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Abstract: The waste from semiconductor manufacturing processes causes serious pollution to
the environment. In this work, a non-toxic material was developed under room temperature
conditions for the fabrication of green electronics. Flexible organic thin-film transistors (OTFTs)
on plastic substrates are increasingly in demand due to their high visible transmission and small
size for use as displays and wearable devices. This work investigates and analyzes the structured
formation of aqueous solutions of the non-toxic and biodegradable biopolymer, chitosan, blended
with high-k-value, non-toxic, and biocompatible Y2O3 nanoparticles. Chitosan thin films blended with
Y2O3 nanoparticles were adopted as the gate dielectric thin film in OTFTs, and an improvement in the
dielectric properties and pinholes was observed. Meanwhile, the on/off current ratio was increased
by 100 times, and a low leakage current was observed. In general, the blended chitosan/Y2O3

thin films used as the gate dielectric of OTFTs are non-toxic, environmentally friendly, and operate
at low voltages. These OTFTs can be used on surfaces with different curvature radii because of
their flexibility.
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1. Introduction

For two decades, the global developments of the electronics industry have focused on flexible
electronic devices, such as curved full-color displays [1,2] integrated sensors [3], flexible solar cells, and
the amazing achievement of E-paper [4,5]. Using a solution-based process achieves many advantages
that are cost-effective and simple to fabricate, and produces mechanically flexible thin-film transistors
compared to conventional semiconductor technologies, which depend on vacuum-based thin film
fabrication [6,7]. In the past decade, eco-friendly, biocompatible, and green materials have been
the subject of many economic and scientific projects [8–10], and have caused less damage to the
environment. Oxide thin films under low annealing temperatures have been fabricated by using
an inexpensive “water-inducement” technique [11] that combines a high-k-value YOX dielectric
material with an eco-friendly water-inducement process [12]. Because of their superior performance,
organic thin-film transistors (OTFTs) can be used to replace conventional thin-film transistors (TFTs).
Chitin is a natural amino polysaccharide and is the largest nitrogenous natural organic compound
on the planet after protein and the cellulose polysaccharides found in nature [13]. It has many
outstanding characteristics, such as biocompatibility, non-toxicity, biodegradability, antimicrobial
activity, and excellent mechanical strength, which make it suitable for use in the biomedical
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field [14,15]. Chitosan can be transformed into chitin and has the same excellent characteristics,
such as biocompatibility, biodegradability, non-toxicity, antimicrobial activity, and an outstanding
film-forming ability [16–18]. Therefore, in previous studies, chitosan has also been used as dielectric
layer in organic transistors [19,20]. Yttrium (III) oxide (Y2O3) is a type of rare earth oxide that is
non-toxic, thermodynamically stabile, stabile at high temperature (Tm = 2430 ◦C), and has a high
dielectric constant (ε = 15~18), light transparency, and a linear transmittance in the infrared spectra.
Y2O3 is commonly known as a high-k dielectric material that can replace SiO2, because it has a high-k
dielectrics value and a phase with cubic symmetry. Its lattice constant, a = 10.6 Å, is two times as large
as the lattice constant of Si (a = 5.43 Å). Y2O3 can be deposited by different deposition techniques,
including pulsed laser deposition (PLD) [21], sputtering metal-organic chemical vapor deposition
(MOCVD) [22], and electron beam evaporation [23].

Therefore, due to its high-k-value, non-toxicity, and biocompatibility, Y2O3 nanoparticles were
blended into the chitosan solution in this study to improve their dielectric properties and pinholes.
To achieve good electrical performance with the chitosan-based metal-insulator-metal (MIM) structure,
various concentrations of Y2O3 nanoparticles were blended into the chitosan to decrease the leakage
current and improve the depth of the pinholes. Chitosan thin films have an electric-double-layer
effect that gives OTFTs the property of low-voltage operation. Furthermore, the thin films of chitosan
blended with Y2O3 nanoparticles were used as the dielectric material in OTFTs, and the performance
of these OTFTs was enhanced.

