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Abstract: This paper examines the microstructure and mechanical properties of TaygNbyoHf9ZrpoTizg.
Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both
followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and
tensile properties of the material, since the literature review revealed no data whatsoever regarding
these properties. The main findings are that the HIP process is responsible for the appearance of a
Hexagonal Close Packed (HCP) phase that is dispersed differently in these two castings. The HIP
process also led to a considerable increase in the mechanical properties of both materials under
compression, with values found to be higher than those reported in the literature. Contrary to the
compression properties, both materials were found to be highly brittle under tension, either during
room temperature tension tests or creep tests conducted at 282 °C. Fractography yielded brittle
fracture without any evidence of plastic deformation prior to fracture.
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1. Introduction

Because modern jet engines require larger and larger parameters, improved creep properties
are essential for the aerospace industry. The currently used Ni-based superalloys are reaching their
limits, and since the beginning of the 21st century new alloys known as High Entropy Alloys (HEAs)
have begun to look attractive [1,2]. HEAs can be regarded as solid solution alloys that contain at least
five alloying elements in equal or near equal atomic percentages, and this large number of alloying
elements results in maximizing the configurational entropy of the disordered solid solution. However,
the microstructure of certain HEAs can include nano-precipitates, ordered solid-solution phases,
disordered solid-solution phases, and even amorphous phases [1,2]. Among the various systems of
alloying elements studied, the TaygNbyHfy0Zr;Tiyg alloy seems to be attractive due to its reduced
density of 9.94 g/ cm?® [2,3], few publications [4-6] deal with thr thermodynamic properties of certain
compositions of the Ta-Nb-Hf-Zr-Ti.

As reported by Senkov et al. [2,3], the process of producing the TayyNbyoHfp0Zr2Tiy alloy
consisted of vacuum arc melting followed by re-melting the material three times, five minutes each
time, in order to achieve homogeneity. After that, the material underwent Hot Isostatic Pressing (HIP)
at 1200 °C and 207 MPa for 1 h and finally underwent vacuum annealing at 1200 °C for 24 h.

According to Senkov et al. [2,3,7,8], after annealing at 1200 °C for 24 h the alloy was found to
have a single-phase Body Centered Cubic (BCC) solid solution with a lattice parameter of 0.3404 nm,
and its microstructure consisted of equiaxed, dendritic grains with an average size of 100-200 um.
Lin et al. [9] studied the microstructure of as-cast material (without HIP and annealing) and also
reported the existence of dendrites and an interdendritic phase with slightly different chemical
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compositions. A single BCC structure was also reported by Maiti and Steurer [10], who studied
Tay85Nbgo sHf23 57215 2 Tijp that was arc-melted and homogenized for four days at 1600 °C.

Senkov et al. [2] conducted compression tests on TapgNbygHfp0ZryTizg at room temperature as
well as at 600 °C, 800 °C, 1000 °C and 1200 °C under different strain rates and used Scanning Electron
Microscopy (SEM) to investigate the microstructural changes during the deformation process and the
fracture mechanisms. These researchers claimed that the above temperature range can be divided into
three regions, each one characterized by different deformation behavior. According to Senkov et al. [2],
at temperatures up to 600 °C twinning compensates for restricted dislocation mobility. At 800 °C Grain
Boundary Sliding (GBS) is not yet supported by sufficient dislocation mobility and diffusion leads to
cavitation at grain boundaries, while at 1000-1200 °C cavitation at grain boundaries disappears and
Dynamic Recrystallization (DRX) occurs. DRX processes are assumed to be responsible for the rapid
drop in the flow stress after yielding followed by a steady state flow.

The compression test data for TaygNbogHf0ZryoTipy at room temperature include compression
yield strength of 929 MPa [2] and 1073 MPa [9] together with fracture strain higher than 50% [9].
High temperature compression properties seem to be promising as well [2,8]. However, no data
whatsoever have been published in reference to tensile properties and creep properties of as-cast
TapgNbyogHfr0ZrpoTizg under tension. The current paper seeks to fill this gap by focusing on the tensile
and creep properties of the TaygNbooHfz0ZrgTiyg alloy together with its fracture mechanisms.

