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Abstract: Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr
alloy during isothermal heat treatment have been studied systematically. Results demonstrate
that both the hardness and the ultimate tensile strength of the studied alloy decreased with the
isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly
after the isothermal heat treatment. During isothermal heat treatment processing, precipitates
readily nucleated in the medium-temperature zone (250–400 ◦C), while the precipitation nucleation
was scarce in the low-temperature zone (<250 ◦C) and in the high-temperature zone (>400 ◦C).
Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield
strength, while the ones with a larger size than 300 nm would contribute little strengthening effect.
Quenching sensitivity is high in the medium-temperature zone (250–400 ◦C), and corresponding
time-temperature-property (TTP) curves of the studied alloy have been established.
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1. Introduction

In the past decades, 7xxx series (Al-Zn-Mg-Cu) aluminum alloys exhibited an outstanding
performance and attracted much interest in many industry fields, especially in the automotive and
the aviation field [1–3], because of their high strength, high ductility, and low density [4,5]. The high
strength makes the products strong, and the high ductility allows the products to be easily forming
during the machining process, and the low density saves the energy cost and reduces the carbon
emission. Rolling, extrusion, drawing, and other conventional thermo-mechanical processing have
limited capabilities to improve the strength of Al-Zn-Mg-Cu alloys [6–10]. To achieve a higher strength,
some new technologies have been developed recently [11–14]. Severe plastic deformation (SPD)
techniques, such as accumulative roll bonding [11], high-pressure torsion [12], equal channel angular
pressing [13], and friction stir processing [14], were proven to be effective methods to refine the
structure and enhance the strength. However, SPD techniques yield laboratory-scale samples, and
they are still rare in industry [15]. Materials with fine grains usually exhibit a high strength (due to
the Hall-Petch relation) [16–22]. The spray deposition technology has been developed rapidly [23,24].
Large-scale Al-Zn-Mg-Cu-Zr ingots with fine structure have been successfully fabricated by the spray
deposition technology in our previous work [25,26]. The obtained ingots contain fine grains due to
the rapid solidification and alloying [27–29]. Most investigations focus on the microstructure and
properties of the spray-deposited Al-Zn-Mg-Cu alloy in the lab scale [26,30]. Thermal heat treatment
is an efficient method to enhance the properties. However, some critical process parameters should
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be reconsidered when the large ingots were turned to industrial products. For example, the solid
solution-quenching treatment for precipitation hardening alloys is a very significant process, which
would affect the followed aging process and the final properties [31]. In industry, ingots are about one
ton in weight and a half cubic meter in volume, which are difficult to quench as fast as a sample with a
lab-scale size. Decomposition will occur during the cooling down process. In addition, microstructure
evolutions, precipitation behavior, properties variation, and quenching sensitivity of a spray deposited
Al-Zn-Mg-Cu alloy during isothermal heat treatment (IHT) have not been reported. In this work,
large-scale Al-Zn-Mg-Cu-Zr ingots were synthesized by a spray deposition technology. Microstructure
evolution and properties variation of the solid solution treated alloy during isothermal heat treatments
were investigated systematically. Precipitation behavior, quenching sensitivity, and strengthening
mechanisms have been discussed.

2. Materials and Methods

The studied alloy was synthesized with an SFZD-5000 type environmental chamber in Haoran
company (Xinghua, China) [25,26]. The chemical compositions of the spray-deposited Al-Zn-Mg-Cu-Zr
alloy are listed in Table 1. Before the spray deposition process, blocks of Al, Zn, Mg, Cu, and Al-Zr
master alloy were melted, and then the molten melt was atomized by N2 gas. The distance of the
atomizing deposition was 650 mm, rod ingots were spray deposition formed with a size of 500 mm in
diameter and 1800 mm in length. The as-deposited ingot was extruded at 420 ◦C with an extrusion
speed of 3 mm/s and an extrusion ratio of 6.25:1 (500 mm to 200 mm in diameter). Experimental
specimens were cut from the hot extruded rod, and they were solid solution treated at 470 ◦C/1 h in
the first furnace with a melted mixture of 50% NaNO3 and 50% KNO3, and then rapidly transferred
into another muffle furnace with a certain temperature (205–445 ◦C) for isothermal heat treatment.
Some of the isothermal heat treated specimens were aged at 120 ◦C for 24 h. Table 2 gives the detailed
parameters of the samples after different heat treatments. The sample A solid solution treated at
470 ◦C/1 h was used as a reference set.

