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Abstract: Highly ordered gallium indium phosphide layers with the low bandgap have been
successfully grown on the (100) GaAs substrates, the misorientation toward [01−1] direction, using
the low-pressure metal organic chemical vapor deposition method. It is found that the optical
properties of the layers are same as those of the disordered ones, essentially different from the
ordered ones having two orientations towards [1−11] and [11−1] directions grown on (100) gallium
arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is
the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP
laser diodes with strain compensated quantum well structure, which is developed in 1992, have
been successfully obtained by controlling the misorientation angle and directions of GaAs substrates.
The structure is applied to quantum dots laser diodes. This paper also describes the development
history of the quantum well and the quantum dots laser diodes, and their future prospects.

Keywords: GaInP; AlGaInP; epitaxial layer; metal organic chemical vapor deposition; misorientaion
substrate; ordering structure; disordering structure; photoluminescence; strain compensated quantum
well; semiconductor laser diode; light emitting diode; quantum dots; InAlAs; InP; InAs; GaAs(N);
GaAs; InGaAs; GaAsP; thermal resistance

1. Introduction

Aluminum gallium indium phosphide (AlGaInP) laser diodes, which are operated at
continuous-wave (CW) under room temperature conditions, were been developed by three Japanese
companies in 1986 [1–3]. It was confirmed that the oscillating wavelength for each laser is longer
than that calculated from theoretical bandgap, even though gallium indium phosphide (GaxIn1−xP)
epitaxial layer with same composition are used. By this phenomenon, the development of the
lasers and light emitting diodes (LEDs) operating at <650 nm have been prevented. The issues
have been studied by many researchers since 1986. It was found that the phenomena are generated
by (01−1) micro-steps on the surface of GaAs (100) substrates during the crystal growth processes
using the metal organic chemical vapor deposition (MOCVD) method [4–6]. Then, many companies
and researchers proposed the ordering suppressing technologies such as low III/V ratio [7], high
temperature growth [8,9], high growth rate [10], Zinc (Zn) doping and diffusion [11,12], introduction
of (111)A and (111)B plane; (110) crystal plane [13,14] and misorientation substrates [15–22]. Finally, it
was introduced (100) GaAs substrates having misorientation angle towards [0 1 1] direction, which
was discovered by Hamada’s team in 1988 [15], and technologies using these substrates have been
widely used in production for over 25 years. Watt-class high power laser diodes, having strained
quantum wells oscillating at 630 nm band, have been developed using the broad area structure and
the misorientation substrates [23]. In 1995, 12 W high power laser diodes oscillating at 640 nm were
also obtained by combining the array structure and silicon microchannel cooler [24]. Then, highly
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reliable watt-class laser diodes for projector applications were successfully developed by applying
the laser structure with a lower thermal resistance in 2005 and 2006 [25,26]. Vertical cavity surface
emitting lasers (VCSELs) oscillating at continuous wave (CW) have been successfully developed
using the misorientation substrates [27–29]. Quantum dots (QDs) laser diodes have been aggressively
studied using InAs/InGaAlAs and InAsP/AlGaInP materials. The laser diodes, which are capable of
tuning the oscillating wavelength by changing the QD size, have been obtained [30,31]. The red laser
diodes have been mainly applied as the light sources of measurement tools, DVDs, projectors and
displays [32]. Recently, lasers are introduced in the field of medicine and agriculture. The applications
were reported by Hamada in 2015 [32]. On the other hand, high efficiency orange and red color light
Emitting diodes (LEDs) have been manufactured for many applications such as traffic signals, cars,
and digital signage.

This paper describes some phenomena that have not yet been reported on the characterizations of
GaInP grown on (100) GaAs substrates having misorientation angles by the MOCVD method, and also
shows the characteristics of high performance strain compensated multiple quantum well (SC-MQW)
lasers, which are grown on the substrates. This paper also discusses the development history of SC-QW
structure and future development target.

