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Abstract: Photoswitching and fluorescent properties of sulfone derivatives of
1,2-bis(2-alkyl-4-methyl-5-phenyl-3-thienyl)perfluorocyclopentene, 1–5, having methyl, ethyl,
n-propyl, i-propyl, and i-butyl substituents at the reactive carbons (2- and 2′-positions) of the
thiophene 1,1-dioxide rings were studied. Diarylethenes 1–5 underwent isomerization reactions
between open-ring and closed-ring forms upon alternate irradiation with ultraviolet (UV) and visible
light and showed fluorescence in the closed-ring forms. The alkyl substitution at the reactive carbons
affects the fluorescent property of the closed-ring isomers. The closed-ring isomers 2b–5b with ethyl,
n-propyl, i-propyl, and i-butyl substituents show higher fluorescence quantum yields than 1b with
methyl substituents. In polar solvents, the fluorescence quantum yield of 1b markedly decreases,
while 2b–5b maintain the relatively high fluorescence quantum yields. Although the cycloreversion
quantum yields of the derivatives with methyl, ethyl, n-propyl, and i-propyl substituents are quite
low and in the order of 10−5, introduction of i-butyl substituents was found to increase the yield
up to the order of 10−3. These results indicate that appropriate alkyl substitution at the reactive
carbons is indispensable for properly controlling the photoswitching and fluorescent properties of
the photoswitchable fluorescent diarylethenes, which are potentially applicable to super-resolution
fluorescence microscopies.

Keywords: photoswitch; diarylethene; photochromism; fluorescence; super-resolution
fluorescence microscopy

1. Introduction

Fluorescent molecules with photoswitching ability have attracted much attention because of
their potential applications to optical information storage as well as super-resolution fluorescence
microscopies [1–5]. One methodology to construct the photoswitchable fluorescent molecules is to
integrate both photochromic and fluorescent chromophores in a molecule [6–16]. These molecules are
initially fluorescent while the fluorescence is quenched by an energy or an electron transfer mechanism
when the photochromic unit undergoes isomerization upon photoirradiation. The turn-off mode
fluorescence photoswitching can be applied to optical information storage but is hardly applicable to
super-resolution fluorescence microscopies, such as PALM (photoactivatable localization microscopy)
and STORM (stochastic optical reconstruction microscopy), because these imaging techniques require
a dark background to detect single fluorescent molecules [17–21]. For these applications, it is strongly
desired to develop turn-on mode photoswitchable fluorescent molecules which can be efficiently and
instantaneously activated upon photoirradiation.

Recently, a new type of turn-on mode photoswitchable fluorescent molecules, sulfone derivatives
of 1,2-bis(benzothiophenyl)perfluorocyclopentene, has been developed [22–34]. The first example is
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the sulfone derivative of 1,2-bis(2-methyl-1-benzothiophen-3-yl)perfluorocyclopentene, which was
reported by Ahn and co-workers [22]. Upon irradiation with UV light, the open-ring isomer undergoes
a cyclization reaction to produce the fluorescent closed-ring isomer. However, the fluorescence
quantum yield is relatively low (Φf = 0.011). In order to improve the fluorescent property, various
chemical modifications have been carried out. It was found that the fluorescence quantum yield
depends on substituents at 2- and 2′- and 6- and 6′-positions of the benzothiophene 1,1-dioxide groups.
Introduction of phenyl groups at the 6- and 6′-positions dramatically increased the fluorescence
quantum yield of the closed-ring isomer up to 0.64 [27,34]. The yield was further increased up to
0.9 by replacing the methyl substituents at the 2- and 2′-positions with short alkyl chains, such
as ethyl, n-propyl, and n-butyl groups [26,27,34]. Very recently, it has been demonstrated that
such turn-on mode fluorescent diarylethene derivatives can be utilized as molecular probes for
super-resolution fluorescence microscopies, such as PALM/STORM [35–37] and RESOLFT (reversible
saturable (switchable) optical linear fluorescence transitions) microscopy [38].