Table 1. Chemical composition of studied Al-Zn-Mg-Cu-Zr alloy samples.

Composition Al Zn Mg Cu Zr Fe Si Ti Mn Cr

wt % Bal. 8.31 2.07 2.46 0.12 0.078 0.056 0.005 0.005 0.003
at % Bal. 3.68 2.45 1.12 0.038 0.04 0.057 0.003 0.003 0.002

Table 2. Heat treatment parameters of the samples with different methods.

Sample No. Solution Treatment Isothermal Heat Treatment Aging Treatment

A 470 ◦C/1 h / /
B 470 ◦C/1 h / 120 ◦C/24 h
C 470 ◦C/1 h 205 ◦C/5 s (30 min) /
D 470 ◦C/1 h 325 ◦C/5 s (40 s), (30 min) /
E 470 ◦C/1 h 445 ◦C/5 s, (30 min) /
F 470 ◦C/1 h 205 ◦C/5 s (30 min) 120 ◦C/24 h
G 470 ◦C/1 h 325 ◦C/5 s (40 s), (30 min) 120 ◦C/24 h
H 470 ◦C/1 h 445 ◦C/5 s (30 min) 120 ◦C/24 h

Hardness measurements of heat treated specimens were conducted on a HV-5 Vickers hardness
tester (Laizhou Huayin Testing Instrument Co., Ltd., Laizhou, China) to keep track of the hardness
variation with the aging time. The load is 2 kg, the dwell time is 15 s, and each average hardness was
taken from at least seven measurements. Flat-shoulder tensile test samples under the same condition
were prepared with dimensions of a gage length of 25 mm, and a width of 10 mm. Tensile testing
experiments were performed on an MTS 810 material testing machine (MTS Systems Corporation,
Eden Prairie, MN, USA) at room temperature with a strain rate of 2 mm/min. Microstructure
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observations on the isothermal heat treatment specimens were operated on an FEI Tecnai G2 F20
transmission electron microscope (TEM) (FEI Company, Hillsboro, OR, USA) with an operation
voltage of 200 kV. All TEM specimens were prepared by mechanical grinding, and then polished by a
double-jet electropolishing device (MTP-1A) (Shanghai Jiao Da Electrical and Mechanical Technology
Development Co., Ltd., Shanghai, China) at −30 ◦C with a solution of 30% nitric acid +70% methanol.

3. Results

3.1. Microstructure Evolutions during Isothermal Heat Treatment and Aging

For the as-spray deposited sample, there is no dendrite and segregation due to rapid solidification,
and smaller grain size were detected in the spray deposited ingot, in comparison to that of the
conventional casting ingots [32]. Bright-field (BF) images and selected area diffraction pattern (SADPs)
of the studied alloy (sample A) having been solid solution treated at 470 ◦C/1 h and quenched with
water with a quenching rate of 200 ◦C/s are shown in Figure 1. After solid solution treatment, metallic
compounds precipitated during spray deposited process were re-dissolved into the matrix and a
supersaturated solid solution (SSS) formed. The SADP in Figure 1a shows that a set of diffraction spots
from Al were detected. The micrographs of the grain interior and grain boundary show that a SSS was
formed after solid solution treatment (Figure 1b).
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Figure 1. Microstructure and selected area diffraction patter (SADP) of the sample having been
solution treated at 470 ◦C for 1 h. (a) SADP of the sample, beam along to zone axis of [100]Al;
(b) bright-field image.

The BF image and corresponding SADPs of the solid solution treated alloy (sample B) are shown
in Figure 2. After aging treatment at 120 ◦C for 24 h, some precipitates were formed with a size of 10 nm
(Figure 2b). Some diffraction spots were from the precipitates, as seen in Figure 2a. According to the
crystal geometry and crystal diffraction, indexing of the SADPs showed that the rod-like precipitates
were η′-MgZn2 phase, which has hexagonal lattice parameters of a = 0.496 nm, c = 1.402 nm [33,34].
A series of crystal orientation relationship between the matrix and η′ phase could be calculated and
proved: (001) η′||(110)Al and [100]η′||[001]Al [35]. The high strength of Al-Zn-Mg-Cu alloys are
due to a significant number of η′ phase precipitates [36]. Fine spherical L12-Al3Zr precipitates mixed
with rod-like η′-MgZn2 precipitates in Figure 1b, and SADP in Figure 1a, proved that the SSS was
decomposed after aging at 120 ◦C for 24 h.