2. Experiment

Gallium indium phophide (GaInP) epitaxial layers were grown on (100) gallium arsenide (GaAs)
substrates having misorientation angle towards [011], [01−1] direction and (100) just using the low
pressure MOCVD system with a load rock chamber. The heating of substrates was carried out
by the RF induction method. Source materials are trimethylindium (TMI), trimetylgallium (TMG),
methylaluminium (TMA), PH3, and AsH3. Dimethylzinc (DMZ), and SiH4, and H2Se as the doping
sources were used for p- and n-type layers, respectively. The growth temperature and total pressure
were 650–680 ◦C and 9.3 × 103 Pa, respectively. V/III ratio was ~550, and the growth rate was
1.2 µm/h. The lattice mismatch of (AlxGa1−x)InP epitaxial layer to GaAs substrates (∆a⊥/a⊥) was
less than 2 × 10−3. The photoluminescence spectra were measured using the 488 nm Ar + laser,
which is focused to spot size of approximately 250 µm2. The excitation light density is 8 W/cm2.
The luminescence is dispersed by a monochrometer (SPEX 1000 M, HORIBA JOBIN YVON S.A.S.,
Edison, NJ, USA), detected using a cooled photomultiplier, and a lock-in amplifier. The wavelength
scanning step and slit width of the monochrometer were 0.1–0.5 nm and 0.1–0.5 mm, respectively.
Sample temperature was controlled using a helium cryostat system with heater in the ranges of
10–300 K.

3. Results and Discussion

3.1. GaInP Epitaxial Layer

The ordering phenomena of GaInP epitaxial layers grown on GaAs substrates were reported
by Suzuki et al. and Gomyo et al. [4–6]. Then, many researchers aggressively studied suppressing
the ordering [7–22]. As a result, during 1989–1994, it was recognized that the (100) GaAs substrates
having misorientation towards [011] direction were useful to suppress the ordering generation and
to develop high performance quantum well (QW) AlGaInP laser diodes. On the other hand, it was
believed that the crystallinity of ordered GaInP epitaxial layers were not good in comparison to that of
disordered ones, as the ordered GaInP epitaxial layers are constructed by two domains, such as [11−1]
and [1−11] directions, and their micro-grain boundaries. The considerations have also been supported
by many experimental results [4–6,17]. However, there is a possibility that highly ordered GaInP
epitaxial layers having either [11−1] or [1−11] direction may have same characteristics as disordered
ones. This possibility was pointed out by Schneider et al. in 1992 [33]. However, the proofs based
on the experimental results have not been reported during 25 years. In this paper, highly ordered
GaInP layers toward [11−1] direction have been successfully formed using GaAs (100) substrates
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having 5◦ misorientation toward [01−1] direction using the MOCVD method. The characterizations
are described in the following section.

3.2. GaInP Epitaxial Layers

The characterizations of all samples, which are prepared for evaluations of GaInP epitaxial
layers are summarized in Table 1. The samples are grown on four kinds of substrates. Each sample
is characterized by sample number. Ex144, which is grown on (100) substrate, has the ordered
structures of two directions toward [11−1] and [1−11] directions. Ex146 and Ex145-A are grown on 5◦

misorientation substrates at growth temperature of 650 ◦C and 680 ◦C, respectively. Ex145-B, which
are grown on GaAs substrates with 5◦ misorientation [01−1] direction, has the ordered structure with
an orientation of [11−1] direction. Ex145-A and Ex148 are characterized by almost and completely
disordered structures, respectively.

Table 1. Sample list of gallium indium phosphide (GaInP) epitaxial layers.

Sample NumberGaAs
Substrate

Growth
Temperature (◦C)

Crystalline Structure

Ordered Ordered + Disorded Disordered

Ex144 (100) just 650 # with two
directions - -

Ex146 5◦ misorientation
toward [011] 680 - - # almost

Ex145-A 5◦

misorientation
toward [011]

650 - # with week ordered -

Ex145-B 5◦

misorientation
toward [01−1]

650 # with a single
directions - -

Ex148 9◦ misorientation
toward [011] 650 - - # completely

Figure 1 shows transmission electron diffraction (TED) patterns of GaInP epitaxial layers grown
on the GaAs (100) substrates, GaAs (100) substrates having 5◦ misorientation toward [01−1] and
[011] direction and having 9◦ misorientation toward [011] direction. The sub spots of ( 1

2
1
2 −

1
2 ) and

( 1
2 −

1
2

1
2 ), which reflect the ordered structure having two directions, are observed for GaInP layers

grown on GaAs (100) substrates, as shown in Figure 1a. Figure 1b shows the highly ordered structure
without the sub spots ( 1

2
1
2 −

1
2 ) toward [11−1]. On the other hand, the mixed structure having ordered

and disordered arrangements is shown in Figure 1c. Figure 1d shows GaInP layers grown on 9◦

misorientation substrates toward [011] direction. This shows the completely disordered structure.
The results are consistent with many reports [34,35]. However, the ordering dependence of the
misorientation angle is stronger than those of previous reports [4–6,18]. These samples are used to
characterizing the ordered and disordered structures.
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Figure 1. Transmission electron diffraction (TED) patterns of GaInP epitaxial layers for: (a) Ex144;  
(b) Ex145-B; (c) Ex145-A; and (d) Ex148. 

