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Abstract: Magnesium (Mg) is becoming increasingly popular for orthopaedic implant materials.
Its mechanical properties are closer to bone than other implant materials, allowing for more natural
healing under stresses experienced during recovery. Being biodegradable, it also eliminates the
requirement of further surgery to remove the hardware. However, Mg rapidly corrodes in clinically
relevant aqueous environments, compromising its use. This problem can be addressed by alloying
the Mg, but challenges remain at optimising the properties of the material for clinical use. In this
paper, we present a mathematical model to provide a systematic means of quantitatively predicting
Mg corrosion in aqueous environments, providing a means of informing standardisation of in
vitro investigation of Mg alloy corrosion to determine implant design parameters. The model
describes corrosion through reactions with water, to produce magnesium hydroxide Mg(OH)2,
and subsequently with carbon dioxide to form magnesium carbonate MgCO3. The corrosion products
produce distinct protective layers around the magnesium block that are modelled as porous media.
The resulting model of advection–diffusion equations with multiple moving boundaries was solved
numerically using asymptotic expansions to deal with singular cases. The model has few free
parameters, and it is shown that these can be tuned to predict a full range of corrosion rates,
reflecting differences between pure magnesium or magnesium alloys. Data from practicable in vitro
experiments can be used to calibrate the model’s free parameters, from which model simulations
using in vivo relevant geometries provide a cheap first step in optimising Mg-based implant materials.
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1. Introduction

Magnesium is a biodegradable, lightweight structured metal that is becoming increasingly popular
for orthopaedic implants due to its desirable properties. It is an essential element in the human body
for providing normal neurological and muscular functions [1,2], and is detected in large amounts in
the bone tissue. It is reported in [3–5] that magnesium alloys have a Young’s modulus and specific
density closer to that of the human bone than the frequently used non-biodegradable titanium and
stainless steel implants; this eliminates the problem of stress shielding. Furthermore, the nature of a
biodegradable implant saves on expenses and risks associated with undergoing a second surgery to
remove the hardware. Biodegradable materials that are typically used in the bone implant industry are
polymers and ceramics, which are not as sturdy as metal implants and, consequently, their applications
are limited [4], thus highlighting the advantages of a biodegradable metal implant, such as magnesium.

While there are numerous benefits of magnesium implants, in its pure form, magnesium
corrodes rapidly in an aqueous environment, which is consistently an obstacle for biomaterial
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scientists [6]. This corrosion is due to magnesium being reactive to water to form magnesium
hydroxide, releasing bubbles of hydrogen that can accumulate to form gas pockets near the implant [4].
Furthermore, the rapid corrosion causes the loss of mechanical support before the newly formed bone
tissue can bear the load, thereby preventing the bone from healing correctly. These limitations can be
mitigated using alloys of magnesium (e.g., using calcium, zinc, rare earths, etc. [7–9]), and research into
this for the use in orthopaedic implant devices is vastly growing [10–12]. Physiological consequences
of magnesium implants has also been explored, including the blood and organ compositions of
corrosion products [13] and collagen interaction with implants [14]. However, the major challenge that
continues to be faced by regulation and industry is how to predict the corrosion rate of magnesium
metal-based biomaterials in vitro and correlate to the timing of its absorption in vivo. In this work,
the problem is approached using mathematical modelling aimed to provide a systematic means of
quantitatively describing the physiochemical interaction during magnesium corrosion processes in
vitro, further informing standardisation of in vitro investigation of magnesium alloy corrosion and
implant design parameters for optimal bone growth.

The application of mathematical modelling in metal corrosion has been studied widely for some
time [15–18]. Our approach employs a porous media extension of a model that is used to describe
atmospheric corrosion of a block of copper [16,19]; their model is built upon the chemical reactions
incurred as the copper sample corrodes using an advection–diffusion system. There are numerous
studies of similar problems for a range of metals that neglect the advective contribution to the corrosion
dynamics, resulting in Stefan-like problems to describe corrosion in, for example, zirconium [20] and
steel [21]. Magnesium corrosion has been the subject of a small number of modelling studies [22–24].
In [23], a simple two-phase bulk model of magnesium corrosion was proposed and parameter fitted to
experimental data; however, the model is not explicit in the products of corrosion. A spatially explicit
model of a galvanised magnesium was proposed in [24]; here, the magnesium block was a fixed
domain and they showed that the thickness of the galvanised layer affected corrosion. The authors
of [22] used a level-set approach to describe moving interfaces separating a pure magnesium block
and a partially corroded phase consisting of dissolved Mg ions (magnesium chloride) and a protective
layer of magnesium hydroxide.

