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Abstract: A multi-aperture shower design is reported to improve the transverse uniformity of GdYBCO
superconducting films on the template of sputtered-LaMnO3/epitaxial-MgO/IBAD-MgO/solution
deposition planarization (SDP)-Y2O3-buffered Hastelloy tapes. The GdYBCO films were prepared
by the metal organic chemical vapor deposition (MOCVD) process. The transverse uniformities of
structure, morphology, thickness, and performance were characterized by X-ray diffraction (XRD),
scanning electron microscopy (SEM), step profiler, and the standard four-probe method using the
criteria of 1 µV/cm, respectively. Through adopting the multi-aperture shower instead of the slit
shower, measurement by step profiler revealed that the thickness difference between the middle and
the edges based on the slit shower design was well eliminated. Characterization by SEM showed that a
GdYBCO film with a smooth surface was successfully prepared. Moreover, the transport critical current
density (Jc) of its middle and edge positions at 77 K and self-field were found to be over 5 MA/cm2

through adopting the micro-bridge four-probe method.
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1. Introduction

High performance REBa2Cu3O7−δ (REBCO, RE: rare earth elements) high-temperature
superconducting (HTS)-coated conductors have been successfully prepared for the applications of
electric power, such as superconducting transmission cables, superconducting motors, superconducting
generators, superconducting current limiters, and superconducting magnetic energy storage [1–7].
At present, there are several main process methods to prepare REBCO films, such as pulsed laser
deposition (PLD) [8,9], metal organic deposition (MOD) [10,11], sputtering [12], co-evaporation [13,14],
and metal organic chemical vapor deposition (MOCVD) [15–18]. The PLD technology is a very
mature method to prepare high-quality films [9,19]. However, its drawbacks include high equipment
requirements; for example, the laser renders this technique very expensive to apply to industrial-scale
productions. The MOD method has the advantages of low preparation cost and low equipment
requirements. Yet, the quality of the film prepared by the MOD method is not high and its surface is
relatively rough [10]. The sputtering method has the advantages of process stability, high film quality,
and simple equipment requirements. Its disadvantage is that the deposition rate of the film is relatively
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slow [12]. The co-evaporation method can be also used to prepare REBCO films and its advantages
include a high deposition rate and good process repeatability. Its disadvantage is high equipment
requirements [13]. Because the MOCVD method has the advantages of low vacuum requirement, easy
composition adjustment, and high production efficiency [18,20], a home-made MOCVD system was
used to prepare GdYBCO HTS films by us. However, its disadvantage is that the necessary metal organic
sources are too expensive.

In order to improve the utilization ratio of metal organic sources and reduce the cost, a novel
self-heating method was adopted by us to heat the metal tapes in the MOCVD system [21], as is shown
in Figure 1. The heating current was introduced into the metal tape by means of two home-designed
electric brushes and the tape was heated by the Joule effect of self-resistance. Different from common
radiation heating, the self-heating method does not cause excessive temperature increases of the
shower head. Therefore, the shower can be very close to the surface of the heated metal tape. In this
way, the growth rate of GdYBCO films and the utilization ratio of metal organic sources can be greatly
improved. For the reported MOCVD system [15–18], in order to ensure the lateral uniformity of
film preparation, the relatively large distance between the shower and the substrate needs to be
maintained to provide enough time for the diffusion of metal organic sources. However, compared
with other reported MOCVD systems, the shower in our system can be very close to the substrate,
which can improve the deposition rate and the utilization ratio of metal organic sources. Therefore,
when the shower head is very close to the tape surface, the shower head becomes the key component
to uniformly deposit the GdYBCO superconducting films in the experimental chamber.
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Figure 1. Schematic diagram of GdYBCO film preparation through using the self-heating technology.

As is shown in Figure 2a,b, the 2-mm wide slit shower and the multi-aperture shower were
used to prepare GdYBCO films based on the novel self-heating technology, respectively. The distance
from the slit to the substrate surface is about 1 cm and the concentration of metal organic sources on
the surface of substrate will be very high, which can greatly improve the deposition rate. However,
because the distance from the nozzle to the tape is very small, the transverse uniformity of film based
on the slit shower is poor. Therefore, through using the multi-aperture shower instead of the slit
shower, the results of this work verify the feasibility of the multi-aperture shower application for the
preparation of uniform GdYBCO films through using the self-heating technology. Thus, the uniform
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and rapid preparation of GdYBCO films can be achieved, which can improve the performance of
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Figure 2. (a) The schematic diagram of the slit shower; (b) The schematic diagram of the multi-aperture
shower; (c) A picture of the multi-aperture shower.

