Supplementary Materials: Construction of a Novel Three-Dimensional PEDOT/RVC Electrode Structure for Capacitive Deionization: Testing and Performance

Ali Aldalbahi, Mostafizur Rahaman, Periyasami Govindasami, Mohammed Almoiqli, Tariq Altalhi and Amine Mezni

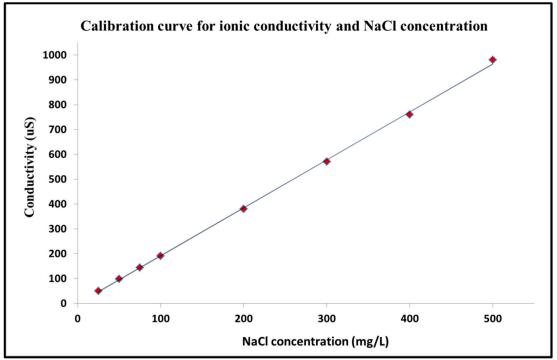


Figure S1. Calibration curve linearity for ionic conductivity vs NaCl concentration.

Calculation of the Ion Removal from NaCl Solution

The conductivity of the solution is measured by the conductivity meter. If the initial NaCl solution conductivity is 143.00 μ S/cm and after charging the electrode it became 138.59 μ S/cm, then the ion removal from the solution can be calculated. As we know from equation 1 that;

Conductivity = 1.9067 * Concentration; and hence

Concentration = Conductivity/1.9067

Therefore, Initial concentration = (143.00)/1.9067 = 75.00 mg/L and

Final concentration = (138.59)/1.9067 = 72.69 mg/L.

Hence, the ion removal from the NaCl solution = Initial concentration – Final concentration = 2.31 mg/L.

Calculation of Electrode Electrosorption Capacity in Terms of (mg/g) and (mg/cm³)

If the mass of electrode is 0.05 g (having 2.16 cm³ geometric volume and 17.88 cm² geometric area); volume (v) and conductivity of NaCl solution are 0.06 L and 143.00 μ S/cm, respectively; and conductivity of NaCl solution after adsorption is 138.59 μ S/cm, then the electrosorption capacities of the electrodes can be calculated. From the above section, we have;

Initial concentration, C_0 = 75.00 mg/L and Final concentration, C_f = 72.69 mg/L.

Therefore from equation 2, we have; $M_{mass} = [(C_0 - C_f)^* V] / m$

so, M_{mass} = [(75 – 72.69) * 0.06] / 0.05 = 2.77 mg/g

Or from equation 3, we have; $M_{\text{volume}} = [(C_0 - C_f)^* V] / Z$

so, $M_{\text{volume}} = [(75 - 72.69) * 0.06] / 2.16 = 0.06 \text{ mg/cm}^3$

Or from equation 4, we have; $M_{area} = [(C_0 - C_f)^* V] / Z$

so, $M_{area} = [(75 - 72.69) * 0.06] / 17.88 = 0.008 \text{ mg/cm}^2$