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Abstract: The 1 wt % Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-Li) ceramics prepared by the
citrate method exhibit improved phase purity, densification and electrical properties, which provide
prospective possibility to develop high-performance electrocaloric materials. The electrocaloric effect
was evaluated by phenomenological method, and the BCZT-Li ceramics present large electrocaloric
temperature change ∆T, especially large electrocaloric responsibility ξ = ∆Tmax/∆Emax, which can
be comparable to the largest values reported in the lead-free piezoelectric ceramics. The excellent
electrocaloric effect is considered as correlating with the coexistence of polymorphic ferroelectric
phases, which are detected by the Raman spectroscopy. The large ξ value accompanied by decreased
Curie temperature (around 73 ◦C) of the BCZT-Li ceramics prepared by the citrate method presents
potential applications as the next-generation solid-state cooling devices.

Keywords: lead-free BCZT piezoceramics; citrate method; electrocaloric effect; Raman spectroscopy

1. Introduction

Facing increasingly serious energy crisis and environmental protection requirements,
electrocaloric materials, using adiabatic entropy and temperature change in polar materials under
external electric field and presenting promising versatile applications in energy-efficient microelectronic
and solid-state cooling devices, have attracted intensive research attention [1,2]. Large electrocaloric
effect can be obtained in the ferroelectric materials with perovskite structure since their polarization
exhibits great dependency on temperature approaching to the ferroelectric phase transition temperature
(TC) especially with the compositions around the morphotropic phase boundary (MPB) [3,4]. It is well
known that the MPB compositions are formed typically by relaxor ferroelectrics combining with normal
ferroelectrics in special composition region, which present giant dielectric and piezoelectric responses
due to engineered domain configuration, polarization rotation mechanism, adaptive intermediate
monoclinic/orthorhombic ferroelectric phase and/or polar nanoregion [5–8]. Therefore, ferroelectric
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materials with the MPB compositions provide prospective possibility to develop high-performance
electrocaloric materials.

Recently Mischenko et al. discovered a magnitude higher electrocaloric effect in the PbZr0.95Ti0.05O3

thin films around the TC temperature [1], which ignited active research interest on various ferroelectric
materials for commercial exploiting [9–12]. Although readily large electrocaloric effect was fulfilled in
the Pb-containing ferroelectrics [13–16], their electrocaloric strength |∆T|/|∆E| reduced significantly
due to the applied ultrahigh external electric field. Furthermore, such materials were restricted by the
European Union regulation and by many countries due to the toxicity of lead [14–16], then, searching
for environmental friendly lead-free electrocaloric ferroelectrics became extremely urgent.

Another existing dilemma ferroelectrics present is maximum electrocaloric response around the
TC temperatures influenced by the conjugate applied electric field [11], which limits the lead-based
ferroelectrics potential electrocaloric cooling applications since their TC is relatively high [14–16].
To meet the requirements of novel generation solid-state cooling devices, electrocaloric materials
presenting large electrocaloric effect around room-temperatures are highly desirable for various
applications [1–4,11].

The discovery of the ultrahigh piezoelectric performance lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3

(BZT-BCT) ceramics with relatively low TC (d33 = 620 pC/N and TC = 93 ◦C) provides potential
candidates in practical electrocaloric applications [17]. However, significant investigations have
been carried out on ceramics processing by the solid-state sintering method in order to increase TC
and understand the mechanisms of ferroelectric phase transition and piezoelectric response origins
rather than electrocaloric effects [18–21]. It is well-known that ceramics synthesis methods and
processing conditions, and chemical doping influence phase structure formation and microstructure
morphology [22,23], which exert great effects on the electrical properties of the synthesized ceramics
via the intrinsic factors correlated with phase structure and lattice distortion and extrinsic factors
correlated with microstructure morphology and domain configuration [24,25]. Therefore, 1 wt %
Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-Li) ceramics were prepared by the citrate method and the
effects of Li doping and citrate method were reported [26,27]. The BCZT-Li ceramics with the MPB
composition prepared by the citrate method exhibit enhanced ferroelectric property and relatively
large ∆T with decreased TC temperature (around 73 ◦C) approaching to the room-temperature,
presenting potential applications as the next-generation solid-state cooling devices. In this study,
the electrocaloric performance of the BCZT-Li ceramics was investigated by the phenomenological
model using the thermodynamic relation and the ferroelectric phase transition enhanced electrocaloric
effect was discussed.

2. Materials and Methods

1 wt % Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-Li) polycrystalline ceramics were prepared
by the citrate method using LiNO3, Ba(NO3)2, Ca(NO3)2·4H2O, Zr(NO3)4·5H2O and C16H36O4·Ti
as raw materials, and the detailed experimental procedures were described elsewhere [26,27]. Mass
specific heat Cp was measured by a PerkinElmer Pyris DSC 8500 (PerkinElmer Inc., Akron, OH, USA)
differential scanning calorimeter (DSC). Temperature dependence of polarization-electric field (P-E)
hysteresis loops were tested by a Radiant Precision Premier LC ferroelectric material test system
attached with a Sigma Model M10 chamber (Sigma Systems Corp., San Diego, CA, USA). Raman
spectra upon heating were measured by a Horiba LabRAM HR Evolution Raman spectrometer
(HORIBA Instruments Incorporated, Ann Arbor, MI, USA) equipped with a Linkam THMS600
heating/cooling stage [28].