In aqueous and in physiological relevant environments, carbon dioxide and dissolved
bicarbonates can react with magnesium hydroxide to ultimately form magnesium carbonate, which is
largely insoluble and forms a robust protective layer around the magnesium block. This latter feature
is currently absent in magnesium corrosion models and is believed to play an important part in the
performance of an implant in vivo. In this paper, we adopted the approach of [16], but applied it to
magnesium and the resulting layers of corrosive products Mg(OH)2 and MgCO3; this is the first study
to consider the latter product in a magnesium corrosion model. A further novelty is to consider these
layers as porous media, whereby there is fluid phase flow within the pores of the developing crystal
structures, so that the reactants H2O and CO2 can advect, as well as diffuse, through them. Whether or
not this porous media assumption leads to substantially different results will be one of the aspects
explored in this paper. An aim is to guide relatively simple in vitro experimentation that can inform the
model parameters, which can then be used in the modelling of magnesium in more clinically relevant
environments, with more appropriate geometries and dimensions, to predict corrosion in vivo.

In the next section, a partial differential equation (PDE) model is developed as an
advection–diffusion system, whereby magnesium is assumed to corrode through a series of chemical
reactions in vitro. The model is simplified and non-dimensionalised in preparation for the numerical
investigations described in Section 3. In the final sections, the main results are discussed and concluded.
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2. Mathematical Model

In vitro, either in water or a clinically relevant media, the magnesium component of a proposed
implant will initially corrode through the reaction with water, according to

Mg + 2 H2O −−→ Mg(OH)2 + H2, (1)

leading to the production of hydrogen and a protective layer of magnesium hydroxide. The hydrogen
gas evolves from the solution leaving the hydroxide film on the magnesium surface, which is only
stable at a high pH and, in physiological environments, is vulnerable to further corrosion [11]. In water,
dissolved CO2 reacts with Mg(OH)2 to ultimately form magnesium carbonate in a reaction summarised
by [25,26],

Mg(OH)2 + CO2 −−→ MgCO3 + H2O, (2)

which is used as the basis for the model formulation. In water, the principle reacting agent with
Mg(OH)2 are hydrogen carbonates ions, HCO –

3 , formed from the reaction of dissolved CO2 with water.
The reaction of these ions with Mg(OH)2 leads to the formation of magnesium hydrogen carbonate,
Mg(HCO3)2, which then decomposes to form magnesium carbonate, MgCO3. The intermediate
magnesium hydrogen carbonate is thermodynamically unstable at atmospheric levels of CO2 [26] and
demonstrated experimentally [7,27]; we thus assume the intermediate hydrogen carbonate form is
short-lived and will therefore be neglected in the modelling. A more realistic representation of the
overall reaction is [7],

CO2 + H2O ←−→ HCO −
3 + H+, (3)

Mg(OH)2 + HCO −
3 −−→ MgCO3 + H2O + OH−. (4)

In more clinically relevant environments, for example using cell culture medium in vitro,
the presence of a hydrogen carbonate buffering system using concentrations reflecting that in the
blood (27 mmol/L) [28] means that HCO –

3 will lead to the corrosion of Mg(OH)2 via the reaction in
Equation (4). The formulation of the model with regards to conversion of the hydroxide to carbonate
forms means that both reactions Equations (2) and (4) are described, and the variable C2 in this model
can be viewed either as the concentration of CO2 or HCO –

3 or both as the stoichiometry for water is
the same; for simplicity, the discussion on Mg(OH)2 corrosion in the remainder of this paper will refer
to CO2 and the reaction in Equation (2). We note that the resulting layer of magnesium carbonate is
more stable and has been proposed as a layer to delay the corrosion process [25]. We further assume
in the model that, throughout the corrosion process of Mg, the environment is stable (e.g., pH is
unchanged, as would be expected in a buffered medium in vitro) and that supplies of water and CO2
are inexhaustible.