2. Results

Figure 1a depicts a back-scattered SEM image of the gravity-cast material prior to HIP, while
Figure 1b shows the suction-assisted casting. Figure 1c,d depict the back-scattered SEM images of
these two castings after HIP. Note that both materials were single phased before undergoing HIP,
while a darker phase is discernible inside the bright matrix after HIP. Table 1 provides the respective
Energy Dispersive X-ray Spectroscopy (EDS) analyses. It should be noted that the dark phase is evenly
dispersed in the matrix of the gravity-assisted casting, while in the case of the suction-assisted casting
it is concentrated mostly at the grain boundaries.

mag det HV WD | spot — O ! 11| Re—

BSED |20.00 kV|10.1 mm| 4.0 Dor 3-2 TaNbHfZrTi gravity

mag det HV WD | spot 20 ym
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Figure 1. Cont.
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Figure 1. SEM images of the material: (a) gravity casting before HIP; (b) suction-assisted casting before
HIP; (c) gravity casting after HIP; (d) suction-assisted casting after HIP.

Table 1. Energy Dispersive X-Ray Spectroscopy (EDS) results (at %).

Sample Phase Ti Zr Nb Hf Ta
Gravity casting before HIP overall composition 19.11 2066 21.15 19.85 19.24
Suction-assisted casting before HIP overall composition 19.13 2142 2212 1946 17.86
overall composition 19.10 2136 21.53 1882 19.18

Gravity casting after HIP matrix 2030 2142 2735 1078 20.15
darker phase 10.88 4879  4.00 3326  3.07

overall composition 2062 2245 2573 1331 1790

Suction-assisted casting after HIP matrix 20.13 2158 2770 1092 19.67
darker phase 852 5738 312 2851 247

XRD spectra of both the gravity and the suction-assisted cast samples before HIP (see Figure 2a,b
respectively) correspond to single-phase NbTaTi-based BCC material. The chemical compositions of
the considered samples correspond to an overall equi-atomic material composition (see Table 1). Based
on the above described SEM study, which indicates the presence of two major phases in the case of the
HfNbTaTiZr alloy that has undergone HIP, each peak was associated with one of these two phases:
a roughly equimolar solid solution of ZrHf and a solid solution of NbTaTi, again at roughly equimolar
proportions. As ZrHf solid solution phase is comprised of HCP elements (at room temperature), it has
an HCP structure and thus exhibits the characteristic X-ray diffraction pattern of other HCP phases.
Contrary to the ZrHf, the NbTaTi solid solution phase is comprised of BCC elements and therefore
has a characteristic X-ray diffraction pattern of other BCC-structured substances. Figure 2c shows the
XRD spectra of the gravity-cast HfNbTaTiZr alloy and the HCP/BCC designation of each peak, while
Figure 2d shows the spectrum of the suction-assisted cast, both after HIP.

Microhardness tests revealed the hardness of the material to be 323.5 £+ 6.5 HV in the case of
gravity casting and 330.2 = 9.8 HV in the case of suction-assisted casting, both before HIP. For the
material that underwent HIP, the hardness was found to be 437.2 4+ 11.6 HV and 509.1 + 13.5 HV for
the gravity and suction-assisted castings respectively. Table 2 summarizes the tension and compression
test results at room temperature.
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Figure 2. XRD spectra of HfNbTaTiZr alloy: (a) gravity casting before HIP; (b) suction-assisted casting
before HIP; (c) gravity casting after HIP; (d) suction-assisted casting after HIP.

Table 2. Tension and compression test results.

Test Process oy (Mpa) Omax (Mpa)
Gravity casting 669
Gravity casting 749
Tension Suction-assisted casting 694
Suction-assisted casting 708
Suction-assisted casting 678
Gravity casting 1380
Gravity casting 1350
Compression Gravity casting 1749
Suction-assisted casting 1725
Suction-assisted casting 1684
Suction-assisted casting 1888

The elongation to fracture under tension was below the machine’s detection limit and therefore
could not be measured. The same was true for the differences between the yield stress and the ultimate
tensile stress. Hence, the maximum stress measured is given in Table 2. Contrary to the tension tests,
the yield stress could be easily detected in the case of the compression tests. Two creep tests at 982 °C
were conducted on gravity-cast specimens, the first under a load of 200 MPa and the second under
120 MPa. Both failed after short periods of time of 15 and 90 min, respectively.