Figure 2 shows the temperature dependence of photoluminescence (PL) peak intensity of 
ordered and disordered InGaP layers. Ex146, the Ex145-A and Ex145-B samples are used for the 
characterizations by the PL method. Temperature dependence of the PL emission efficiency (η) is 
given by the following equation [36]. 

η(T) = Pr{Pr + APnr + BPnr}−1 (1) 

where Pr is the probability for radiative transition, which is independent for temperature. APnro and 
BPnr are the probabilities for two non-radiative recombination mechanisms, as shown in the following 
equations:  

APnr = APnro exp(−EA/kT) (2) 

BPnr = BPnro exp(−EB/kT) (3) 

where EA and EB are the thermal activation energies, and APnro and BPnro are the temperature 
independent factors. η(T) is rewritten using Equations (2) and (3) as following equation. 

η(T) = {1 + AC exp(−EA/kT) + BC exp(−EB/kT)}−1 (4) 

where AC = APnro/Pr and BC = BPnro/Pr are the ratio of non-radiative to radiative recombination 
probabilities. In the paper, AC and BC are estimated by fitting at the regions of low (10 K–100 K) and 
high (100 K–300 K) temperatures, respectively. The symbols of k and T are Boltzmann constant and 
temperature, respectively. Parameters such as AC, EA, BC and EB in Equation (4) are obtained by fitting 
to the experimental results in Figure 2. Table 2 shows the fitting parameters for each sample. The 
lowest column also shows the values for the ordered GaInP layer grown on (100) GaAs substrates, 
which was reported by Lambkin et al. EA includes, in general, localized energy and binding energy 
of the exciton. EA for all samples also lies in the spatial variation (4.5–30 meV) of band-edge minima, 
which was suggested for the disordered GaInP layers by Delong et al. [37]. The results for BC, which, 
for all samples, are virtually the same, mean that the non-radiative mechanisms in the region of high 
temperature (100 K–300 K) are basically not different between the highly ordered and disordered 
structures. From these results, the crystallinity of Ex145-B is the same as those of Ex145-A and Ex146. 
Especially, the AC of highly ordered LC159, which was reported by Lambkin et al. [36], is larger than 
that of Ex145-B. This means that LC159 has many non-radiative centers in comparison to that of 
Ex145-B. This may be attributed to the crystalline structure differences that LC159 and Ex145-B have, 
i.e. the ordered structure of two directions and one direction, respectively. In other words, this means 
that the number of domain boundaries in LC159 is much more than those of Ex145-B. It is also 
understood by the experimental results that the full width at half maximum (FWHM) of PL spectrum 
of Ex145-B at 10 K is one-half narrower than that of that of LC159. The results are also supported by 

Figure 1. Transmission electron diffraction (TED) patterns of GaInP epitaxial layers for: (a) Ex144; (b)
Ex145-B; (c) Ex145-A; and (d) Ex148.

Figure 2 shows the temperature dependence of photoluminescence (PL) peak intensity of
ordered and disordered InGaP layers. Ex146, the Ex145-A and Ex145-B samples are used for the
characterizations by the PL method. Temperature dependence of the PL emission efficiency (η) is given
by the following equation [36].

η(T) = Pr{Pr + APnr + BPnr}−1 (1)

where Pr is the probability for radiative transition, which is independent for temperature. APnro

and BPnr are the probabilities for two non-radiative recombination mechanisms, as shown in the
following equations:

APnr = APnro exp(−EA/kT) (2)

BPnr = BPnro exp(−EB/kT) (3)

where EA and EB are the thermal activation energies, and APnro and BPnro are the temperature
independent factors. η(T) is rewritten using Equations (2) and (3) as following equation.

η(T) = {1 + AC exp(−EA/kT) + BC exp(−EB/kT)}−1 (4)