Figure 3 shows the BF images and SADPs of the solid solution treated alloy having been isothermal
heat treated at 205 ◦C (quenching rate of 200 ◦C/s) for different durations (5 s and 30 min) (sample C).
After being isothermal heat treated at 205 ◦C for 5 s, more diffraction spots from precipitates were
detected in SADP (Figure 3a). The bright-field image of the grain inside showed G. P. zone and Al3Zr
were formed (Figure 3b). Increasing the IHT time to 30 min, the SADP in Figure 3c presents some
diffraction spots from η′ precipitates, and the SSS was decomposed, and some precipitates with a
size of 80 nm in length and 10 nm in diameter were detected (Figure 3d). Figure 4 shows BF images
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of the studied alloys having been isothermal heat treated at 325 ◦C for different durations (5 s, 40 s,
and 30 min) (sample D). After isothermal heat treated at 325 ◦C for 5 s, η′ precipitates were detected
with a size of 150 nm in length and 20 nm in diameter (Figure 4a). Increasing the IHT time to 40 s,
η′ precipitates were coarsened to be a size of 250 nm in length and 100 nm in diameter (Figure 4b).
Further increasing the IHT time to 30 min, η′ precipitates inside grain coarsened with a size of 400 nm
in length and 80 nm in diameter (Figure 4c). BF images and SADPs of the studied alloy having been
isothermal heat treated at 445 ◦C for different durations (5 s and 30 min) (sample E) are shown in
Figure 5. After isothermal heat treatment at 445 ◦C for 5 s even 30 min, there is few diffraction spots
from precipitates were detected in the SADP (Figure 5a), and there are few precipitates (Figure 5b,c).
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Figure 5. SADPs and BF images of the studied alloy having been isothermal heat treated at 445 ◦C for
5 s and 30 min. (a) SADP from the area in (b); (b) the isothermal heat treatment time is 5 s; (c) SADP
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Figure 6 shows BF images and SADPs of the solution treated alloy having been isothermally heat
treated at 205 ◦C for different durations (5 s and 30 min), and then aged at 120 ◦C for 24 h (sample F).
After the sample was treated at 205 ◦C for 5 s and aged at 120 ◦C for 24 h, some diffraction spots from
η′ and Al3Zr precipitates were detected in the SADP (Figure 6a), and the bright-field images of grain
inside and grain boundary also shows many η′ precipitates, whose size was 20–40 nm (Figure 6b).
Increasing the IHT time to 30 min, the SADP in Figure 6c presented many diffraction spots from
precipitates, and many coarse η′ precipitates with a size of 100 nm in length and 10 nm in diameter
were detected (Figure 6d).
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Figure 6. SADPs and BF images of the studied alloy having been isothermal heat treated at 205 ◦C for
different durations (5 s and 30 min), and then aged at 120 ◦C for 24 h. (a) SADP from the area in (b);
(b) the isothermal heat treatment is 5 s; (c) SADP from the area in (d); and (d) isothermal heat treatment
is 30 min.

Bright-field TEM images and SADPs of the solution treated alloy having been annealed at 325 ◦C
for different durations (5 s, 40 s, and 30 min), and then aged at 120 ◦C for 24 h (Sample G) are shown in
Figure 7. After isothermal heat treated at 325 ◦C for 5 s and aging at 120 ◦C for 24 h, η′ precipitates were
formed with a size of 10–20 nm (Figure 7a). Increasing the IHT time to 40 s, coarse η′ precipitates were
formed with a length of 300 nm and a diameter of 30 nm (Figure 7b). Increasing the IHT time to 30 min,
η′ precipitates with a size of 300 nm in length and 100 nm in diameter (Figure 7c). Figure 8 shows
BF images of the solution treated alloy having been isothermal heat treated at 445 ◦C for different
durations (5 s and 30 min), and then aged at 120 ◦C for 24 h (sample H). After isothermal heat treated
at 445 ◦C for 5 s and aged at 120 ◦C for 24 h, some η′ precipitates were detected with a size of 10–20 nm
(Figure 8a), and they maintained same size even if isothermal heat treated for 30 min (Figure 8b).
Al3Zr precipitates were also detected in these specimens (Figures 7 and 8).
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3.2. Hardness Variation