A sulfone derivative of 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene (1) has
also been reported to exhibit fluorescence photoswitching (Scheme 1) [39]. Although the
open-ring isomer 1a undergoes a cyclization reaction upon UV irradiation to form the fluorescent
closed-ring isomer 1b, the fluorescence quantum yield of 1b is relatively low (Φf = 0.03 in
2-methyltetrahydrofuran (2MeTHF)). In this paper, we synthesized four sulfone derivatives of
1,2-bis(2-alkyl-4-methyl-5-phenyl-3-thienyl)perfluorocyclonentene (2–5), as shown in Scheme 1,
to improve the photoswitching and fluorescent properties. These derivatives possess different alkyl
substituents, such as ethyl (2), n-propyl (3), i-propyl (4), and i-butyl (5) groups, at the reactive carbons
(2- and 2′-positions) of the thiophene 1,1-dioxide rings. The effect of the alkyl substituents on the
photoswitching and fluorescent properties has been studied.
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Scheme 1. Photoisomerization of photoswitchable fluorescent diarylethenes 1–5.

2. Results and Discussion

Figure 1 shows absorption spectra of the open-ring isomers 1a–5a and absorption and fluorescence
spectra of the corresponding closed-ring isomers 1b–5b in 1,4-dioxane. 1a–5a are colorless and have
no optical absorption in the visible-wavelength region. Upon irradiation with UV (λ = 313 nm)
light, 1a–5a underwent cyclization reactions to produce the closed-ring isomers 1b–5b and the
1,4-dioxane solutions turned yellow. The absorption spectra of 1b–5b have maxima at around
430 nm and 1b–5b emit green fluorescence at around 530 nm under irradiation with 430 nm light.
The closed-ring isomers were thermally stable at room temperature in the dark. Upon irradiation with
visible (λ > 440 nm) light, the absorbances and fluorescence intensities of 1b–5b gradually decreased,
indicating that the closed-ring isomers underwent cycloreversion reactions to form the open-ring
isomers. Thus, 1–5 undergo photochromism and fluorescence photoswitching upon irradiation with
UV and visible light.
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Figure 1. Absorption and fluorescence spectra of 1 (a); 2 (b); 3 (c); 4 (d); and 5 (e) in 1,4-dioxane (3.0 × 
10−5 M). Black dashed lines: absorption spectra of open-ring isomers 1a–5a, black solid lines: 
absorption spectra of closed-ring isomers 1b–5b, green solid lines: fluorescence spectra (uncorrected) 
of closed-ring isomers 1b–5b. 
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photochemical parameters of diarylethenes 1–5 in 1,4-dioxane. The absorption spectra depend on 
the alkyl substituents at the reactive carbons to some extent. The absorption maxima of the 
open-ring isomers are located in the range of 296–301 nm. Appreciable difference among the five 
derivatives was not observed. On the other hand, the absorption maximum of the closed-ring isomer 
shows a significant bathochromic shift as much as 9 nm (from 424 nm to 433) when the substituent is 
changed from methyl (1b) to ethyl (2b). The absorption maximum of n-propyl substituted derivative 
3b (434 nm) is similar to that of ethyl substituted 2b. i-Butyl substituted derivative 5b shows a 
further bathochromic shift to 438 nm. The bathochromic shift upon i-propyl substitution is relatively 
small (4b: 427 nm). A similar spectral shift by alkyl substitution at reactive carbons is also observed 
for 1,2-bis(2-alkyl-5-phenyl-3-thienyl)perfluorocyclopentene [40]. The effect on fluorescence 
quantum yields (Φf) is also noteworthy. The fluorescence quantum yield of the closed-ring isomer in 
1,4-dioxane increases from 0.07 (1b) to 0.42 (2b) when the methyl substituents are replaced with the 
ethyl ones. The n-propyl, i-propyl, and i-butyl substituted derivatives also show high quantum 
yields of 0.42 (2b), 0.42 (3b), and 0.50 (5b), respectively, although these values are lower than those of 

Figure 1. Absorption and fluorescence spectra of 1 (a); 2 (b); 3 (c); 4 (d); and 5 (e) in 1,4-dioxane
(3.0 × 10−5 M). Black dashed lines: absorption spectra of open-ring isomers 1a–5a, black solid lines:
absorption spectra of closed-ring isomers 1b–5b, green solid lines: fluorescence spectra (uncorrected)
of closed-ring isomers 1b–5b.