where AC = APnro/Pr and BC = BPnro/Pr are the ratio of non-radiative to radiative recombination
probabilities. In the paper, AC and BC are estimated by fitting at the regions of low (10 K–100 K) and
high (100 K–300 K) temperatures, respectively. The symbols of k and T are Boltzmann constant and
temperature, respectively. Parameters such as AC, EA, BC and EB in Equation (4) are obtained by fitting
to the experimental results in Figure 2. Table 2 shows the fitting parameters for each sample. The
lowest column also shows the values for the ordered GaInP layer grown on (100) GaAs substrates,
which was reported by Lambkin et al. EA includes, in general, localized energy and binding energy
of the exciton. EA for all samples also lies in the spatial variation (4.5–30 meV) of band-edge minima,
which was suggested for the disordered GaInP layers by Delong et al. [37]. The results for BC, which,
for all samples, are virtually the same, mean that the non-radiative mechanisms in the region of high
temperature (100 K–300 K) are basically not different between the highly ordered and disordered
structures. From these results, the crystallinity of Ex145-B is the same as those of Ex145-A and Ex146.
Especially, the AC of highly ordered LC159, which was reported by Lambkin et al. [36], is larger
than that of Ex145-B. This means that LC159 has many non-radiative centers in comparison to that
of Ex145-B. This may be attributed to the crystalline structure differences that LC159 and Ex145-B
have, i.e., the ordered structure of two directions and one direction, respectively. In other words,
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this means that the number of domain boundaries in LC159 is much more than those of Ex145-B. It
is also understood by the experimental results that the full width at half maximum (FWHM) of PL
spectrum of Ex145-B at 10 K is one-half narrower than that of that of LC159. The results are also
supported by the experimental results, which show that some deep levels generated by incorporating
of oxygen are reduced using the misorientation substrates [38].
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Figure 2. Temperature dependence of photoluminescence (PL) peak intensity for: (i) Ex145-B;
(ii) Ex145-A; and (iii) Ex146.

Table 2. Activation energy for GaInP epitaxial layers.

Samples Ca Ea (meV) Cb Eb (meV) Cb/Ca

Ex146 102.65 24 104.3 62 101.65

Ex145-A 102.08 24 104.0 66 101.92

Ex145-B 101.88 16 104.0 68 102.12

Highly Ordered LC159 [36] 103.2 16.4 101.46 50 10−1.74

Figure 3 shows the dependence of full width at half maximum (FWHM) of PL spectrum on
temperature (1/T). For this experiment, Ex-146, and Ex145-A and -B samples are used. The FWHM
(W), in general, is given by the configurational-coordinate model equation [39]:

W = A (coth h̄ω/2kT)1/2 (5)

where A is a constant whose value is equal to W as the temperature approaches 0 K, and h̄ω is the
energy of the vibration mode of the excited state. In this paper, Equation (5) has been fitted to the
experimental values for each sample. The results are listed in Table 3. Equation (5) is consistent with
each sample at less than 100 K. A and h̄ω for each sample are virtually constant. A of Ex146-B, having
the ordered structure, is larger than that of Ex145-A and Ex146. However, the value lies in the ranges
of FWHM of PL for the disordered structure, which were reported by some papers [14,33]. From the
results, it can be concluded that the differences between A and h̄ω of the samples having the ordered
structure (such as the single domain structure) toward either [11−1] or [1−11] direction and those of
disordered ones is small.
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Figure 3. Temperature dependence of full width at half maximum (FWHM) of PL spectrum for:
1© Ex145-B; 2© Ex145-A; and 3© Ex146. Solid line is a fit to Equation (5) for each data.

Table 3. Energy of variation mode of excited state (h̄ω) and FWHM (A) of PL exported to 0 K for GaInP
epitaxial layers.

Samples h̄ω (meV) A (meV)

Ex146 7 7.9
Ex145-A 6.3 9
Ex145-B 4 12.4

Figure 4 shows the dependence of bandgap energy on temperature (1/T). The samples are Ex148
having completely disordered, Ex146 having almost disordered, Ex145-A having mixed (the disordered
+ ordered) and Ex146-B having highly ordered structures. The solid line shows a fit to Varshni’s
equation for the disordering structure [40,41]. The accuracy of the simulation increases by adopting
the effect of thermal expansion, electron-phonon coupling, and electron-acoustic-phonon coupling [42].
The dependence of the disordered GaInP layers grown on 9◦ misorientation substrates basically
meets Varshni’s equation. On the other hand, the dependence of PL spectrum for the ordered GaInP
layers shows the anomalous characteristics at <100 K. The characteristics were also reported on the
GaInP layers having the ordered structure grown on GaAs (100) substrates by Kondow et al. [43–46].
The ordered structure have two directions: [11−1] and [1−11]. On the other hand, the samples are
GaInP layers having the ordering structure toward [11−1] direction. The PL peak energy shows 1.791
eV at room temperature, as shown in Figure 5, and is the lowest ever reported, to our knowledge [41].
The value may be attributed to the phenomenon that the ordered structure having atomic arrangement
of one direction is enhanced by increasing (111)B micro-steps that appear on the surface by introducing
the misorientation substrates toward [01−1] direction. On the other hand, PL energy of the completely
disordered structure shows 1.914 eV. The PL peak energy difference between the highly ordered and
completely disordered structure, which was reported by Delong et al., is as high as 166 meV at the
low temperature condition. On the other hand, the differences are 130 meV at room temperature.
The values are larger than those of the previous reports [4–6,33].
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Table 4 summarizes the characterizations of the highly ordered and ordered GaInP epitaxial 
layers reported in previous papers [42,43]. The PL peak-energies (band gap) of the ordered structures 
reported are 1.83–1.86 eV at 300 K. The band gap of Ex145-B is 1.791 eV. The values are the smallest 
ever reported, to our knowledge. The largest “h” value is obtained for GaInP layers grown on GaAs 
(100) substrates. The “h” of Ex145-B is smaller than those on the GaAs (100) substrates reported. 