2. Experimental

Yttrium (III) oxide (Y2O3) was provided by Alfa-Aesar (Heysham, UK). Chitosan,
poly(3-hexylthiophene) (P3HT) and acetic acid were provided by Sigma-Aldrich (St. Louis, MO,
USA). All other reagents and anhydrous solvents were obtained from local suppliers and used without
further purification, unless otherwise noted.

The Y2O3/chitosan thin film as the dielectric gate of the flexible OTFT, and P-type organic
semiconductor, poly(3-hexylthiophene) (P3HT), as the semiconductor layer on polyimide substrate
were demonstrated in this study. The basic process flow for the fabrication of this flexible device is
shown in Figure 1. Moreover, the performance of the flexible OTFT during bending tests with different
curvature radii was also observed. In detail, a 5-nm Cr metal layer was deposited as an adhesive layer
on the polyimide film by thermal deposition and then a 30-nm Au layer was deposited on the adhesive
layer as the bottom gate. The adhesive layer was used to stabilize the Au layer and guarantee that the
device would be stable under bending tests. The polyimide substrate was first cleaned before placing it
into thermal coater chamber, after which a Cr and Au metal layer was deposited. Before the dielectric
layer was deposited, we covered the adhesive tape on the bottom Au electrode, for the bottom gate
can only be exposed in the final step.
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Chitosan (deacetylated ≥75%) was dissolved in aqueous acetic acid (0.5 wt %) and heated with a
hot plate at 50 ◦C for 24 h, following which its solutions of various concentrations were filtered with a
25-mm syringe filter containing a 0.45-µm polyvinylidene difluoride (PVDF) membrane. The Y2O3

nanoparticles were blended with deionized water at a ratio of 0.5 wt % and the hybrid solution was
obtained by mixing chitosan aqueous solution with Y2O3 nanoparticles aqueous solution, with a
specific volume ratio CS:Y2O3 (20:1). In other words, the weight percentage of Y2O3 in the blended
solutions was 0.023 wt %. The drop casting was used to form the 0.023 wt % Y2O3/chitosan film on
the bottom-gate as the dielectric gate, which was then dried in an oven at room temperature for 24 h.

After depositing the dielectric gate, a P3HT channel layer was deposited on the Y2O3/chitosan
dielectric film by spin-coating at 1200 rpm for 30 s and then 1500 rpm for 30 s. The polyimide substrate
was placed in an oven at 60 ◦C to remove residual solvent in the P3HT active channel layer. Finally,
a 5-nm Cr and a 30-nm Au layer were deposited with a mask to form the source and drain top contacts.
Cr metal was used as an adhesive layer between the P3HT channel layer and Au contacts as before.
In the meantime, the bottom Au electrode was revealed by carefully removing the tape. Therefore, as
the above procedure was finished, the bottom-gate top-contact flexible organic thin-film transistor was
successfully designed.

3. Results and Discussion

3.1. Materials and Films Characterization

Chitosan (deacetylated ≥75%) was dissolved in aqueous acetic acid (0.5 wt %) and heated by
using a hot plate at 55 ◦C for 24 h. The impurities in the chitosan solutions of various concentrations
were filtered using a 25-mm syringe filter with a 0.45-µm PVDF membrane. The chitosan solution
with various concentrations was transferred by spin-coating onto separate single silicon substrates
that were already coated with aluminum metal as an electrode by spin-coating. Then, we removed
the water in the chitosan thin film by heating on a hot plate at 80 ◦C for 1 h. Finally, we deposited
the aluminum metal as the top electrode on the chitosan, which formed a so-called MIM structure.
We found that the lower leakage current was 6.827 × 10−10 A at an applied voltage of 2 V in the MIM
based on a 1.0 wt % chitosan thin film, and observed that the 1.0 wt % chitosan film had the lowest
leakage current. This result was attributed to the size and the number of the pinholes in the surface
of the chitosan, as shown in Figure 2. The thin film with 0.5 wt % chitosan had many small pinholes
(10–20 nm), as shown in Figure 2a, and the thin film with 1.5 wt % chitosan had some large pinholes
(80–100 nm), as shown in Figure 2c. The thin film with 1.0 wt % chitosan had the optimized hole size
(30–50 nm) and number of holes, as shown in Figure 2b; this is why the 1.0 wt % sample had the lowest
leakage current.
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Figure 2. (a) 0.5 wt % chitosan shows many small holes (b) 1.0 wt % chitosan shows a few middle-sized
holes and (c) 1.5 wt % chitosan shows many large holes.