The modelling is aimed at describing events from the beginnings of the corrosion process
of a magnesium or magnesium alloy pellet, through the formation of hydroxide and carbonate
layers, until the magnesium and magnesium hydroxide is exhausted and only the carbonate remains.
For simplicity, we will refer to the magnesium (alloy) pellet as “pure magnesium” to distinguish it from
the hydroxide and carbonate forms. The magnesium pellet is assumed to be non-porous and corrodes
in a way that maintains a smooth surface, i.e., surface pitting and cracking is assumed negligible at
leading order. It is therefore envisioned that, in the corroding process, the magnesium is surrounded by
a layer of Mg(OH)2, which in turn is surrounded by a layer of MgCO3 (see Figure 1). In order for the
magnesium pellet to corrode further, water must be able to diffuse though the carbonate and hydroxide
layers to react at the pellet’s surface and CO2 must be able to diffuse through the carbonate layer to
reach the hydroxide compound interface. These assumptions lead to a model that describes both the
transport and reaction processes of water and carbon dioxide as well as the location of the interfaces
between magnesium and its compounds, which are deposited on the surface of the magnesium metal
as corrosion products. The modelling will be formulated for a general 1D geometry, namely Cartesian
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(describing a magnesium slab), cylindrical (a magnesium rod) and spherical geometry (a magnesium
ball). The hydroxide and carbonate layers are treated as porous media, thereby the movement speed,
vsi , of the “solid” components, i.e., the Mg(OH)2 and MgCO3, is distinct to that of the fluid and
dissolved gas components, i.e., H2O and CO2, namely v f ; this is a novel feature in metal corrosion
models. Fortunately, by assuming ideal geometries, a closed system of equations can be derived based
on mass conservation alone.

β

S

α

MgOH2
Zone 1

Mg
Zone 0

MgCO3

Zone 2

CO2

H2O

Figure 1. A physiochemical schematic of the magnesium corrosion system used in the model for
cylindrical and spherical geometries. The pure magnesium or magnesium alloy exists in the core
(Zone 0, 0 ≤ r < α(t)), the magnesium hydroxide forms a middle layer (Zone 1, α(t) < r < β(t)) and
the outer layer consists of magnesium carbonate (Zone 2, β(t) < r < S(t)).

2.1. Mathematical Modelling

Figure 1 shows a cross-section of the cylindrical/spheroid scenarios for the model; the Cartesian
case simply has three layers bounded by parallel, linear interfaces. Applying the above ideal geometries
means that the resulting model will only consider changes in one-spatial dimension. Writing r and
t as the spatial coordinate and time variable, respectively, we denote the coordinates of the moving
interfaces as follows:

• r = α(t) is the location of the magnesium to magnesium hydroxide interface.
• r = β(t) is the location of the magnesium hydroxide to magnesium carbonate interface.
• r = S(t) is the location of outer edge, exposed to concentrations of water and carbon dioxide,

representative of the in vitro environment containing HCO –
3 /CO2 buffering system.

We also denote the spaces between the interfaces as

• Zone 0: the Mg layer r < α(t),
• Zone 1: the Mg(OH)2 layer α(t) < r < β(t),
• Zone 2: the MgCO3 layer β(t) < r < S(t).

The movement of the magnesium compounds, which is when the hydroxide deposits on the
magnesium surface and when the carbonate produces on the hydroxides surface, are denoted by
velocities vsi , where i = 1, 2 corresponding to the zone; and the flow of water and carbon dioxide in
the fluid phases are denoted by velocities v fi

.
It is assumed that the solid structure of Zones 0–2 is homogeneous, i.e., they consist of a

fixed volume fraction of the magnesium compound and non-traversable space (εi) and traversable
space (1− εi); traversable space is defined to be continuous channels of space and excludes completely
enclosed gaps in the solid structure. In the magnesium layer, it is assumed that it is entirely
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non-traversable, hence ε0 = 1. All reactions are assumed to occur only at the interfaces α(t) and β(t),
whereby the rate at which these interfaces move depends on the local rate of reaction. Considering the
availability of inexhaustible CO2 in vitro, we note that in the physiochemical representative corrosion
system, the magnesium and magnesium hydroxide regions will eventually vanish, i.e., α = 0 and
β = 0, respectively; consequently, there are distinct time phases in the corrosion process that need to
be separately handled by the model. We define t = Tα as the point in time when α(t) = 0 (i.e., α(t) > 0
for t < Tα), and likewise t = Tβ for when β(t) = 0. Once β = 0, i.e., for t > Tβ, there are no further
developments in the system and all that remains is a block of magnesium carbonate.

