Next Article in Journal
Effects of Adding Polysaccharides and Citric Acid into Sodium Dihydrogen Phosphate Mixing Solution on the Material Properties of Gelatin-Hybridized Calcium-Phosphate Cement
Previous Article in Journal
Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Materials 2017, 10(8), 940; doi:10.3390/ma10080940

Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System

Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
*
Author to whom correspondence should be addressed.
Received: 28 June 2017 / Revised: 3 August 2017 / Accepted: 10 August 2017 / Published: 12 August 2017
(This article belongs to the Section Materials for Energy Applications)
View Full-Text   |   Download PDF [7364 KB, uploaded 14 August 2017]   |  

Abstract

This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system’s working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage. View Full-Text
Keywords: heat storage; ceramic brick material; solar air space heating system heat storage; ceramic brick material; solar air space heating system
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Nemś, M.; Nemś, A.; Kasperski, J.; Pomorski, M. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System. Materials 2017, 10, 940.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top