2. Experiment

In our experiments, the GdYBCO films were prepared by the MOCVD system on the templates of
sputtered-LaMnO3 (LMO)/homo-epitaxial MgO/IBAD (ion beam-assisted deposition)-MgO/SDP
(solution deposition planarization)-Y2O3/Hastelloy tapes [22–26], as shown in Figure 3. The metal
tapes were directly heated by self-resistance after applying a heating current. As shown in Figure 2,
the 2-mm wide slit shower and the multi-aperture shower were used to deposit the GdYBCO films,
respectively. The diameter of the apertures is 0.5 mm and the distance between the two adjoining
apertures in the width direction is 2 mm, as shown in Figure 2b,c. The distance from the shower to
the substrate surface is about 1 cm and the concentration of metal organic sources on the surface of
substrate will be very high, which can greatly improve the deposition rate. Because the thickness
of the metal tape is basically uniform, the resistance of the metal tape is certain. Thus, for a certain
thickness of template tape, the surface temperature of the tape is decided by the heating current.
The liquid precursor, which was prepared through dissolving the metal organic solids (MO sources,
Samri Advanced Materials) of Zr(tmhd)4, Gd(tmhd)3, Y(tmhd)3, Ba(tmhd)2·(1,10-phenanthroline)2,
and Cu(tmhd)2·(tmhd: 2,2,6,6-tetramethyl-3,5-heptanedionate) into tetrahydrofuran by the mole ratio
of 0.06:0.6:0.6:2.0:2.2, was nebulized into an evaporator of 300–310 ◦C by the home-designed nozzle
and evaporated quickly. Then, the evaporated vapor was mixed with the argon, oxygen, and nitrous
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oxide, of which the mass flow ratio was 2.44:1.06:1, and was reacted on the surface of the heated
tapes to form GdYBCO films. Finally, the deposited GdYBCO films were annealed at 500 ◦C in an
oxygen atmosphere.
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Figure 3. The schematic diagram of the buffer layers on the Hastelloy tape.

The texture of the prepared GdYBCO films at the edge and middle positions was measured with
θ–2θ scan, ω-scan, ϕ-scan, and Chi-scan through an X-ray diffraction system (XRD, Bede D1 system,
BEDE, Durham, England). The surface morphology of the prepared GdYBCO films at the different
positions was characterized by scanning electron microscopy (SEM, JEOL7500F, JEOL Ltd., Tokyo, Japan).
Also, the composition of the thin films was characterized by energy dispersive spectrometry (EDS,
Oxford INCA, Oxford Instruments, Oxford, England). The thickness was measured by a step profiler
(Veeco Dektak 150, Veeco Instruments Inc., New York, NY, USA). Moreover, as is shown in Figure 4,
the micro-bridge of the GdYBCO films of the middle and edge positions were prepared and tested,
respectively. The critical current (Ic) of GdYBCO micro-bridges at the edge and middle positions at 77 K
and 0 T were obtained by the standard four-probe method using the criteria of 1 µV/cm, respectively.
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(a) the edge position; (b) the middle position.

3. Results and Discussion

3.1. The Preparation of GdYBCO Films Based on the Slit Shower

Based on the slit shower, the edge and middle positions of the prepared GdYBCO samples were
measured by the XRD θ–2θ scan, and the corresponding curves are shown in Figure 5a. Besides the
diffraction peaks of the MgO layer and LaMnO3 layer, there are both the GdYBCO (00l) diffraction peaks
and (h00) diffraction peaks in the XRD θ–2θ scanning curve of the middle position. This indicates that
there are both the c-axis-oriented grains and a-axis-oriented grains at the middle position of the deposited
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GdYBCO films. However, compared with the (200) diffraction peak of θ–2θ scanning curve of the middle
position, the (200) diffraction peak is obviously weakened in the XRD θ–2θ scanning curve of the edge
position, which shows the inhomogeneity of the deposited GdYBCO films at the edge and middle positions.
Meanwhile, the XRD ω-scan of GdYBCO (005) and ϕ-scan of GdYBCO (103) were carried out, and the
measured results are shown in Figure 5b. As can be seen from the results, the full width at half maximum
(FWHM) values of the ω-scan and ϕ-scan curves of the GdYBCO film at the middle position are 1.22◦ and
1.72◦, respectively, and the FWHM values of the ω-scan and ϕ-scan curves of the GdYBCO film at the edge
position are 1.72◦ and 3.09◦, respectively. Similarly, it also clearly reflects that the texture of the prepared
GdYBCO films in the transverse direction is not uniform based on the slit shower.
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The surface morphologies at the edge and middle positions are characterized by SEM, and the
images are shown in Figure 6. As shown in Figure 6a, there is only a small amount of outgrowths on
the surface of the film, and the size of impurities is relatively small. However, as shown in Figure 6b,
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there are some bigger outgrowths on the surface of the middle position of the GdYBCO film, and these
outgrowths were revealed to be Ba-Cu-O phases by the EDS. Thus, it is shown that differences in the
deposition condition in the transverse direction will lead to the inhomogeneity of the morphology of
GdYBCO films.Materials 2017, 10, 1088  6 of 10 
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Figure 6. SEM images of the GdYBCO films prepared based on the slit shower: (a) SEM image of the
edge position; (b) SEM image of the middle position.