With vs1(r, t) and vs2(r, t) being the radial velocities of the solid phases, the conservation of
mass implies

1
rd

∂

∂r

(
rdε1 vs1

)
= 0 r ∈ (α, β), (5)

1
rd

∂

∂r

(
rdε2 vs2

)
= 0 r ∈ (β, S), (6)

where d = 0, 1, 2 represent Cartesian, cylindrical and spherical geometry, respectively. Here, ε1 and ε2

are the solid phase volume fractions, respectively; we note that ε1 and ε2 are constant in their respective
zones so can be divided out; however, the fraction term will be retained in the model derivation for
completeness. We will for simplicity assume that the fluid phase consists of all non-solid materials and
that it is non-compressible. Conservation of total material volume implies that

1
rd

∂

∂r

(
rd
(

εi vsi + (1− εi) v fi

))
= 0,

for i = 1, 2; hence, using Equations (5) and (6), we have

1
rd

∂

∂r

(
rd(1− ε1) v f1

)
= 0 r ∈ (α, β), (7)

1
rd

∂

∂r

(
rd(1− ε2) v f2

)
= 0 r ∈ (β, S). (8)

We emphasise that the flow here does not encompass that of the fluid/gas trapped in
non-traversable pores in the solid structure.

It is assumed that water can be transported via diffusion and advection throughout Zones 1 and
2, whilst carbon dioxide is limited to Zone 2; carbon dioxide is assumed to be immediately exhausted
on contact with Mg(OH)2 on the r = β interface (see Section 2.1.1). Let W1 be the mass concentration
of water in the pores of Mg(OH)2 structure and W2 and C2 be that of water and carbon dioxide,
respectively, in the MgCO3. The transport equations for the water and carbon dioxide are

∂((1− ε1)W1)

∂t
= − 1

rd
∂

∂r

(
rd(1− ε1)JW1

)
r ∈ (α, β), (9)

∂((1− ε2)W2)

∂t
= − 1

rd
∂

∂r

(
rd(1− ε1)JW2

)
∂((1− ε2)C2)

∂t
= − 1

rd
∂

∂r

(
rd(1− ε1)JC2

)
 r ∈ (β, S), (10)

with the fluxes defined as JXi = −DX∂Xi/∂r + v fi
Xi; again with the εis being constants, then the

fluid fraction can be divided out in each of the equations. Here, DX is the diffusion coefficient with X
representing water, W, or carbon dioxide, C.
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2.1.1. Boundary and Interface Conditions

It is assumed that the initial state consists only of a magnesium, and impose

t = 0 : S = β = α = S0, (11)

where the initial thickness or radius S0 > 0. Water and carbon dioxide is sourced at the outer surface
r = S, which moves at speed equal to the local velocity, hence

r = S(t) : W2 = W∗0 , C2 = C∗0 , Ṡ = v2, (12)

where Ṡ = dS/dt. The conditions on the interfaces are more complex and change at critical points of the
corrosion process. On r = α(t), water reacts with the surface of the magnesium block. Assuming that
the magnesium surface is uniform, then the rate of reaction, Rα, will be dependent on the water
concentration and flux there. As two water molecules are consumed, we assume by the law of mass
action applied to Equation (1) that Rα = kW2

1 , where k is a rate constant. There are two cases that will
be considered in this paper:

• Case 1 considers the limit k → ∞, where the reaction is so rapid that water is immediately
exhausted on r = α(t) interface, hence W1 = 0 here. This assumption is most consistent with
that used for carbon dioxide on r = β(t). The boundary conditions Equations (13) and (15)
are relevant.

• Case 2 considers k < ∞, whereby W1 > 0 on r = α(t). In a short time, whereby
1− β(t)/S(t)� 1, the small distance for the carbon dioxide to diffuse means that Mg(OH)2
immediately becomes exhausted on production and Mg converts to MgCO3, in effect, immediately;
consequently, α(t) = β(t) during this transient. In time, the thickness of Zone 2, S − β,
becomes sufficiently large for the reaction to exhaust the carbon dioxide on r = β, allowing the
Mg(OH)2 layer to grow. Let t = Tα=β be the smallest time at which C2(β(t), t) = 0; then, for
t < Tα=β, the conditions in Equation (16) hold, whilst, for t > Tα=β, Equations (13) and (15)
are then imposed.