The effect of IHT on the mechanical properties of the alloy was investigated through hardness
measurements. Figure 9 shows the hardness variation versus the isothermally heat treated time on
studied alloy samples having been solution treated at 470 ◦C for 1 h and quenched (cooling rate of
200 ◦C/s), isothermal heat treated at different temperatures for various durations, and then aged
at 120 ◦C for 24 h. With increasing the IHT time, the hardness decreased successively in all IHT
temperatures. Especially when the samples were isothermal heat treated at 295 ◦C (or 325 ◦C) for
3 min, the hardness values were rapidly decreased from 210 HV to 110 HV for 295 ◦C, and from 210 HV
to 120 HV for 325 ◦C. However, when samples were isothermal heat treated at 205 ◦C (sample F),
the hardness decreased slightly. The hardness decreased from 210 HV to 198 HV when the sample
was isothermal heat treated at 205 ◦C for 3 min. When a specimen was solution treated at 470 ◦C for



Materials 2017, 10, 1100 8 of 14

1 h and then immediately aged at 120 ◦C for 24 h (sample A), the hardness was as high as 210 HV.
The hardness of specimens decreased slightly from 210 HV to 202 HV when the SSS specimens were
transferred into a furnace at the temperature of 445 ◦C and kept for 3 min, followed by aging at 120 ◦C
for 24 h (sample H). As samples were transferred into the IHT furnace, kept warm in the furnace for
30 min, and then followed by aged at 120 ◦C for 24 h, the hardness of specimens was less than 160 HV.
Further increasing the IHT time, hardness decreased successively.
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3.3. Stress-Strain Curves

Figure 10 shows the tensile stress-strain curves of the tensile samples. For the solid solution
treated sample directly aged at 120 ◦C for 24 h (sample A), the ultimate tensile strength was 719.8 MPa.
While for samples having been isothermal heat treated at 205 ◦C, 325 ◦C, 445 ◦C, then aged at 120 ◦C
for 24 h, the ultimate tensile strengths were 620.2 MPa (for 205 ◦C, sample F/5 s), 606.4 MPa (for
325 ◦C, sample G/5 s), and 647.5 MPa (for 445 ◦C, sample H/5 s), respectively. While for samples
having been isothermal heat treated at 205 ◦C, 325 ◦C, 445 ◦C for 30 min, and then aged at 120 ◦C for
24 h, the ultimate tensile strength values were 524.5 MPa (for 205 ◦C, sample G/30 min), 300.1 MPa
(for 325 ◦C, sample G/30 min), and 647.5 MPa (for 445 ◦C, sample G/30 min). Table 3 shows the
detailed mechanical properties of the specimens with different heat treatments (see Table 2).
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Figure 10. Stress-strain curves of the tensile samples having been isothermal heat treated at 205 ◦C,
325 ◦C, and 445 ◦C for different durations (5 s and 30 min), then aging at 120 ◦C for 24 h. (a) the
isothermal heat treated time is 5 s; (b) the isothermal heat treated time is 30 min.



Materials 2017, 10, 1100 9 of 14

Table 3. Mechanical properties of the studied specimens subjected to isothermal heat treatments for
different treatment parameters.

Sample No. Elongation (%) Ultimate Tensile Strength (MPa) Yield Strength (MPa)

B 7.7 719.8 699.8
C/5 s 6.9 620.2 598.2
D/5 s 7.3 604.4 578.3
E/5 s 7.7 647.5 621.9

F/30 min 7.7 524.5 506.4
G/30 min 8.9 300.1 267.6
H/30 min 7.3 647.5 621.2

4. Discussion

4.1. The Quenching Sensitivity

Temperature-time-property (TTP) curves can be established by the hardness of the samples with
isothermal heat treatment and aging treatment. The nucleation rate (k) can be expressed with the
following equation [37,38]:

k =
tc

k1
= k2 exp[

k3k4
2

RT(k4 − T)2 ] exp[
k5

RT
] (1)

where tc is the critical time required to precipitate a constant amount of solutes; T is the IHT temperature
(degree K). R is the gas molar constant (8.31 J·K−1). k1, k2, k3, k4, and k5 are materials constants that
are related to the natural logarithm of the volume fraction of untransformed precipitates (k1), the
reciprocal of the number of nucleation sites (k2), the formation energy of nucleation sites (k3), solid
solution temperature (k4), and the diffusion activation energy (k5). The fitted coefficients of TTP curves
from the Figure 11 by the hardness data are 2.10 × 10−11 for k2, 1061 J/mol for k3, 802 K for k4, and
1.23 × 105 J/mol for k5, respectively. TTP curves are “C” shape, whose nose temperatures are around
325 ◦C (Figure 11).
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Figure 11. The time-temperature-property (TTP) curves of the studied alloy subjected to have been
solid solution treated at 470 ◦C for 1 h, isothermal heat treatment for various durations, and then aged
at 120 ◦C for 24 h.