The high-k-value Y2O3 nanoparticles were blended into a 1 wt % chitosan water solution with
various weight percentages of Y2O3 (from 0.012 wt % to 0.016 wt %, 0.023 wt % and 0.045 wt %).
While the weight percentage increased, the leakage current decreased. The blended 0.045 wt % Y2O3
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in 1 wt % chitosan thin film had the lowest leakage current of 1.81 × 10−11 A, as shown in Figure 3a.
The pure chitosan thin films were almost transparent, the weight percentage of the Y2O3 increased,
as shown in Figure 3b. In the meantime, we discovered a decrease in the relative depth (from 1.025
to 0.356 nm) when the concentration of the Y2O3 increased, as shown in Figure 4a–d. However, the
relative depth and roughness were increased when the weight percentage of Y2O3 reached 0.045 wt %,
as shown in Figure 4e. The purpose of blending the Y2O3 nanoparticles into the chitosan thin film was
not to only reduce the leakage current, but also to improve the pinholes at the surface.
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(without Y2O3, 0.012 wt %, 0.016 wt %, 0.023 wt %, 0.045 wt %) in 1 wt % chitosan solution (b) Pictures
showing the various weight percentages of Y2O3 in the mixed solution.

The cross-sectional images of the blended Y2O3/chitosan thin films are shown in Figure 5, and
the thicknesses of the blended thin films were approximately 120 nm–200 nm. We also analyzed the
distribution of the Y2O3 nanoparticles in the surface of the blended thin films by energy-dispersive
X-ray spectroscopy (EDX, JEOL, Freising, Germany). We discovered that the 0.012 wt %, 0.016 wt %,
and 0.023 wt % blended thin films showed a uniform dispersion of the Y2O3 nanoparticles, as
shown in Figure 6a–c. The Y2O3 nanoparticles attracted each other and clusters formed when the
weight percentage of Y2O3 reached 0.045 wt % (Figure 6d). In Figure 4e, we measured the relatively
large profile depth of 1.051 nm, and we attributed this phenomenon to the clustering of the Y2O3

nanoparticles. It was observed that the 0.023 wt % thin film had smoothest surface, and its pinholes
were much improved.
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Figure 4. AFM morphology and profile depth of the pinholes in the surface of the Y2O3/chitosan thin
film with various Y2O3 concentrations: (a) Without Y2O3; (b) 0.012 wt %; (c) 0.016 wt %; (d) 0.023 wt %;
and (e) 0.045 wt %.
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The FTIR spectra analysis (PerkinElmer, Waltham, MA, USA) of the blended Y2O3/chitosan thin
films was used to obtain information on the chemical bonding, as shown in Figure 7a. The pure
chitosan thin film showed broad absorption peaks at 3000–5000 cm−1 that were attributed to NH2

asymmetric stretching and the hydrogen-bonded OH. The peak at approximately 2879 cm−1 was
attributed to the CH3 asymmetric stretching vibrations, and the absorption peak at 1541 cm−1 was
attributed to the asymmetric bending modes [24–26] of NH3

+. Figure 7a also shows the FTIR spectra
analysis of all the blended Y2O3/chitosan thin films, which are listed in Table 1. The NH3

+ was
assigned to the bending frequency at 1541 cm−1 for pure chitosan, which shifted to a higher frequency
at 1559 cm−1 and 1580 cm−1 for Y2O3 = 0.012 wt % and 0.016 wt %, respectively, then shifted to a
higher frequency at 1598 cm−1 for Y2O3 = 0.023 wt % and shifted to a lower frequency as 1578 cm−1

for Y2O3 = 0.045 wt %. The shifts were due to the H-bonds between the oxygen of yttrium (III) oxide
and the amine of chitosan, as shown in Figure 7b. The AFM morphology (Veeco, Plainview, NY, USA)
also proved that a dense structure and fewer pinholes were formed by blending Y2O3 nanoparticles
into the thin film, as shown in Figure 4.
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Figure 7. (a) FTIR spectra of the blended Y2O3/chitosan thin films; (b) Schematic diagram of hydrogen
bonding between the Y2O3 nanoparticles and the amine group of chitosan.