In both cases, the Mg will eventually be exhausted and the conditions in Equations (14) and (15)
are then relevant.

Let A be the area of a surface element on a magnesium surface; then, the volume change rate
upon this element of the Mg block is Aα̇, translating to a molar change rate of µ0α̇A (see Table 1).
Consequently, the water molar flux through r = α(t) as the boundary moves is (1− ε1)(−W1α̇ +

JW1)A/MW = 2µ0α̇A, since two molecules of water are consumed and noting constant MW is equal
to mass/mol of water. For the k→ ∞ case, this provides the equation for the moving boundary α(t),
whilst, for k < ∞ ,we have in addition the mass flux through A satisfying (1− ε1)(−W1α̇ + JW1)A =

−2Rα. From Table 1, the quantities ρi and µi represent the values from the magnesium compounds
deposited as layers of corrosion products, hence volume elements are inclusive of the void fraction.
The volume fraction difference through converting Mg to Mg(OH)2 is ωα − 1, where ωα = µ0/µ1;
consequently, volume gain rate from the reaction yields vs1 A = −(ωα − 1)α̇A, noting that ωα > 1
implies a gain in volume so that vs1 must have an opposite sign to α̇. The final condition results from a
no slip condition to the fluid phase on α(t), i.e., v fi

= α̇. In summary, the conditions are on

r = α(t) : vs1 = −(ωα − 1)α̇, v f1 = α̇, (1− ε1)(−α̇W1 + JW1) = 2
MW
M0

ρ0α̇,

W1 = 0 for k→ ∞ or
MW
M0

ρ0α̇ = − kW2
1 for k < ∞.

(13)
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These conditions hold for α(t) > 0. On exhaustion of the pure Mg block and α(t) ≡ 0, the boundary
conditions are

r = 0 : vs1 = 0, v f1 = 0, JW1 = 0. (14)

For the cases on k described above, and t > Tα=β for k < ∞, then, on r = β, the carbon dioxide
is assumed to be completely consumed by its reaction with Mg(OH)2, whilst a water molecule is
produced; for the latter, we assume the concentration is continuous across the interface, i.e., [Wi] = 0,
where the shorthand [Wi] = W2 −W1 is used below. Letting A be again the area of a surface element
on r = β, then the rate of volume loss of Mg(OH)2 is (vs1 − β̇)A and the molar loss rate is therefore
Rβ = µ1(vs1 − β̇)A. Consequently, the difference in molar flux of the water is [A(β̇Wi− JWi )]/MW = Rβ,
and carbon dioxide is A(β̇Wi − JWi )/MC = −Rβ. The volume fraction difference from the reaction
is ωβ − 1, by definition, and thus the volume gain rate A(vs2 − vs1) is equal to (ωβ − 1)(vs1 − β̇)A.
Conservation of fluid flux across the interface leads to [(1− εi)(β̇− v fi

)] = 0. The conditions are on

r = β(t) : C2 = 0, W2 = W1, vs2 = vs1 − (ωβ − 1)(β̇− vs1),
(1− ε1)(v f1 − β̇) = (1− ε2)(v f2 − β̇),

(1− ε2)(−β̇W2 + JW2)− (1− ε1)(−β̇W1 + JW1) = −
MW
M1

ρ1(β̇− vs1),

(1− ε2)(−β̇C2 + JC2) =
MC
M1

ρ1(β̇− vs1),

(15)

for β(t) > 0.
For k < ∞ and t < Tα=β, in which Zone 1 is absent, the boundary conditions are

r = α(t) = β(t) : vs2 = − (ωαωβ − 1)β̇, v f2 = β̇,

(1− ε2)(−W2 β̇ + JW2) =
MW
M1

ρ1 β̇,
MW
M0

ρ0 β̇ = − kW2
1 ,

(1− ε2)JC2 =
MC
M1

ρ1 β̇.

(16)

Here, the conversion of Mg to MgCO3 generates a volume fraction difference of ωβωα − 1 and the
stated condition on vs1 is equivalent to that in Equation (13) and likewise for v f1 . The flux condition on
water results from the net loss of one molecule from the overall reaction and likewise for CO2.

The current model assumes that MgCO3 will have no exit from the system, so the final state
corresponds to when β = 0, whereby all of the Mg and Mg(OH)2 have been exhausted.