For the studied alloy, we divided the temperature zone during the quenching process into
low-temperature zone (<250 ◦C), medium-temperature zone (250–400 ◦C), and high-temperature zone
(>400 ◦C). When the supersaturated solid solution were isothermal heat treated at the low-temperature
zone (<250 ◦C) and high-temperature zone (>400 ◦C). The hardness decreased slightly. While, if SSS
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samples were isothermal heat treated at the medium-temperature zone (250–400 ◦C), the hardness
decreased rapidly, indicating that the alloy presented a high quenching sensitivity and a short
incubation period in the medium-temperature zone. Similar TTP curves of conventional casting
7XXX alloy have been reported by some researchers, and many methods were applied to study the
quenching sensitivity. In-situ electrical resistivity measurement and differential calorimetry were
employed to investigate the high temperature precipitation kinetics and TTT curves, which reveal that
the nose temperature decreased from 375 ◦C to 350 ◦C when the precipitated fraction increase [37].
Liu et al. have investigated the TTP diagram for Al-Zn-Mg-Cu alloys including 7075, 7175, 7050, 7010,
7055, 7085, and 1933. Their result demonstrated that the nose temperature of TTP diagrams changed
with the chemical composition of alloys, which was 355 ◦C for 7055 alloy while it was 295 ◦C for
7085 alloy [39]. Nie et al. reported that the aging hardness reductions for the 7085, 7050, 7150, and
7055 alloys by air quenching are up to 8.6%, 18.4%, 21%, and 21.7%, respectively, in comparison that
that by water quenching [40]. Air quenching presents lower a quenching rate when compared with
water quenching. The aging yield strength reductions for the studied alloy are 27.6%, 31.4%, and
11.2% for sample F/5 s, sample G/5 s, and sample H/30 min, respectively, in comparison that with
water quenching, thus a higher furnace-to-furnace transfer temperature is preferred for the studied
alloy. Due to recrystallization, Zr-containing dispersoids become incoherent with the matrix and act
as effective nucleation sites for heterogeneous precipitation during slow quenching, thus Zr addition
in the alloy inhibits recrystallization that is sensitive to the quench sensitivity [41]. The hardness of
7085 alloy increased with an increase of Mg, which was reported by Deng et al. who have studied
the quench sensitivity of Al alloys via depth of age hardening layer according to hardness retention
value [27]. The TTP curve of 7010 alloy indicated that transformation occurred most rapidly between
250 and 400 ◦C [42]. For the above 7XXX alloy, the nose temperature of TTP curves were between
250–400 ◦C, which are consistent with the result in this work (325 ◦C).

As the SSS was isothermal heat treated, some precipitates have been detected in above images
and previous investigations [37,43,44]. High quenching sensitivity is the result of fast precipitation
from the supersaturated solid solution [24]:

dVt
dt

=
4
3

π·V0·
•
N·
•

G3·t3· exp(−π

3

•
G3
•
Nt4) (2)

where Vt is the precipitates volume, V0 is the sample volume,
•
N is the nucleating rate of precipitates,

•
G3

is the precipitate growing rate, and t is IHT time. When the SSS samples were isothermal heat treated

in the medium temperature zone (250–400 ◦C),
•
N·
•

G3 reached the maximum value. The incubation
period of the studied alloy is short in medium temperature zone but long in the low-temperature
zone and high-temperature zone. Thus, for the studied alloy, after solid solution treatment, the
samples should be rapidly transferred into the aging treatment furnace, and the temperature of the
sample during transfer process should be higher than 400 ◦C. Meanwhile, if the sample could not
be moved to the aging furnace very quickly, a water quenching should be performed for cooling
down the sample temperature to lower than 250 ◦C. Otherwise, the SSS sample would be decomposed
and coarse precipitates would form on grain boundary and grain inside, resulting in undesired
mechanical properties.