Figure 3a,b provide a general view of the fracture surface of a gravity-cast and a suction-assisted-
cast tension specimen, respectively. The figures show that the fracture is inter-crystalline in both
cases, without any plastic deformation. The fracture of the suction-assisted casting is accompanied by
intergranular cracking, which is most intensive at the center of the specimen. The grain size of the
gravity casting varies significantly between the different regions of the fracture surface, while in the
case of the suction-assisted casting the grain size is quite uniform.
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Figure 3. General view of the fracture surface of a tension specimen: (a) gravity casting;
(b) suction-assisted casting.

Figure 4 focuses on typical grains on the fracture surface of the above-mentioned tension
specimens, showing that no evidence of plastic deformation is discernible in either case. In the
case of the gravity cast, the observed grains are characterized by a flake-like surface structure together
with some porous regions, while in the case of the suction-assisted cast, brittle fractured grains together
with porous regions can be seen.

i
mag | det HV | —_— 2 N
2 000 x| ETD|20.00 kV|8.9 mm | 4.0 2 000 x| ETD|20.00 K

(a) (b)

Figure 4. Fracture surface of: (a) gravity casting; (b) suction-assisted casting.

Figure 5 depicts a SEM micrograph showing a general view of the fracture surface of a specimen
that crept at 982 °C under 120 MPa. Figure 6 shows a Back Scattered Electron (BSE) image of a selected
region of the fracture surface.
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Figure 6. A BSE images of a selected region of the fracture surface shown in Figure 5.

Figures 5 and 6 show that the fracture is brittle. As revealed by EDS analysis, the surface is
contaminated with oxidation products, mainly at the near-surface regions of the sample. Two main
types of broken grains can be seen at the fracture surface: brittle cracked grains and porous grains.
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3. Discussion

XRD and SEM analysis showed that both the gravity-cast specimen and the suction-assisted
cast specimen had one single NbTaTi-based BCC phase, while both materials were composed of a
NbTaTi-based BCC phase and a ZrHf HCP phase in their HIP’ed condition. Having analyzed their
XRD spectrum, Senkov at al. [3] pointed to the existence of a BCC phase in both the cast and the HIP’ed
conditions. Though these researchers reported on a small peak at 20 = 24.9° indicating the presence
of a hexagonal-like phase, they did not refer to the six additional HCP peaks detected in the current
study in the case of HIP gravity casting: 20 = 31.95°, 20 = 34.28°, 20 = 37.34°, 20 = 47.66°, 20 = 56.79°
and 20 = 63.23°. Nor did they refer to the following six peaks in the case of the suction-assisted
casting: 20 = 32°, 20 = 34.3°, 20 = 36.4°, 20 = 47.5°, 20 = 57° and 20 = 62.6°. As stated earlier,
identification of the chemical composition of the two phases of the material in its HIP’ed state is based
on combining EDS analysis of the two detected phases with the XRD results. Senkov et al. referred to
the microstructure of the TaygNbyoHf9ZrpoTipg after undergoing HIP, claiming that only one BCC solid
solution was discernible. However, they emphasized that it was not yet known whether the BCC phase
is thermodynamically stable at Room Temperature (RT), or whether it is metastable and thus kinetically
restricts formation of the low temperature HCP phase due to slow diffusivity [3]. The current study
offers clear evidence of the existence of both a BCC and an HCP phase. It seems that the HIP process is
responsible for the appearance of the HCP phase mentioned above. In addition, the hardness values of
the gravity-cast material can be regarded as equal to those of the suction-assisted casting if we take
into account the overlapping of the standard deviation of the two materials. As for the materials that
underwent HIP, it is clear that the HIP process increased the hardness of both castings. Nevertheless,
in the case of the materials that underwent HIP, the hardness of the suction-assisted casting was
found to be greater than that of the gravity cast. The hardness increase after HIP can be related to
the appearance of the secondary HCP phase and its influence on dislocation mobility, similarly to
precipitation hardening. The difference between the suction-assisted cast and the gravity cast may
be related to the distribution of the ZrHf-rich phase, which is evenly dispersed in the case of the
gravity casting while concentrated mainly at the grain boundaries in the case of the suction-assisted
casting. An explanation for the HIP process being responsible for the two-phased microstructure can
be found when looking at the equilibrium phase diagrams of the elements comprising the alloy. Out
of the five constituent elements, Nb and Ta are exclusively BCC elements, while the structure of Ti,
Zr and Hf is HCP at low-to-moderate temperatures, undergoing allotropic transformation to BCC
at high temperatures. Applying a pseudo-binary simplification and keeping in mind that Ti is the
only HCP element, which can be easily stabilized as BCC at room temperature, it is sufficient to look
at the elemental pairs Zr-Hf and Nb-Ta, as the HCP and BCC components of such a pseudo-binary
system. According to the elemental equilibrium phase diagrams, upon cooling an alloy having a
chemical composition close to the equimolar concentration ratio, either the high temperature BCC
phase undergoes a eutectoid reaction or precipitation of the HCP component occurs. It is therefore
reasonable to derive that when the HIP process of the HINbTaTiZr alloy ends and the alloy is left to
cool at a very slow rate inside the furnace the HCP phase forms out of the original BCC phase, either
by a eutectoid reaction or by precipitation. In contrast, an HCP phase is not created in the case of the
as-cast alloy due to the rapid cooling, resulting in a supercooled BCC phase. As mentioned earlier, the
current study shows that an HCP ZrHf-rich phase appeared after HIP, however, further research is still
required in order to confirm the proposed mechanism.

