



# Organosilica membrane with ionic liquid properties for separation of toluene/H<sub>2</sub> mixture

Yuichiro Hirota<sup>a,\*</sup>, Yohei Maeda<sup>a</sup>, Yusuke Yamamoto<sup>a</sup>, Manabu Miyamotob, and Norikazu Nishiyama

<sup>a</sup>Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka 560–8531, Japan. E-mail: yhirota@cheng.es.osaka-u.ac.jp

<sup>b</sup>Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

## **Supplementary Materials**

Table of contents

- 1. Cross-sectional SEM image of the tubular support
- 2. Toluene/H<sub>2</sub> separation test apparatus
- 3. Cross-sectional SEM image and EDX analysis of the ILOS membrane

### 1. Cross-sectional SEM image of the tubular support

Cross-sectional SEM image of the tubular support (purchased from eSep Inc.) is shown below.



Figure S1. Cross-sectional SEM image of the tubular support.

#### 2. Toluene/H<sub>2</sub> separation test apparatus

Separation of a binary mixture of toluene/H<sub>2</sub> (toluene : H<sub>2</sub> = 1 : 3 (molar)) was conducted at 343 K. A schematic diagram of separation test apparatus is shown in Figure S2. The binary mixture and N<sub>2</sub> as a sweep gas were fed into a feed and a permeate side of the membrane, respectively. Flow rates of H<sub>2</sub> and N<sub>2</sub> as a sweep gas were controlled using mass flow controller. Toluene was sent to vaporizer by a syringe pump. The flow rates of H<sub>2</sub>, toluene vapor and N<sub>2</sub> were 50, 16.6 and 20 cm<sup>3</sup>/min, respectively. The total pressure on the feed side and the permeate side was kept at 0.12 and 0.1 MPa, respectively. Permeate stream was analysed using a gas chromatograph (Shimadzu GC-8A). The toluene vapor and H<sub>2</sub> permeation performance of the membrane was evaluated based on permeance [mol m<sup>-2</sup>s<sup>-1</sup>Pa<sup>-1</sup>] and separation factor. Toluene/H<sub>2</sub> separation factor was calculated as the ratio of toluene and H<sub>2</sub> permeance. The detection limit of toluene/H<sub>2</sub> permeation test was 10<sup>-12</sup> mol m<sup>-2</sup>s<sup>-1</sup>Pa<sup>-1</sup>.



Figure S2. A schematic diagram of separation test apparatus.

### 3. Cross-sectional SEM image and EDX analysis of the ILOS membrane

Cross-sectional SEM image and EDX chemical map for F atom of the ILOS membrane were shown in Figure 3S. The IL was existed not only in nanoporous  $SiO_2$  layer but also in a macroporous  $Al_2O_3$  support.



**Figure S3.** Cross-sectional (a) SEM image and (b) EDX chemical map for F atoms of the ILOS membrane. (White dot represents F atoms.)