Table 2 shows the boundary conditions used in Cases 1 and 2. Note, in the case k < ∞ and
Tα = Tα=β, Phases 2.1 and 2.3 are relevant. Conditions Equations (11) and (12) are relevant for both
these cases on k.

Table 1. Notation used in the model, where ρi = Miµi, ωα = µ0/µ1 and ωβ = µ1/µ2.

Name Notation

Zone i
Solid fraction εi
Mass density ρi

Mass/Mol Mi
Mol/Volume µi
Solid velocity vsi

Fluid velocity v fi
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Table 2. Relevant boundary conditions for each of the Mg corrosion phases for the two cases k→ ∞
and k < ∞.

Phase Time b.c.s vsi and v fi

1.1 k→ ∞ 0 ≤ t ≤ Tα (13), (15) (17)
1.2 Tα < t ≤ Tβ (14), (15) (17)

2.1
k < ∞

0 ≤ t ≤ Tα=β (16) (19)
2.2 Tα=β < t ≤ Tα (13), (15) (17)
2.3 Tα < t ≤ Tβ (14), (15) (18)

2.2. Exact Solutions

Equations (5)–(8) are straightforward to integrate, though their solution depends on the various
scenarios stated above. For Case 1, applying Equations (13) and (15) yields

vs1 = − (ωα − 1) α̇ αd

rd , vs2 = −
ωβ (ωα − 1) α̇ αd + (ωβ − 1) β̇ βd

rd ,

v f1 =
α̇ αd

rd , v f2 =
(1− ε1) α̇ αd − (ε2 − ε1) β̇ βd

(1− ε2)rd ,
(17)

for t < Tα and

vs1 = 0, vs2 = −
(ωβ − 1) β̇ βd

rd ,

v f1 = 0, v f2 =
−(ε2 − ε1) β̇ βd

(1− ε2)rd ,
(18)

for t > Tα using Equations (14) and (15). For Case 2, applying Equations (15) and (16) gives

vs1 = − (ωα − 1) β̇ βd

rd , vs2 = −
(ωα ωβ − 1)β̇βd

rd ,

v f1 =
β̇ βd

rd , v f2 =
β̇ βd

rd ,
(19)

for t ≤ Tα=β, and the velocities for Tα=β < t < Tα and t > Tα are then Equations (17) and (18),
respectively. Using the formulation in Equation (17) for vs2 and the boundary condition Ṡ = vs2(S, t),
we obtain

S = S0
[
− (ωβ − 1) βd+1 −ωβ(ωα − 1) αd+1 + ωα ωβ

]1/d+1; (20)

this formula is correct for t < Tα=β in Case 2 on insertion of α = β and in the final phase for both cases
on substitution of α = 0. From this, we can deduce the final size, S∞, of the magnesium carbonate
block on substitution of α = β = 0 into Equation (20), giving

S∞ = S0 (ωαωβ)
1/(d+1); (21)

this can be calculated a priori from the total volume fraction change from converting Mg to MgCO3
being (S∞/S0)

1+d = ωαωβ.
There are no further exact solutions to be obtained and variables α, β, W1, W2 and C2 need to be

resolved numerically from Equations (9), (10) and (11)–(16).
Table 3 shows the data used for each of the parameters other than initial radius S0. There are three

parameters ε1, ε2 and k for which information appears to be limited; these will be investigated further
for their effects on the degradation behaviour of magnesium metal and the dynamics of biphasic
corrosion layers.
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Table 3. List of model variables, their interpretation and, where possible, estimated values from the
literature. † unknown parameters in the model. “S” indicates standard textbook references and “D”
derived from formula in Table 1.

Parameter Value Units Description Source

DW 2.85 cm2/day Diffusion coefficient of H2O [29]
DC 1.66 cm2/day Diffusion coefficient of CO2 [30]
M0 24.3 g/mol Molecular mass of Mg S
M1 58.3 g/mol Molecular mass of Mg(OH)2 S
M2 84.3 g/mol Molecular mass of MgCO3 S
MW 18 g/mol Molecular mass of H2O S
MC 44 g/mol Molecular mass of CO2 S
ρ0 1.74 g/cm3 Mass density of Mg S and [31]
ρ1 2.34 g/cm3 Mass density of Mg(OH)2 S
ρ2 2.96 g/cm3 Mass density of MgCO3 S