As stated earlier, to the best of the authors’” knowledge there are no published data whatsoever
regarding tension properties or creep under tension. It should be noted that tensile properties were
studied by Senkov et al. [7] but only after being 86.4% cold rolled and 86.4% cold rolled plus annealed
at 800 °C and at 1000 °C. The mechanical properties of both castings under compression and under
tension are markedly different, as can be seen from Table 2. oy under compression is almost as twice as
high as the maximum stress under tension, while in the case of the compression tests conducted on the
gravity casting, the results were relatively scattered. This higher degree of scattering may be related
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to the variation in grain size detected in the gravity casting as opposed to the uniform grain size of
the suction-assisted casting. The values of oy under compression at room temperature are higher
than those reported by Senkov et al.: 929 MPa [2], 1058 MPa [3] and 1073 MPa [9]. The elongation to
fracture under tension at room temperature was beneath the machine’s detection limit and therefore
could not be measured. Creep tests conducted at 982 °C led to premature failures. For the sake of
comparison, according to MAR-M-247 material specifications for the aerospace industry [10,11], the
time to rupture of the material should exceed 50 h under 200 MPa at 982 °C. These poor results under
tension load lead to the conclusion that the material is extremely brittle and therefore cannot withstand
any tension stress applied either at room temperature or at high temperatures. Senkov et al. [7] reported
that the 86.4% cold-rolled material showed true tensile strength of 1295 MPa and tensile ductility
of 4.7%, however, cold rolling resulted in an extensive grain elongation, formation of deformation
bands within the grains, and development of crystallographic textures that depended on the rolling
reduction. Annealing lead to recrystallization and to the formation of fine second-phase precipitates
which could not be characterized by them [7]. These results, in turn, lead to the conclusion that both
the microstructure and the mechanical properties of the HIP’ed material and those of the HIP’ed plus
cold rolled material are markedly different.

As stated earlier, fractography studies of broken tension test specimens in the case of the gravity
casting revealed significant variations in grain size between the different regions of the fracture surface,
as opposed to the uniformity of the grain size in the suction-assisted casting. In turn, this may point
to casting inhomogeneity in the case of gravity casting, so that suction-assisted casting is preferable.
The lack of any evidence of plastic deformation in both gravity and suction-assisted casting is in
line with the non-detectable elongations to fracture. The high concentration of oxides beneath the
surface detected in the broken creep specimens may be due to preexisting surface cracks through
which the oxidation process occurred. Nonetheless, the existence of such open surface cracks, their
propagation process and their influence on the poor creep properties of the material under tension
should be further investigated.