Figure 4. Temperature dependence of PL peak energy for GaInP epitaxial layers: (A) Ex145-B;
(B) Ex145-A; (C) Ex146; and (D) Ex148. Solid line (E) is a calculation result based on Varshni
equation [40] and Delong’s bandgap value [37].

Figure 5 shows the relationship between the changing width “h” at anomaly region (see Figure 5)
and temperature, which presents anomalous characteristics. The solid and circular symbols show
the ordered and the disordered structures, respectively. The “h” values are also plotted using data
in previously published papers [43–46]. The “h” values decrease with temperature, in which the
anomalous characteristics are observed. The phenomena enable understanding that the anomalous
characteristics are not observed for completely disordered GaInP layers. From the results, it is
confirmed that the disordered area, which includes Ex146, is larger than those of Ex145-A. The ordered
structures reported previous papers have two kinds of domains, towards [1−11] and [11−1] directions,
showing the dependence of the anomalous height “h” on the temperature “Pmax”. The phenomenon
may be supported by the considerations that the domain boundaries act as regions for relieving the
stress in the layers.
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Ordered structure, Circular symbols; Disordered + Ordered structure.

Table 4 summarizes the characterizations of the highly ordered and ordered GaInP epitaxial layers
reported in previous papers [42,43]. The PL peak-energies (band gap) of the ordered structures reported
are 1.83–1.86 eV at 300 K. The band gap of Ex145-B is 1.791 eV. The values are the smallest ever reported,
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to our knowledge. The largest “h” value is obtained for GaInP layers grown on GaAs (100) substrates.
The “h” of Ex145-B is smaller than those on the GaAs (100) substrates reported. FWHM of PL spectrum
at low temperature of samples grown on the misorientation substrates is about one-half narrower than
that grown on (100) substrates. The phenomenon that a PL spectrum with two peaks appears for the
ordered samples grown on (100) substrates at below 30 K has been reported by Kondow et al. [43].
However, phenomena like this one are not observed for misorientation substrates. It is concluded
that Ex145-B is better than those grown on the GaAs (100) substrates and have structures such as
the single domain. Furthermore, this conclusion is supported by a report, in which the generation
of deep levels in GaInP layers is suppressed using misorientation substrates [38]. High performance
unicompositional devices that combine highly ordered and the disordered structures will be developed
in the future [47].

Table 4. Characterization of ordered GaInP epitaxial layers.

Substrate h (meV) PL Peak Energy
(eV) (at 300 K)

PL Peak Energy
(eV) (at 10 K)

FWHM of PL stectrum
(meV) (at 10 K) Ref.

Ex145-B 8 1.79 1.85 12 -
(100) just 32 1.86 (at 290 K) 1.91 24 (at 6 K) [43]
(100) just 12 1.83 1.9 - [42]

3.3. Quantum Well AlGaInP Laser Diode

This section reviews quantum well AlGaInP laser diodes. The ordered structure controlling
technologies, which were described in Section 3.2, are also useful to obtain the epitaxial layer with
a smooth surface at atomic order. It is considered that the crystal growth is due to changing from
two-dimensional to step-flow crystal growth by the misorientation angle and the direction with GaAs
substrates. Quantum well structures with the thickness of several nm successfully enable being grown
by the MOCVD method. This section describes o the development history of quantum well AlGaInP
laser diodes and their characteristics. Furthermore, it introduces the recent progress of QD laser diodes
and their future prospects.

3.3.1. Development History of Quantum Well Laser

Development of AlGaInP laser diodes and light emitting diodes (LEDs) were aggressively
advanced from 1986 to 1996 [32]. Especially, threshold reduction of transverse mode stabilized 630 nm
band laser diodes was achieved by introducing some kinds of quantum well structures, as shown in
Figure 6. All laser diodes have loss-guided structures. This development has been mainly advanced
using the double hetero structure (DH) with a bulky GaInP active layer since 1986.

