5 (OriginLab, Co., Northampton, MA, USA) for individual comparisons of
groups and p < 0.05 was considered to be statistically different.

5. Conclusions

Compared with autoclaving, hydrothermal sterilization (HS) in pure water at 120 °C, 20 min
awarded superhydrophilicity to the sandpaper-polished titanium disks and reduced the surface carbon
significantly. Substantially improved attachment, spreading, proliferation, and mineralization of rat
bone marrow cells-derived osteoblast were also observed. The benefit of HS to enhance the bioactivity
of Ti-based implants was confirmed. It showed the potential to be utilized as a universal sterilization
method for Ti implants without apatite coating.

Acknowledgments: We gratefully acknowledge the financial support from Natural Science Foundation of Jiangsu
Province (BK20160566), China Postdoctoral Science Foundation (2016M601754), Jiangsu Planned Projects for
Postdoctoral Research Funds (1421601085B).

Author Contributions: For this paper, Xingling Shi and Lingli Xu conceived and designed the experiments;
Qingliang Wang, Lin Xu and Sunarso contributed materials and performed the experiments; Xingling Shi
analyzed the data and wrote the paper; all authors gave final approval and agreed to be accountable for all aspects
of the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Branemark, PI; Hansson, B.O.; Adell, R.; Breine, U.; Lindstrom, J.; Hallen, O.; Ohman, A. Osseointegrated
implants in the treatment of the edentulous jaw: Experience from a 10-year period. Scand. J. Plast. Reconstr.
Surg. Suppl. 1977, 16, 1-132. [PubMed]

2. Lum, L.B; Beirne, O.R.; Curtis, D.A. Histologic evaluation of hydroxylapatite-coated versus uncoated
titanium blade implants in delayed and immediately loaded applications. Int. J. Oral Maxillofac. Implant.
1991, 6, 456-462.

3. Xu, L.; Shi, X.; Ouyang, C.; Liu, W. In vitro apatite formation, protein adsorption and initial osteoblast
responses on titanium surface enriched with magnesium. Rare Met. Mater. Eng. 2017, 46, 1512-1517.

4. Zhao, G.; Raines, A.; Wieland, M.; Schwartz, Z.; Boyan, B. Requirement for both micron-and submicron scale
structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials
2007, 28, 2821-2829. [CrossRef] [PubMed]

5. Buser, D.; Broggini, N.; Wieland, M.; Schenk, R.K.; Denzer, A.J.; Cochran, D.L.; Hoffmann, B.; Lussi, A.;
Steinemann, S.G. Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dent. Res.
2004, 83, 529-533. [CrossRef] [PubMed]

6.  Att, W,; Hori, N.; Iwasa, F; Yamada, M.; Ueno, T.; Ogawa, T. The effect of UV-photofunctionalization on the
time-related bioactivity of titanium and chromium-cobalt alloys. Biomaterials 2009, 30, 4268-4276. [CrossRef]
[PubMed]

7. Coelho, P.G.; Giro, G.; Teixeira, H.S.; Marin, C.; Witek, L.; Thompson, V.P.; Tovar, N.; Silva, N.R.EA.
Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces.
J. Biomed. Mater. Res. Part A 2012, 100, 1901-1906. [CrossRef] [PubMed]

8. Hirano, M.; Kozuka, T.; Asano, Y.; Kakuchi, Y.; Arai, H.; Ohtsu, N. Effect of sterilization and water rinsing on
cell adhesion to titanium surfaces. Appl. Surf. Sci. 2014, 311, 498-502. [CrossRef]

9. Kang, BS,; Sul, Y.T,; Oh, S.J.; Lee, H.].; Albrektsson, T. XPS, AES and SEM analysis of recent dental implants.
Acta Biomater. 2009, 5, 2222-2229. [CrossRef] [PubMed]


http://www.ncbi.nlm.nih.gov/pubmed/356184
http://dx.doi.org/10.1016/j.biomaterials.2007.02.024
http://www.ncbi.nlm.nih.gov/pubmed/17368532
http://dx.doi.org/10.1177/154405910408300704
http://www.ncbi.nlm.nih.gov/pubmed/15218041
http://dx.doi.org/10.1016/j.biomaterials.2009.04.048
http://www.ncbi.nlm.nih.gov/pubmed/19473697
http://dx.doi.org/10.1002/jbm.a.34127
http://www.ncbi.nlm.nih.gov/pubmed/22492543
http://dx.doi.org/10.1016/j.apsusc.2014.05.096
http://dx.doi.org/10.1016/j.actbio.2009.01.049
http://www.ncbi.nlm.nih.gov/pubmed/19261554

Materials 2017, 10, 812 11 of 11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Kasemo, B.; Lausmaa, J. Biomaterial and implant surfaces: On the role of cleanliness, contamination, and
preparation procedures. |. Biomed. Mater. Res. 1988, 22, 145-158. [CrossRef] [PubMed]

Stanford, C.; Keller, ]J.; Solursh, M. Bone cell expression on titanium surfaces is altered by sterilization
treatments. J. Dent. Res. 1994, 73, 1061-1071. [PubMed]

Zhao, L.; Mei, S.; Wang, W.; Chu, PK.; Wu, Z.; Zhang, Y. The role of sterilization in the cytocompatibility of
titania nanotubes. Biomaterials 2010, 31, 2055-2063. [CrossRef] [PubMed]

Park, ].H.; Olivares-Navarrete, R.; Baier, R.E.; Meyer, A.E.; Tannenbaum, R.; Boyan, B.D.; Schwartz, Z. Effect
of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater.
2012, 8, 1966-1975. [CrossRef] [PubMed]