4.2. Precipitation Behavior during Isothermal Heat Treatment

The studied alloy was a precipitation hardening aluminum alloy. After the appropriate solution
annealing and quenching, a supersaturated solid solution would be formed; then decomposition
behavior would start from quenching, as well as aging at a low temperature. Previous investigations
proved that the SSS would begin to decompose at 120 ◦C [45]. Generally, for the Al-Zn-Mg-Cu-Zr
alloy, it will take 12 h to finish the peak aging process [43]. The precipitates size was only 5–8 nm in
length and 1.5–3 nm in width. With increasing the aging temperature, the decomposition behavior
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accelerated [46]. During the isothermal heat treatment processing, few η′ precipitates were detected
when the IHT time is only 5 s (Figure 3b). Increasing the time to IHT 30 min, some precipitates with a
size of 80 nm in length and 10 nm in diameter were detected (Figure 3d). However, when the SSS was
quenched to isothermal temperature of 325 ◦C (Figure 4), even the IHT time is 5 s, some η′ precipitates
were detected with a size of 150 nm in length and 20 nm in diameter (Figure 4a). Similarly, the SSS
sample was quenched to an isothermal temperature of 445 ◦C, precipitation happened (Figure 5).
These isothermal heat treated specimens were aging treated at 120 ◦C for 24 h, many η′-MgZn2 were
precipitated from the matrix. As a result of this work, an appropriate isothermal temperature required
to be tailored, low-temperature zone (<250 ◦C) and high-temperature zone (>400 ◦C) were worked out
for the studied alloy to maintain small precipitates and high strength.

4.3. Influence of Precipitates Size on the Strengthening Response

Low-temperature aging treatment at 120 ◦C contributed to the precipitation hardening in the
studied alloy. However, the precipitation occurred in samples during transferring from the solution
treated furnace to the aging furnace, and the precipitates may coarsen. The Orowan mechanism for
dislocation and particles can evaluate the significant increase of yield strength by the precipitates.
The increment of ∆σOrowan can be expressed as follows [36].

∆σ =
0.81MGb

2π(1− υ)1/2

ln
(
dp/b

)(
λ− dp

) (3)

λ =
1
2

dp

√
3π

2 fv
(4)

where, M is the Taylor-factor (M for Al is 3.06); G is the shear modulus (shear modulus for Al is
26.9 GPa); dp is the average diameter of precipitates particle; b is the Burgers vector (b for Al is
0.286 nm); ν is the Poisson's ratio (ν for Al is 0.33) [47]; λ is the average particle plane square lattice
spacing; f v is the volume fraction of particles. To simplify the calculation, we assumed that all of
the Mg and Zn atoms precipitated in the form of η′-MgZn2 precipitates [48]. The volume fraction
of MgZn2 precipitates can be calculated and f v is 5.9%. Therefore, the increment of ∆σOrowan was a
function of dp and can be calculated as follows:

∆σOrowan =
1286 + 1029 ln dp

dp
(5)

When the sample was solution-treated and immediately aged at 120 ◦C for 24 h, dp was about
10 nm (Figure 2, sample B), the ∆σOrowan was 365.5 MPa. However, when the dp was about 300 nm
in Figure 7c (the alloy was isothermal treated at 325 ◦C for 30 min then aged at 120 ◦C for 24 h,
sample G), the ∆σOrowan is only 23.9 MPa. The precipitate size is a significant factor on the ∆σOrowan

strengthening effect.

5. Conclusions

In summary, a high strength Al-Zn-Mg-Cu-Zr alloy was synthesized by using a spray
deposition technology followed by hot extrusion, solution treatment, isothermal heat treatment,
and aging treatment.

(1) The hardness and the ultimate tensile strength decreased with the isothermal heat treatment time.
TTP curves of the studied alloy have been established, and the mechanism for high quenching
sensitivity at the nose temperature zone has been discussed. TTP curves of the studied alloy are
“C”-like ones, and the nose-tip temperatures of these curves are around 325 ◦C.

(2) The studied alloy presented a high quenching sensitivity at the medium-temperature zone
(250–400 ◦C) because in this medium temperature zone the nucleation rate of the precipitates was
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high and a significant number of precipitates formed. After solid solution treatment, precipitation
appeared scarcely as specimens had been isothermal heat treated at the low-temperature zone
(<250 ◦C), and the high-temperature zone (>400 ◦C), both of above two temperature zones were
available for the industry production.

(3) The strengthening phase would precipitate as the sample aged at 120 ◦C, resulting in high
mechanical properties. Precipitates with size of 10 nm would contribute a significant increase in
yield strength, while ones larger than 300 nm contribute only little.
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