The threshold current was about 100 mA at that time [48,49]. The reproducibility of 630 nm band
laser diodes had been drastically improved by the crystal growth technologies using misorientation
substrates discovered by our group in 1988 [50–52]. After that, the laser diodes, which are applied
the multiple quantum well structure, were developed from 1990 to 1992 [53–56], and the threshold
current is reduced by about 25% in comparison to that of lasers having a bulky active layer (DH).
Then, to reduce the threshold current, strained quantum well lasers, such as circular symbols in
Figure 7, were developed by many researchers [57–64]. In this development race, the world’s first high
performance laser diodes with the strained compensated quantum well (SC-QW) structure, which
adds compressively to the wells or tensile strain to the barriers, were developed by our group in
1992 [65]. The threshold current was one-half reduced in comparison to that of DH lasers. Then, our
group successfully achieved threshold current reduction of about 75% in comparison to that of DH
lasers by optimizing the strain balance in the well and barrier layers in 1994 [66]. Finally, the threshold
current of 630 nm band laser diodes are as low as about 20.5 mA at 20 ◦C [67]. The laser diodes have
been produced by many manufacturers since 1994. The next section describes the characteristics of the
quantum well structure grown on misorientation substrates.
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3.3.2. Quantum Well Structure Grown on Misorientation Substrates

The interface between wells and barriers for the multiple quantum wells structure is, in general,
very important for fabricating high performance devices. Figure 7 shows the relationship between
the PL peak energy and the FMHM of PL emission spectrum for a GaInP single quantum well (SQW),
as a function of the misorientation angle toward [011] direction. The barrier layers, which are also
sandwiched, are (Al0.5Ga0.5)InP. The well thicknesses are shown for 1 and 3 nm. With an increasing
of misorientation angle, the PL peak energy and the FWHM show an almost constant value, >9–10◦.
The thinner well is strongly affected by the misorientation angle of substrates. The results mean that the
abrupt interface between the well and barrier is obtained using the substrates having misorientation
angle of >9–10◦.
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In this paper, the small angle X-ray scattering (SAXS) method is used to evaluate the periodicity
and homogeneity in multiple-quantum well (MQW) structures. Figure 8 shows the relationship
between the FWHM of the first peak of the SAXS pattern and the misorientation angle toward [011]
direction. The thickness of a well and barriers are designed at 1.1 nm and 1.7 nm, respectively, as shown
in Figure 8. The well and barrier layer are applied GaInP and (Al0.5Ga0.5)InP layer, respectively.
The X-ray source is Cu Kα radiation (λ = 0.1541 nm). The FWHM of SAXS pattern is dependent
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on the misorientation angle, showing a minimum value at the misorientation of 9◦, as shown in
Figure 8. It may be attributed to the phenomenon that the step-flow crystal growth is enhanced with
an increasing of misorientation angle in the 0–9◦, and crystal growth mechanism is changed from
step-flow to two-dimensional growth at >9◦ [32]. The results are not consistent with those of Figure 7.
This is based on the structure differences, such as the SQW and MQW. The compositional fluctuation
at the interfaces between the wells and barriers are enhanced by the MQW having periodic structure.
It is improved by optimizing of the growth conditions and misorientation angle.
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Transverse mode stabilized laser diodes are shown in Figure 9 [65]. The structure is fabricated
using the three-step MOCVD method. In the first stage, the DH structure was formed on GaAs (100)
substrate with misorientation toward [110] direction. Next, the mesa stripe structure having a [01−1]
direction is formed using the photolithography and the dry etching methods. At this time, the mesa
stripes is formed using SiO2 mask. The current blocking layer is formed at the states that SiO2 mask
remains on the top of the mesa ones. After that, the mask is removed by the wet etching processes,
and p-GaAs contact layer is finally formed by the MOCVD method. After the thinning processes of
GaAs substrates, the p- and n-type electrodes are deposited on the p-GaAs and n-GaAs substrates,
respectively. The thinning process is needed to perform the cleave processes for forming the front
and rear facets at high yield. Al2O3 passivation films are deposited on the front and rear cleaved
facets. In the case of high power laser diodes, it is deposited the multilayered structure, which are
alternatively stacked at thickness of λ/4 each film with low and high refractive index to prepare
the rear facet with high reflectivity. Amorphous Si films are generally used as the high reflective
index films. For front facets, it is coated Al2O3 film having low refractive index for reducing the
reflectivity. The reflectivity of front facet is only controlled by Al2O3 film thickness. The films are
deposited by the magnetron sputtering method. Then, each chip is cut out from the cleaved bar,
and is mounted using the solder materials on the heatsinks such as Si and AlN, and the chips are
settled the copper stem, which is mounted Si photodiode for monitoring the output power of laser,
using low temperature solders. Finally, the stems are sealed by the metal cap with a glass window
in the dry nitrogen ambient. The laser diode modules are widely used in applications for DVDs,
displays, measurement tools, bar-code readers, and pointers. The temperature characteristics of 630
nm band laser diodes are not so good in comparison to those of 670–690 nm ones. Therefore, the
laser diodes apply the multi-quantum barrier (MQB) structure, which was developed by Iga et al. [68].
The maximum operation temperature was improved up to 95 ◦C by the MQB. The threshold currents
are reduced by introducing the real-index guide structure, and the characteristics are also improved.
For 650 m band laser diodes with the structure, the threshold current of 8 mA is achieved at cavity
length of 350 µm, and the maximum operation temperature is improved up to 120 ◦C. A lifetime of
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>3000 h is achieved at the operation conditions of 5 mW and 80 ◦C [69]. From these results, threshold
current reduction of about 30% for 630 nm band laser diodes is estimated. The reliability of the laser
diodes are affected by the temperature of active layer. Therefore, it is necessary to choose the heatsink
materials for suppressing of the temperature rising in the active layer. Especially, AlGaInP laser diodes
have essential issues that thermal conductivity of AlGaInP materials are about one-half lower than
that of AlGaAs ones [70,71]. To improve the issues, Hamada et al. have chosen AlN ceramic heatsinks
instead of Si heatsinks, which are used for AlGaAs laser diodes in 1991 [72].
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Recently, aluminum nitride (AlN) heatsink is applied to high power AlGaInP laser diodes to
achieve both low cost and high reliability performance [73]. The calculation method of the temperature
rising in the active layer is described in Appendix A.