Shi, X.; Xu, L.; Le, T.B.; Zhou, G.; Zheng, C.; Tsuru, K,; Ishikawa, K. Partial oxidation of TiN coating by
hydrothermal treatment and ozone treatment to improve its osteoconductivity. Mater. Sci. Eng. C Mater.
Biol. Appl. 2016, 59, 542-548. [CrossRef] [PubMed]

Shi, X.; Xu, L.; Munar, M.L.; Ishikawa, K. Hydrothermal treatment for TiN as abrasion resistant dental
implant coating and its fibroblast response. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 49, 1-6. [CrossRef]
[PubMed]

Shi, X.; Xu, L.; Violin, K.B.; Lu, S. Improved osseointegration of long-term stored SLA implant by
hydrothermal sterilization. |. Mech. Behav. Biomed. Mater. 2016, 53, 312-319. [CrossRef] [PubMed]

Shi, X.L.; Tsuru, K.; Xu, L.L.; Kawachi, G.; Ishikawa, K. Effects of solution pH on the structure
and biocompatibility of mg-containing TiO, layer fabricated on titanium by hydrothermal treatment.
Appl. Surf. Sci. 2013, 270, 445-451. [CrossRef]

Sunarso; Toita, R.; Tsuru, K.; Ishikawa, K. A superhydrophilic titanium implant functionalized by ozone gas
modulates bone marrow cell and macrophage responses. |. Mater. Sci. Mater. Med. 2016, 27, 1-9. [CrossRef]
[PubMed]

Rupp, E; Gittens, R.A.; Scheideler, L.; Marmur, A.; Boyan, B.D.; Schwartz, Z.; Geis-Gerstorfer, J. A review on
the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomater. 2014, 10,
2894-2906. [CrossRef] [PubMed]

Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet
functionalization of titanium on integration with bone. Biomaterials 2009, 30, 1015-1025. [CrossRef] [PubMed]
Yao, X.; Peng, R.; Ding, ].D. Cell-material interactions revealed via material techniques of surface patterning.
Adv. Mater. 2013, 25, 5257-5286. [CrossRef] [PubMed]

Sykaras, N.; Iacopino, A.M.; Marker, V.A,; Triplett, R.G.; Woody, R.D. Implant materials, designs, and surface
topographies: Their effect on osseointegration. A literature review. Int. J. Oral Maxillofac. Implant. 2000, 15,
675-690.

Xing, X.J. Study of Minimum Contact Fraction of Bone-Implant Interface. Ph.D. Thesis, Fourth Military
Medical University, Xi’an, China, 2000.

Jang, K.S; Kim, Y.S.; Kim, C.W. Three dimensional finite element analysis on the minmum contact fraction of
bone-implant interface. J. Korean Acad. Prosthodont. 1997, 35, 627-646.

Lu, H.B.; Zhou, L.; Wan, L.; Li, S.B.; Rong, M.D.; Guo, Z.H. Effects of storage methods on time-related
changes of titanium surface properties and cellular response. Biomed. Mater. 2012, 7, 055002. [CrossRef]
[PubMed]

Minamikawa, H.; Att, W.; Ikeda, T.; Hirota, M.; Ogawa, T. Long-term progressive degradation of the
biological capability of titanium. Materials 2016, 9. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1002/jbm.820221307
http://www.ncbi.nlm.nih.gov/pubmed/3209600
http://www.ncbi.nlm.nih.gov/pubmed/8006233
http://dx.doi.org/10.1016/j.biomaterials.2009.11.103
http://www.ncbi.nlm.nih.gov/pubmed/20022370
http://dx.doi.org/10.1016/j.actbio.2011.11.026
http://www.ncbi.nlm.nih.gov/pubmed/22154860
http://dx.doi.org/10.1016/j.msec.2015.10.024
http://www.ncbi.nlm.nih.gov/pubmed/26652406
http://dx.doi.org/10.1016/j.msec.2014.12.059
http://www.ncbi.nlm.nih.gov/pubmed/25686920
http://dx.doi.org/10.1016/j.jmbbm.2015.08.038
http://www.ncbi.nlm.nih.gov/pubmed/26382972
http://dx.doi.org/10.1016/j.apsusc.2013.01.046
http://dx.doi.org/10.1007/s10856-016-5741-2
http://www.ncbi.nlm.nih.gov/pubmed/27344451
http://dx.doi.org/10.1016/j.actbio.2014.02.040
http://www.ncbi.nlm.nih.gov/pubmed/24590162
http://dx.doi.org/10.1016/j.biomaterials.2008.11.004
http://www.ncbi.nlm.nih.gov/pubmed/19042016
http://dx.doi.org/10.1002/adma.201301762
http://www.ncbi.nlm.nih.gov/pubmed/24038153
http://dx.doi.org/10.1088/1748-6041/7/5/055002
http://www.ncbi.nlm.nih.gov/pubmed/22781962
http://dx.doi.org/10.3390/ma9020102
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Surface Morphology and Roughness 
	Surface Chemical Compositions 
	Wettability 
	Cell Attachment 
	Cell Spreading 
	Cell Proliferation (Viability Assessment) 
	Alkaline phosphatase (ALP) Activity 
	Bone-Like Nodule Formation 

	Discussion 
	Materials and Methods 
	Specimens Preparation and Storage 
	Sterilization 
	Surface Characterizations 
	Cell Culture 
	Cell Attachment, Proliferation, and Mineralization 
	Statistical Analysis 

	Conclusions 