W∗0 1 g/cm3 Concentration of H2O in human body S
C∗0 0.0011 g/cm3 Concentration of CO2 in human body [32]
wα 1.8 - Molar density ratio of Mg and Mg(OH)2 D
wβ 1.1 - Molar density ratio of Mg(OH)2 and MgCO3 D
ε1 † - Fraction of magnesium hydroxide -
ε2 † - Fraction of magnesium carbonate -
k † cm4/g day Rate of reaction between Mg and H2O -

2.3. Non-Dimensionalisation

Of the various candidates for a suitable scaling in time, none stand out as providing any particular
advantage here, we choose the approximate timescale for which carbon dioxide diffuses across a
reference distance S∗0 (choosing S∗0 = 1 cm). We rescale the water and carbon dioxide variables with
ambient mass concentrations W∗0 and C∗0 and hence write

t =
S∗0

2

Dc
t̂, r = S∗0 r̂, W1 = W∗0 Ŵ1, W2 = W∗0 Ŵ2, C2 = C∗0 Ĉ2, α = S∗0 α̂, β = S∗0 β̂, S = S∗0 Ŝ,

and v∗ = DC v̂∗/S∗0 , where the quantities with hats are dimensionless. Using the data in Table 3, the
scaling implies that t̂ = 1 represents about 14.5 h. Let

Ŝ0 =
S0

S∗0
, D̂W =

DW
DC

, γ0 =
MWρ0

M0W∗0
, γ1 =

MWρ1

M1W∗0
, γ2 =

MCρ1

M1C∗0
, κ =

S∗0W∗0
DC

k, (22)

noting that ωα and ωβ are already dimensionless; then, on dropping the hats for clarity, we obtain
the system

∂ W1

∂ t
+ v f1

∂ W1

∂ r
− DW

rd
∂

∂ r

(
rd ∂ W1

∂ r

)
= 0, (23)

∂ W2

∂ t
+ v f2

∂ W2

∂ r
− DW

rd
∂

∂ r

(
rd ∂ W2

∂ r

)
= 0, (24)

∂ C2

∂ t
+ v f2

∂ C2

∂ r
− 1

rd
∂

∂ r

(
rd ∂ C2

∂ r

)
= 0, (25)

with velocities for each scenario the same as Equations (17)–(19). Initial conditions are

α(0) = β(0) = S(0) = S0. (26)

For Case 1, k→ ∞, we have the following boundary conditions for t < Tα,

W1(α, t) = 0, W1(β, t) = W2(β, t), W2(S, t) = 1, C2(β, t) = 0, C2(S, t) = 1, (27)

interface conditions,
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r = α(t) : −(1− ε1) DW ∂rW1 = 2 γ0 α̇,

r = β(t) : DW ((1− ε1) ∂rW1 − (1− ε2) ∂rW2) = −γ1

(
β̇ +

(ωα − 1) αdα̇

βd

)
,

−(1− ε2)∂rC2 = γ2

(
β̇ +

(ωα − 1) αdα̇

βd

)
,

(28)

and analytical solution for S,

S = S0

(
ωαωβ − (ωβ − 1)βd+1 −ωβ(ωα − 1)αd+1

)1/(d+1),
(29)

and for t > Tα,

r = 0 : ∂rW1 = 0,

r = β(t) : DW

(
(1− ε1) ∂rW1 − (1− ε2) ∂rW2

)
= −γ1 β̇, −(1− ε2)∂rC2 = γ2 β̇,

(30)

with analytical solution

S = S0

(
ωαωβ − (ωβ − 1)βd+1

)1/(d+1)
. (31)

For Case 2 and t ≤ Tα=β, we have the following boundary conditions:

W2(S, t) = 1, C2(S, t) = 1, (32)

with interface conditions,

r = α(t) = β(t) : γ0 β̇ = −κW2
2 , −DW (1− ε2) ∂rW2 = γ1 ωα β̇,

−(1− ε2)∂rC2 = γ2 ωα β̇,
(33)

and analytical solution

S = S0

(
βd+1 + ωαωβ(1− βd+1)

)1/(d+1)
. (34)

For t > Tα=β, we have, in addition to Equation (32), the boundary conditions

γ0α̇ = −κW2
1 , W1(β, t) = W2(β, t), C2(β, t) = 0, (35)

whereby, for Tα=β < t < Tα, we have Equations (28) and (29) and, for t > Tα, we impose
Equations (30) and (31).