The world’s first 610 nm band laser diodes under CW operation have been successfully developed
using compressively strained quantum well structures, MQB and misorientation substrates by
Hamada’s team in 1992 [74].The oscillating state at room temperature is shown in Figure 10 [71].
After that, the laser diodes with tensile strain quantum wells have been also reported by Bour et al.
and Tanaka et al. [74–76]. As a result, the limitation of CW operation at room temperature of AlGaInP
laser diodes has been proven by the reports.
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Figure 11 shows the development history of laser diodes based on the strain compensated
quantum well (SC-QW) structures, quantum dots laser diodes and their future prospects. The strain
compensated structure was developed as the buffer layer to obtain the high quality compound
semiconductors by Matthews et al. in 1976 [77]. The SC-QW AlGaInP laser diodes have been developed
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by Hamada’s team in 1992 [65]. The threshold currents of the laser diodes are about one-half decreased
in comparison to that of the strained quantum ones. Highly reliable laser diodes are also obtained
by the structure [66,78]. The structure is applied to 1.0–1.2 µm band laser diodes for reducing the
threshold current [79–81]. Then, laser diodes, which combine SC-QW and Quantum dots (QDs)
structures to active layer, were developed in 2008 [82]. After that, wavelength tunable laser diodes
capable of choosing the oscillating wavelength by changing the QD size were developed in 2010 [30],
and the laser diodes, which were applied the different QD materials, have also developed [31,83].
The laser diodes have also the characteristics of high gain and temperature operation in comparison to
the conventional ones. Therefore, the laser diodes will open the door of new applications such as in
displays, communications, medical equipment, and sensing devices in the near future.
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4. Summary

High quality GaInP epitaxial layers have been successfully grown on GaAs misorientation
substrates using low-pressure MOCVD method. The ordered structure of GaInP epitaxial layers
is controlled by the crystalline misorientation angle and the direction of the substrates. The ordered
phenomena completely disappear using substrates having >9◦ misorientation toward [011]. On the
other hand, highly ordered GaInP layers having an orientation toward [11−1] direction achieve using
the substrates having 5◦ misorientation toward [01−1] direction. The bandgap energy of GaInP layers
having completely disordered and highly ordered structures toward [1−11] direction are 1.14 eV
and 1.791 eV, respectively. From the temperature dependence of PL spectrum, highly ordered GaInP
layers are the same as the disordered ones, and are better than that of the ordered structure having
two orientations. It is concluded that highly ordered epitaxial layers grown on the misorientation
substrates toward [01−1] direction are essentially different from the ordered structures grown on GaAs
(100) substrates, which were reported in the 1980s. The PL peak energy differences between the highly
ordered and disordered GaInP epitaxial layers are about 130 meV at room temperature, which is the
largest ever reported ones.