The effect of the alkyl substituents at the reactive carbons on the photoswitching and fluorescent
properties was examined in more detail. Table 1 summarizes photophysical and photochemical
parameters of diarylethenes 1–5 in 1,4-dioxane. The absorption spectra depend on the alkyl
substituents at the reactive carbons to some extent. The absorption maxima of the open-ring isomers
are located in the range of 296–301 nm. Appreciable difference among the five derivatives was
not observed. On the other hand, the absorption maximum of the closed-ring isomer shows a
significant bathochromic shift as much as 9 nm (from 424 nm to 433) when the substituent is changed
from methyl (1b) to ethyl (2b). The absorption maximum of n-propyl substituted derivative 3b
(434 nm) is similar to that of ethyl substituted 2b. i-Butyl substituted derivative 5b shows a further
bathochromic shift to 438 nm. The bathochromic shift upon i-propyl substitution is relatively small
(4b: 427 nm). A similar spectral shift by alkyl substitution at reactive carbons is also observed for
1,2-bis(2-alkyl-5-phenyl-3-thienyl)perfluorocyclopentene [40]. The effect on fluorescence quantum
yields (Φf) is also noteworthy. The fluorescence quantum yield of the closed-ring isomer in 1,4-dioxane
increases from 0.07 (1b) to 0.42 (2b) when the methyl substituents are replaced with the ethyl
ones. The n-propyl, i-propyl, and i-butyl substituted derivatives also show high quantum yields
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of 0.42 (2b), 0.42 (3b), and 0.50 (5b), respectively, although these values are lower than those of
sulfone derivatives of 1,2-bis(2-alkyl-6-phenyl-1-benzothiophen-3-yl)perfluorocyclopentene [26,27].
The fluorescence quantum yield of the closed-ring isomer is significantly improved by replacing
the methyl substituents with the longer or branched alkyl ones. The geometrical or/and electronic
structures of the closed-ring isomers are considered to be strongly influenced by the alkyl substitution
at 2- and 2′-positions of the thiophene 1,1-dioxide rings, as observed in the sulfone derivatives of
1,2-bis(2-alkyl-6-phenyl-1-benzothiophen-3-yl)perfluorocyclopentene [27].

Table 1. Photophysical and photochemical properties of 1–5 in 1,4-dioxane.

Open-Ring Isomer, a Closed-Ring Isomer, b

λmax/nm (ε/104 M−1 cm−1) Φoc λmax/nm (ε/104 M−1 cm−1) Φco Φf

1 296 (0.79) 0.14 424 (2.4) 3.5 × 10−5 0.07
2 297 (0.79) 0.09 433 (2.2) 3.8 × 10−5 0.42
3 298 (0.80) 0.10 434 (2.1) 7.1 × 10−5 0.42
4 301 (0.79) 0.21 427 (1.8) 2.6 × 10−5 0.42
5 299 (0.83) 0.12 438 (2.1) 2.1 × 10−3 0.50

λmax: absorption maximum, ε: molar absorption coefficient, Φoc: cyclization quantum yield under irradiation with
313 nm light, Φco: cycloreversion quantum yield under irradiation with 450 nm light, Φf: fluorescence quantum
yield under irradiation at the absorption maximum.

The fluorescence quantum yields of 1b–5b were also measured in various solvents. Figure 2
shows the relationship between the quantum yield and the relative dielectric constant (εr) of the
solvents (also see Table S1 in the supplementary material). The solvents used are n-hexane, 1,4-dioxane,
2MeTHF, 2-propanol, and ethanol. Methyl substituted derivative 1b shows the relatively high quantum
yield of 0.31 in nonpolar n-hexane, while the yield markedly decreases to 0.07 in 1,4-dioxane and
further decreases to 0.04 in 2MeTHF, 0.03 in 2-propanol, and 0.02 in ethanol. In contrast, 2b–5b show a
different tendency. In n-hexane, 2b–5b show higher fluorescence quantum yields (0.38–0.55) than 1b.
As the solvent polarity increases, the yields of 2b–5b gradually decrease but keep relatively high values
even in polar ethanol. In ethanol, the yields of the ethyl and n-propyl substituted derivatives (2b and
3b) are 0.18 and 0.19, respectively. The derivatives with branched alkyl substituents show higher
values (4b: 0.32, 5b: 0.27). These results indicate that introduction of relatively large or branched alkyl
substituents into the reactive carbons is effective to improve the fluorescent property in polar solvents.
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Figure 2. Relationship between fluorescence quantum yields (Φf) of closed-ring isomers 1b-5b and the
relative dielectric constants (εr) of the solvents. The solvents used were n-hexane (εr = 1.89), 1,4-dioxane
(εr = 2.22), 2MeTHF (εr = 6.97), 2-propanol (εr = 20.2), and ethanol (εr = 25.3).
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Figure 3 shows photographs of the fluorescent emissions of 1b–5b in 1,4-dioxane and ethanol.
The solutions of 2b–5b show more bright emissions than that of methyl substituted 1b. In ethanol,
1b scarcely shows emission, while 2b–4b still remain emissive. Such photoswitchable fluorescent
molecules which maintain their fluorescent property even in polar environments are suitable for the
application to bioimaging.
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Photocyclization and photocycloreversion quantum yields of 1–5 in 1,4-dioxane were also
measured and the data are shown in Table 1. The cyclization quantum yields (Φoc) of 1a–5a are
moderate and are almost in the range of 0.1–0.2. The alkyl substituents at the reactive carbons
scarcely affect photocyclization reactivity. The cycloreversion quantum yields (Φco) of 1b–4b are in the
order of 10−5, which are lower than those of the sulfone derivatives of 1,2-bis(2-alkyl-6-phenyl-
1-benzothiophen-3-yl)perfluorocyclopentene [26,27,34]. On the other hand, i-butyl substituted
derivative 5b shows a higher cycloreversion quantum yield of 2.1× 10−3, which is 81 times larger than
that of 4b. Although the origin of the effect of i-butyl substitution is not clear at present, this result
indicates that introduction of i-butyl substituents at the reactive carbons is useful for increasing the
cycloreversion quantum yield.