3. Results and Discussion

The BCZT-Li ceramics prepared via the citrate method, i.e., calcined between 600 and 700 ◦C for
the 300 ◦C self-combusted powder and sintered at 1490 and 1500 ◦C for the ceramics, exhibit phase-pure
pseudo-cubic perovskite structure with rather homogenous microstructure morphology and high
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density [26,27]. All the sintered ceramics present excellent dielectric, ferroelectric and piezoelectric
properties, which can be attributed to the MPB effect and the advantages induced by the Li-doping
and the wet citrate method [26,27].

The citrate method synthesized BCZT-Li ceramics exhibit enhanced dielectric performance,
in which the dielectric response peaks are relatively broad, whereas the frequency dispersion of
the dielectric constant is not obvious, and no shift of the TC temperature occurs between 1 and
300 kHz [26,27]. The dielectric behavior of the BCZT-Li ceramics above TC can be fitted by both
the Curie–Weiss law and the quadratic law [29] but all with slight deviation, presenting their
complex dielectric nature correlating with the formation of complex perovskite solid solution [26,27].
The discussion below will use the BCZT-Li ceramics calcined at 675 ◦C and sintered at 1500 ◦C prepared
via the citrate method due to their excellent comprehensive performance reported by our previous
works [26,27].

Figure 1 shows the temperature dependent P-E hysteresis loops of the BCZT-Li ceramics, based
on which their electrocaloric effect can be evaluated by the indirect phenomenological method [1–4].
The citrate method synthesized BCZT-Li ceramics present saturate and symmetric hysteresis loops
accompanied by enhanced ferroelectricity as compared with those prepared by the solid-state sintering
method [30]. The saturation and squareness of the P-E loops deteriorate greatly, and the loops
become slimmer accompanied by the decrease of remnant polarization Pr and coercive field Ec with
increasing temperature. Far above the Curie temperature (73 ◦C), the P-E loops do not show linear
behavior, characteristic of pure para-electric phase, and slim loops appear in wide temperature range,
implying the existence of ferroelectric clusters or polar nanoregions [31], which corresponds well
with the complex perovskite nature (i.e., existence of partial relaxor nature) revealed by the dielectric
characterization [26].
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Figure 1. P-E hysteresis loops of the 1 wt % Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-Li) ceramics
measured upon heating between 25 and 120 ◦C at 1 Hz and maximum electric field of 20 kV/cm.

The change of polarization with temperature under different electric fields is shown in Figure 2
deduced from the first quadrant of the P-E loops of Figure 1. The polarization value decreases
apparently with the increase of temperature, in which the Pr value decreases dramatically whereas the
spontaneous polarization Ps decreases slowly. Furthermore, the decline magnitude of polarization
decreases with the increase of electric field, which will influence the electrocaloric effect.

The electrocaloric effect under electric field was calculated by the thermodynamic relation [1–4].
Based on the Maxwell equation, the reversible adiabatic electrocaloric temperature change ∆T can be

deduced indirectly by ∆T = − 1
ρC

E2∫
E1

T
(

∂P
∂T

)
E

dE, where ρ is mass density and the C is heat capacity [1–4].

As for the BCZT-Li ceramics, the shape of the P-E hysteresis loops is rather narrow, indicating
their small hysteresis loss, therefore, such indirect thermodynamic relation calculation is justified
to determine the electrocaloric effect. In an isothermal process, the specific entropy change ∆S can
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be calculated by ∆S = − 1
ρ

E2∫
E1

T
(

∂P
∂T

)
E

dE, resulting from the domains rotation under external applied

electric field [1–4]. It can be seen that large polarization gradient (∂P/∂T) will induce excellent
electrocaloric effect, i.e., high ∆T and ∆S.

Detailed electrocaloric performance of the BCZT-Li ceramics are shown in Figure 3, in which
their ε-T curve without poling is given to show the correlation between the TC temperature and
the maximum electrocaloric effect temperature. The change of dP/dT depends on temperature and
electric field, in which the maximum dP/dT value appears at zero bias electric filed and 25 ◦C, being
−0.12 µC/cm2·K and favorable to obtain large electrocaloric temperature change ∆T and adiabatic
entropy change ∆S.
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Figure 2. Temperature dependence of polarization of the BCZT-Li ceramics at different electric fields.
The unit of the electric field shown by different lines and symbols in the figure is kV/cm.
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Figure 3. Temperature dependence of dP/dT, ∆S and ∆T at different electric fields, and dielectric
constant shown the ferroelectric phase transition temperature; and electric field dependent
electrocaloric responsivity of the BCZT-Li ceramics. The unit of the electric field shown by different
lines and symbols in the figure is kV/cm.
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Considering the temperature-dependent heat capacity, regarding the bulk density as constant, and
ignoring the influence of electric field, the calculated ∆T and ∆S present similar change characteristics,
which is useful for searching novel electrocaloric materials. The temperature of the maximum ∆T
and ∆S under different electric fields increases gradually with increasing electric field, around the
TC temperature, which corresponds well with the dielectric performance [26] and confirms that the
ferroelectric phase transition can induce large electrocaloric effect. Furthermore, the reduction of the
∆T and ∆S values induced by the hysteresis loss is small, which can be seen from the area of the P-E
hysteresis loops especially at elevated temperatures.