Furthermore, the strained compensated AlGaInP quantum well structure, which was proposed
by Hamada’s team in 1992, have strongly contributed to developing and manufacturing laser diodes
with low-threshold current. The threshold current of the transverse mode stabilized laser diodes are
one-quarter lower than that of the double hetero structures with a bulky active layer. High performance
630 nm band laser diodes have been manufactured by applying the structure. The novel laser diodes,
which introduce SC-QW and QD structures, will contribute to the development of the wavelength
tunable ones, and open the doors of new applications.
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Appendix A

Estimation Method of Temperature Rising of Active Layer

The thermal conductivity of AlN ceramic heatsink is 1.8 times higher than that of Si heat sink,
as shown Table 4 [84]. To estimate the temperature of active layer, it is used the thermal conductive
equation based on finite-element models as follows [32,85]:

σ(∂2/∂X2 + ∂2/∂Y2 + ∂2/∂Z2) T + Q = 0 + (A1)

where σ and Q are thermal conductivity and calorific values, respectively. T is temperature rising. X,
Y, Z show positional coordinates for lasers. The LDs chip is mounted on AlN ceramic heat-sink at
junction down configuration. The temperature rising (∆T ◦C) of active layer is three-dimensionally
calculated using parameters in Table A1 and the following conditions:

1. Heat is only generated by injected electric power.
2. Thermal only flows from heatsink (thermal does not flow out from the laser chip to the atmosphere).
3. Thermal flow and temperature are continuous at interface of each layer.
4. Chip shape is mesa stripe structure.

Table A1. Parameters for calculation.

Prameters Symbol Value Unit

Laser chip size - 500 × 300 × 100 µm
AlN heat sink size - 1100 × 1100 × 2400 µm
Operation current Iop 100 mA
Operation voltage Vop 2.5 V

Light output power Pout 30 mW
Thermal conductivity of GaInP σGaInP 0.053 W/cm·K

Thermal conductivity of AlGaInP σAlGaInP 0.06 W/cm·K
Thermal conductivity of GaAs σGaAs 0.44 W/cm·K

Thermal conductivity of Si σSi 1.45 W/cm·K
Thermal conductivity of AlN σAlN 2.6 W/cm·K

Temperature at each area in the laser chip is calculated by setting as 0 ◦C the temperature of
heatsink back-side, as shown in Figure A1. The thermal conductivities of AlGaInP, GaInP and GaAs
refer to data reported by Martin et al. [70].
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Table A1. Parameters for calculation. 

Prameters Symbol Value Unit 
Laser chip size - 500 × 300 × 100 µm 

AlN heat sink size - 1100 × 1100 × 2400 µm 
Operation current Iop 100 mA 
Operation voltage Vop 2.5 V 

Light output power Pout 30 mW 
Thermal conductivity of GaInP σGaInP 0.053 W/cm·K 

Thermal conductivity of AlGaInP σAlGaInP 0.06 W/cm·K 
Thermal conductivity of GaAs σ GaAs 0.44 W/cm·K 

Thermal conductivity of Si σSi 1.45 W/cm·K 
Thermal conductivity of AlN σAlN 2.6 W/cm·K 

Temperature at each area in the laser chip is calculated by setting as 0 °C the temperature of 
heatsink back-side, as shown in Figure A1. The thermal conductivities of AlGaInP, GaInP and GaAs 
refer to data reported by Martin et al. [70]. 

 
Figure A1. Simulated temperature of active layer: (a) Si heat sink; and (b) AlN heat sink. 

The simulated results for Si and AlN ceramic heatsinks are shown in Figure 10. The temperature 
gradient in the AlN ceramic heatsink is lower than that of Si one. As a result, the temperature rising 
of active layer is effectively suppressed using AlN ceramic heatsink having the high thermal 
conductivity, and is reduced by 3.3 °C. 

Figure A1. Simulated temperature of active layer: (a) Si heat sink; and (b) AlN heat sink.

The simulated results for Si and AlN ceramic heatsinks are shown in Figure 10. The temperature
gradient in the AlN ceramic heatsink is lower than that of Si one. As a result, the temperature rising of
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active layer is effectively suppressed using AlN ceramic heatsink having the high thermal conductivity,
and is reduced by 3.3 ◦C.

High performance transverse mode stabilized 630 nm band laser diodes have been successfully
developed by introducing SC-MQW structure and AlN heatsinks having high thermal conductivity.
The threshold current and maximum operation temperature of laser diodes with the cavity length
of 350 µm and without facet coating are 20.5 mA (threshold current density; 1.1 kA/cm2) and 95 ◦C,
respectively [67]. The laser diodes show the highest performance ever reported, to our knowledge.
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