The thickness of the deposited GdYBCO films at the edge and middle positions of the tape was
measured by a step profiler, and the thickness values are shown in Figure 7. As can be seen from the
histogram of thickness, the thickness of the middle position of the GdYBCO film is obviously thicker
than that of the edge position, which indicates that the deposition rate of the GdYBCO superconducting
film at the middle position is obviously higher than that of the edge position. Meanwhile, the Ic of the
middle position and edge position were measured by the four-probe method. As shown in Figure 7,
the micro-bridge of the GdYBCO films of the edge and middle positions were tested, respectively.
Figure 7 shows that the Ic of the middle position is also obviously higher than that of the edge position.
This indicates that the ability to carry current at the middle position is obviously stronger than that at
the edge position in the transverse direction when the slit shower is used to prepare GdYBCO films.
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3.2. The Preparation of GdYBCO Films Based on the Multi-Aperture Shower

Because the slit shower is too close to the surface of the buffered tapes, the vapor of metal organic
sources cannot adequately spread in the transverse direction, which can lead to the different concentration
distribution of metal organic sources in the transverse direction. Thus, the deposition rate of the GdYBCO
films on the surface of the template will be not uniform when the slit shower is used in the MOCVD
system. Therefore, the new home-made multi-aperture shower was used to prepare the GdYBCO films,
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which could complete an average allocation before the vapor of the metal organic sources flows out
from the shower head. As shown in Figure 8, the edge and middle positions of the prepared GdYBCO
samples were measured by the XRD θ–2θ scan and the corresponding curves are shown in Figure 8.
Besides the diffraction peaks of the MgO layer and LaMnO3 layer, there are only the GdYBCO (00l)
diffraction peaks, not (h00) diffraction peaks in the XRD θ–2θ scanning curves of the middle and the
edge positions. This indicates that there are only the c-axis-oriented grains, not a-axis-oriented grains in
the GdYBCO films. What is more, the intensity of the GdYBCO (00l) peaks of the middle and the edge
positions is approximately the same, which indicates that the GdYBCO films at the middle and the edge
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In order to characterize the biaxial texture of the edge and middle positions of GdYBCO films, the XRD
ω-scan of GdYBCO (005) and ϕ-scan of GdYBCO (103) were carried out, and the measured results are
shown in Figure 9. As can be seen from the results, the full width at half maximum (FWHM) values of the
ω-scan and ϕ-scan curves at the middle position are 1.29◦ and 2.91◦, respectively, and the FWHM values
of the ω-scan and ϕ-scan curves at the edge position are 1.18◦ and 2.67◦, respectively, which indicates that
the textures of the GdYBCO superconducting films are very good at both the edge and middle positions.
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Moreover, the surface morphologies at the edge and middle positions were characterized by SEM,
and the images are shown in Figure 10. Figure 10 shows that the surface of the middle and edge
positions of GdYBCO films are dense and smooth, and there are no other outgrowths. Similarly, the
thickness of the deposited GdYBCO films at different locations of the tapes was measured by a step
profiler and the thickness values of the prepared GdYBCO film at the different positions are shown in
Figure 11. Compared with the slit shower, the thickness uniformity of the GdYBCO films prepared by
adopting the multi-aperture shower is greatly improved and the percentage of the maximum thickness
difference is less than 5%. The Ic of the middle and edge positions were measured by four-probe
method, and the test curves are shown in Figure 11. Figure 11 shows that the transport critical current
density (Jc) of the middle and edge positions at 77 K and the self-field is over 5 MA/cm2 and exhibits
little difference, which shows that the ability to carry current in the transverse direction is basically
uniform, combining the thickness measurement results. Compared with the prepared GdYBCO films
based on the slit shower, the performance nonuniformity of the deposited GdYBCO films based on the
multi-aperture shower was greatly improved.
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4. Conclusions

In this paper, the slit shower and the multi-aperture shower were used to prepare GdYBCO
films on LaMnO3 templates based on the novel self-heating technology, respectively. The transverse
uniformities of structure, morphology, and performance were characterized by X-ray diffraction
system (XRD), scanning electron microscopy (SEM), and the standard four-probe method using the
criteria of 1 µV/cm, respectively. The results show that the uniformity problem of GdYBCO film
preparation can be well solved through the use of the new multi-aperture shower instead of the slit
shower. Compared with the slit shower, the thickness uniformity of the GdYBCO films prepared
by adopting the multi-aperture shower was greatly improved and the percentage of the maximum
thickness difference was less than 5%. The transport critical current density (Jc) of the middle and edge
positions at 77 K and the self-field was over 5 MA/cm2 through adopting the multi-aperture shower.
Therefore, based on the work, the effects of the diameter size of the single aperture and the apertures
distribution on the structure, the residual stress [27], the performance, and the deposition rate can be
studied in detail in future research.
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