Although the maximum ∆T and ∆S values can increase further with applying higher external
electric filed, the electrocaloric efficiency, representing as ξ = ∆Tmax/∆Emax [11], reaches maximum
at rather low electric field. Therefore, the electrocaloric figure of merit depends mainly on the
external applied electric field, which also induces the change of the ferroelectric phase transition
type, i.e., from nearly first-order phase transition to almost second-order one, leading to the decrease
of the ξ value [4,12]. Due to the small density and heat capacity of the BCZT-Li ceramics, their
electrocaloric responsivity, being 0.164 K·mm/kV, can be comparable to the largest values reported of
the lead-free piezoelectric ceramics [12,32]. The electrocaloric effect and responsivity values would be
even larger if measured by the direct method, in which the discrepancy can be attributed to different
polarization switching time needed measured by different methods and disequilibrium unsaturation
polarized state for polycrystalline ceramics [32].

The excellent electrocaloric performance of the BCZT-Li ceramics can be attributed to the
polymorphic ferroelectric phases coexistence and ferroelectric phase transition, which can be
investigated by the Raman spectroscopy due to its sensitivity to crystal lattice vibration, domain
configuration dynamics and ferroelectric phase transition [28,33,34] (Figures 4 and 5). As shown
in Figure 4a, the Raman modes around 150 cm−1 and 740 cm−1 wavenumbers weaken gradually,
and the Raman mode peak around 520 cm−1 wavenumber broadens gradually with the increase of
temperature, moreover the intensity of these Raman modes peaks decreases apparently when the
temperature approaches to 120 ◦C.
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Figure 4. (a) Raman spectra of the BCZT-Li ceramics measured upon heating between 0 and
120 ◦C; (b) temperature dependence of wavenumber of different Raman vibration modes of the
BCZT-Li ceramics.

To analyze the variation of different Raman modes more accurately, Lorentzian deconvolution
fitting [35] is necessary as shown in Figure 5a,b using 0 and 120 ◦C Raman spectra as examples. Based
on which the abnormal change of Raman modes peaks location, width, intensity, peak distance and so
on can be determined, which provide efficient means to detect the occurrence of ferroelectric phase
transition. The v4(LO) Raman mode disappears around 70 ◦C and the v3(LO) Raman mode disappears
around 80 ◦C, which attributes to the tetragonal ferroelectric phase to cubic paraelectric phase transition
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(Figure 4b). At 120 ◦C, higher than the TC temperature, four Raman modes, i.e., the v3(TO), v2(LO,TO),
v1(TO) and v1(LO) modes, still exist, which can be correlated with the existence of ferroelectric clusters
or polar nanoregions [31], proving their slight relaxor ferroelectrics characteristic.Materials 2017, 10, 1093  6 of 8 
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Figure 5. Lorentzian deconvolution peaks of Raman spectra using (a) 0 ◦C and (b) 120 ◦C as examples;
(c–f) temperature-dependent intensity of different Raman modes of the BCZT-Li ceramics upon heating.

The polymorphic ferroelectric phases coexistence can be proven using the abnormal change of the
Raman modes intensity as examples (Figure 5c–f). Around 30 ◦C, the intensity of the v3(TO), v2(LO,TO)
and v1(TO) Raman modes increases abruptly, confirming the taking place of another ferroelectric
phase transition, i.e., orthorhombic ferroelectric phase to tetragonal ferroelectric phase transition.
Therefore, the BCZT-Li ceramics prepared by the citrate method exhibit enhanced electrical properties
around room-temperature.

Based on the above discussion, the interplays between polarization, electric field and temperature
determine the adiabatic temperature change. To obtain large temperature change, ferroelectric
materials with large saturation polarization are desirable, and critical behavior, ferroelectric phase
transition or domain transition that occur at operating temperatures will be helpful [36]. To improve
the electrocaloric effect further, increasing breakdown electric filed, decreasing polarization fatigue
via aliovalent doping, enhancing thermal conductivity via introducing crystallographic texture with
low-angle grain boundaries, and lowering TC toward room-temperature are desired.

4. Conclusions

In conclusion, the citrate method synthesized BCZT-Li ceramics present high densification, pure
perovskite structure and improved electrical performance, which provides possibility of obtaining large
electrocaloric effect. The BCZT-Li ceramics exhibit enhanced ferroelectricity, which exists far above the
TC temperature and can be attributed to the existence of ferroelectric clusters and polar nanoregions.
Large ∆T and electrocaloric responsivity obtained in the BCZT-Li ceramics can be attributed to the
polymorphic ferroelectric phases coexistence and ferroelectric phase transition, which are confirmed
by the Raman spectroscopy study.
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