Supplementary Materials

Characterization and applications of robustly grafted kaolinite using ionic liquid with naphthyl functionality

Gustave Kenne Dedzo^{1,2*} and, Christian Detellier¹

- ¹ Center for Catalysis Research and Innovation and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
- ² Laboratory of Analytical Chemistry, Faculty of Science, University of Yaounde I, B.P. 812, Yaoundé, Cameroon.
- * Correspondence: gkennede@uottawa.ca

Figure S1. Powdered XRD patterns of (a) kaolinite, (b) K-NI and K-NI sonicated for 30 minutes in (c) water and (d) toluene.

Figure S2.TGA curves of K-NI (a) under N_2 , (b) under air.

Figure S3. FTIR Spectra of (a) kaolinite and (b) K-NI.

Figure S4. Effect of the scanning rate on the signal recorded on GCE/K-NI. Voltammograms recorded in 1 mM solution of $K_3Fe(CN)_6$ and 0.2 M KCl as supporting electrolyte at varying scanning rate. Inset variation of peak currents as a function of the square root of the scan rate.

Figure S5: UV-Vis spectra of (A) 10^{-4} M PNP aqueous solution: (a) before adsorption, after 10 hours contact time with (b) kaolinite 2g L⁻¹and (c) K-NI 2g L⁻¹; (B) 5x10⁻⁵ M PNP ethanol solution, (a) before adsorption and (b) after 10 hours contact time with K-NI 1g L⁻¹.