Photoactivatable or photoswitchable fluorescent molecules with extremely low switching-off
(cycloreversion) quantum yields, such as diarylethenes 1–4, are favorable for the localization
super-resolution fluorescence microscopy based on single-molecule detection, such as PALM and
STORM [35–37]. On the other hand, the coordinate-targeted super-resolution fluorescence microscopy,
such as RESOLFT microscopy, which claims easy photoswitching of probe molecules from on-states to
off-states upon irradiation with a doughnut-shaped low-power laser beam, requires photoswitchable
fluorescent molecules with high switching-off (cycloreversion) quantum yields in the order of 10−3,
such as diarylethene 5 [38,41]. Introducing appropriate alkyl substituents at the reactive carbons
would provide a rational molecular design guideline to prepare synthetic molecular probes suitable
for super-resolution fluorescence microscopies.

In conclusion, diarylethenes 1–5 with thiophene 1,1-dioxide groups underwent turn-on mode
fluorescence switching upon photocyclization reactions. The fluorescent property of the closed-ring
isomer depends on the alkyl substituents at the reactive carbons. 2b–5b having ethyl, n-propyl,
i-propyl, and i-butyl substituents show higher fluorescence quantum yields than methyl substituted
derivative 1b and maintain the adequate fluorescent property even in polar solvents. It was found that
the cycloreversion quantum yield is dramatically increased by introducing i-butyl substituents at the
reactive carbons.
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3. Materials and Methods

Compound 1a was synthesized according to the previous literature [39]. The syntheses of
compounds 2a–5a are described in the supplementary material (Scheme S1). Commercially available
reagents for the syntheses were of reagent grade and used without further purification. Solvents for
spectral measurements were of spectroscopic grade.

400 MHz 1H NMR spectra were measured with an NMR spectrometer (Bruker, Avance 400).
Tetramethylsilane was used as an internal standard. Mass spectrometry was carried out with a mass
spectrometer (Shimadzu, GCMS-QP2010Plus) based on electron-impact ionization.

UV–visible absorption spectra were measured with an absorption spectrophotometer
(Hitachi, U-4100). Fluorescence spectra were measured with a fluorescence spectrophotometer
(Hitachi, F-2500). No correction was performed on the fluorescence spectra. Fluorescence quantum
yields were measured with an absolute PL quantum yield measurement system (Hamamatsu,
C9920-02G). The maximum-absorption wavelength of the closed-ring isomer was used as the excitation
wavelength for the fluorescence quantum yield measurement.

Photoirradiation for photoreactions was carried out using a 300 W xenon lamp
(Asahi spectra, MAX-302). Wavelength of the light was selected using band-pass or
cut-off optical filters and a monochromator (Ritsu, MC-10N). Cyclization quantum yields
of 1a–5a were determined using 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene [42]
as a reference. Cycloreversion quantum yields of 1b–5b were determined using
1,2-bis(2-ethyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentene [33,34] as a reference.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/10/9/1021/s1,
Table S1: Fluorescence quantum yields of 1b–5b in various solvents, Scheme S1: Syntheses of compounds 2a–5a.
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