4. Materials and Methods

The Ta-Nb-Hf-Zr-Ti alloy in the form of buttons was prepared by vacuum arc melting of the
nominal mixtures of the corresponding elements. The degrees of purity of Ta, Nb, Hf, Zr, and Ti were
99.9%, 99.9%, 99.7%, 99% and 99.7%, respectively. Melting was conducted in a high-purity argon
atmosphere. High-purity molten titanium was used as a getter for residual oxygen, nitrogen, and
hydrogen. In order to achieve homogeneous distribution of the elements in the alloys, the buttons
were turned upside down and re-melted four times. The buttons were approximately 13 mm thick
and 35 mm in diameter and had a shiny surface. Following this stage, the alloys were cast into bars
of 9 mm in diameter and 85 mm in length. One group of specimens was left to solidify inside the
mold after casting. Namely, it underwent a process of gravity casting. The other group was cast by
applying suction by means of a vacuum pump. The last stage was Hot Isostatic Pressing (HIP), HIP is a
common practice, involving high temperatures and isostatic pressure and it is used for closing internal
porosity [12]. HIP was applied in other studies as well as reported [2,3,7,8]. In the current study, the bars
underwent HIP at 1230 °C and 152 MPa for 4 h. The bars were then radiographically examined in order
to eliminate the existence of porosity and other defects that may lead to premature failure under tension.
X-ray Diffraction (XRD) tests were performed using a Stationary Rigaku Smart Lab diffractometer
(Tokyo, Japan) equipped with a Cu tube (A = 1.5406 A). An FEI Inspect SEM (Brno, Czech Republic)
equipped with an Oxford Energy Dispersive X-ray Spectroscopy (EDS) system was used to analyze
the microstructure and the chemical composition of the alloy and its phases as well as the fracture
surface. Vickers hardness measurements were conducted using a Seiki Matsuzawa microhardness
tester (Tokyo, Japan) under a load of 500 gf. Ten measurements, each lasting 15 s, were taken from the
gravity and suction-assisted casts in both states—before and after HIP. Tension, compression and creep
specimens were prepared from the HIP’ed bars by machining. Room temperature tension tests and



Materials 2017, 10, 883 10 of 12

creep tests were conducted on similar dog-bone specimens, while compression tests were conducted
on cylindrical specimens having a diameter of 8 mm. Both creep and tension specimens were manually
polished prior to being tested in order to eliminate machining scratches.

Figure 7 shows the cast bar, while Figure 8 depicts a tension/creep specimen. The fracture surfaces
of the broken tension and creep specimens were examined by SEM.

Figure 7. An as-cast bar.

Figure 8. A tension/creep specimen.

Table 3 shows the alloy composition in its as-cast state.
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Table 3. Chemical composition of the as-cast alloy (at %).

Alloy Ta Nb Hf Zr Ti
TaNbHfZrTi 20.4 20.1 20.6 20.7 18.2

5. Conclusions

The microstructure and mechanical properties of gravity-cast and suction-assisted cast
TaygNbogHf>¢Zro Tipg were studied.

The HIP process, applied to both castings, was found to be responsible for the appearance of an
HCP phase in addition to the preexisting BCC stage. The HIP process also increased the hardness
of both castings, and in the case of the suction-assisted castings led to a larger increase.

The HCP phase that appeared after HIP is evenly dispersed in the matrix of the gravity-assisted
casting, while it is concentrated mostly at the grain boundaries in the case of the
suction-assisted casting.

Compression strength values measured for both gravity casting and suction-assisted casting in
the current study are higher than those reported in the literature.

Creep and tension test results as well as fractography showed that both materials are extremely
brittle under tension.

A fractography study of the broken tension test specimens revealed significant variations in
grain size between the different regions of the fracture surface in the case of the gravity casting,
as compared to the uniformity of the grain size in the suction-assisted casting.

High concentration of oxides observed beneath the surface of the broken creep specimens may
point to preexisting surface cracks through which the oxidation process occurred. Nevertheless,
further research is still required in order to understand the failure mechanism.
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