Table 1. FTIR spectra analysis of the blended Y2O3/chitosan thin film.

Y2O3 wt %
Wave Number (cm−1)

CH Stretching NH3
+ Bending

O–H and N–H Stretching Broad Absorption Peaks

n/a 3368 2879 1541
0.012 3368 2880 1559
0.016 3368 2880 1580
0.023 3367 2880 1598
0.045 3367 2879 1578

3.2. Electric Characteristics of the Flexible Organic Thin Film Transistor

We investigated the electrical properties of the flexible P3HT-based OTFTs with a 0.023 wt %
blended Y2O3/chitosan dielectric gate on the polyimide substrate. Figure 8 shows the transfer plots
for concave and convex bending of the OTFTs with concave bending radii, R, of 3.5 cm and 2.8 cm
and convex bending radii, R, of 3.5 cm and 2.8 cm. In this figure, the electrical characterization of
the OTFTs on polyimide substrates without bending is similar to that of the OTFTs on silicon wafers.
After concave bending, the Ioff value decreased from 7.421 × 10−10 A to 5.740 × 10−11 A due to
extrusion, causing a decrease in the size of the pinholes. On the other hand, after convex bending,
the Ioff value increased to 1.722 × 10−9 A. No matter the direction of bending, the Ion value would
decrease. In Figure 8, we compared the electrical characterization of the OTFTs with different bending
radii (3.5 cm and 2.8 cm), and the comparison chart is listed in Table 2. The output characterization
(IDS-VDS) of this device, as shown in Figure S1.
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Table 2. Electrical characterization of the P3HT-based OTFTs with a 0.023 wt % blended Y2O3/chitosan
dielectric gate on the polyimide substrate for bending tests.

Condition Vth (V) Ion (A) Ioff (A) Ioff/Ion Ratio Mobility (cm2/Vs)

Flat −2.0 1.268 × 10−5 7.421 × 10−10 105 2.50 × 10−2

Concave bending 3.50 (cm) −2.5 4.592 × 10−6 5.740 × 10−11 105 3.33 × 10−2

Concave bending 2.85 (cm) −2.7 1.298 × 10−5 1.913 × 10−9 104 2.70 × 10−2

Flat −2.1 1.294 × 10−5 4.571 × 10−10 105 1.87 × 10−4

Convex bending 3.50 (cm) −3.0 9.899 × 10−6 1.722 × 10−9 103 8.53 × 10−2

Convex bending 2.85 (cm) −3.3 9.480 × 10−6 3.296 × 10−10 103 4.80 × 10−2

Flat −1.5 1.059 × 10−5 2.539 × 10−9 104 3.33 × 10−2

4. Conclusions

A solution-based processed and low-voltage operating P3HT-based OTFT with a Y2O3/chitosan
gate dielectric layer was demonstrated in this study. To improve the electrical performance of the
chitosan-based MIM, various concentrations of Y2O3 nanoparticles were blended into the chitosan,
which achieved a decreased leakage current and improved the depth of the pinholes. Furthermore, the
P3HT-based OTFT with a 0.023 wt % blended Y2O3/chitosan gate dielectric layer was manufactured
on polyimide for bending tests. The electrical performance of the flexible device incurred no obvious
changes except for a slight increase in the leakage current and off current. The non-toxic and
eco-friendly biopolymer chitosan, blended with Y2O3 nanoparticles, was successfully used in flexible
OTFTs as the gate dielectric, enabling the OTFT to operate under low voltages, and producing a Ion/Ioff
ratio of 105 at a gate voltage of −10 V and a drain voltage of −1 V.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/10/9/1026/s1.
Figure S1: Output characterization of P3HT-based OTFTs with 0.023 wt % blended Y2O3/chitosan dielectric gate.
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