Table 4 displays the values for the dimensionless parameters used in the model simulations in the
next section.

Table 4. List of dimensionless parameter values calculated from the values listed in Table 3 and
Equation (22); † being the free parameters.

Parameter Value

DW 1.5625
γ0 1.2889
γ1 0.7225
γ2 1605.5
wα 1.8
wβ 1.1
ε1 †
ε2 †
κ †
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3. Numerical Method and Results

The spacial domains of the system of PDE Equations (23)–(25) are mapped to the unit interval
ρ ∈ [1, 2] using the rescaling outlined in Appendix A; the difficulties from the singularities resulting
from α = β = S at t = 0 at the start of Phases 1.1 and 2.1 and α = β at t = Tα=β at the start of Phase 2.2
are discussed in Appendix B.

The system of PDE Equations (A1)–(A3) and the appropriate boundary conditions for each of the
phases was solved using the method of lines [33] implemented in MATLAB (R2017a, MathWorks). The
domains for Zones 1 and 2 are divided into a uniform mesh, not necessarily using the same number of
points, and the spatial derivatives are discretised using central differences; upwind scheme for the
advection terms was also implemented but usually ran slower. The stiff ODE solver, ode15s, was used
for the time stepping process.

From the data values listed in Table 3, there is current uncertainty on appropriate values for ε1, ε2

and κ (though ε1 = 0.6 and ε2 = 0.4 was chosen for most simulations). We therefore investigate in
Sections 3.2–3.5, for the three principle geometries, the effect of these parameters on the model solutions,
in particular on the degradation times of the original Mg block and the Mg(OH)2 layer. We investigate
in Section 3.3 the effect of the initial size of the block, which is, of course, an experimentally controllable
parameter. In Section 3.6, the significance of the porous media assumption in the current model
is examined. We note that all of the results shown are the dimensionless form of the variables,
whereby one space unit represents 1 cm and one time unit represents about 14.5 h.

3.1. Magnesium Degradation

An example simulation using a finite reaction rate κ (Case 2) is shown in Figure 2 using cylindrical
geometry, where κ ≈ 0.04, (corresponding to k = 0.07 cm4/g · s in Table 3), ε1 = 0.6 and ε2 = 0.4.
The size of Mg and its compounds over time are displayed in Figure 2 with the dashed lines showing
Tα=β, Tα and Tβ. We note that the Mg block degrades relatively quickly at t = O(10), whilst the
Mg(OH)2 takes t = O(103). This is largely due to a relatively low concentration of CO2 compared to
H2O in the fluid phase.

Figure 3 displays water and CO2 concentration distribution at the start of Phases 2.1, end of
Phase 2.1 (t = Tα=β), Phase 2.2 at the point the full system is solved numerically (see Section B.3),
the start of Phase 2.3 (t = Tα) and the end of Phase 2.3 (t = Tβ); the times t are detailed in the caption.
In a short time, there is only a very narrow MgCO3 layer present and, as expected, the water and CO2
are very nearly uniform r ∈ (β, S). Furthermore, CO2 is not initially exhausted by the conversion
reaction of Mg(OH)2 to MgCO3 at r = β, but, in time, it descends, reaching zero as Phase 2.2 begins.
As time advances, clear gradients in concentrations emerge and, whilst β− α and S− β remain small,
the concentrations of water and CO2 appear linear. The upward kink in the water distribution is due to
production at r = β in the conversion reaction Equation (2), even exceeding the exterior concentration
as, locally, water replaces CO2 molecules. During Phase 2.3, when there is no more Mg remaining,
the water distribution W1 tends to a uniform distribution via diffusion and the zero flux condition at
r = 0. By the end of Phase 2.3, the profiles of W2 and C2 are no longer linear and CO2 concentration
forms a boundary layer in the vicinity of r = β.
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Figure 2. Plots of the dimensionsionless variables α, β and S against t in cylindrical geometry using
ε1 = 0.6, ε2 = 0.4, κ = 0.04, the parameters in Table 4 and S0 = 1. The dashed lines show t = Tα=β

(left), t = Tα (middle) and Tβ (right).
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Figure 3. Plots of the dimensionsionless variables concentrations W1, W2 (left) and C2 (right) at, from top
to bottom, the start of Phases 2.1 (t = τ0 = 10−8), end of Phase 2.1 (t = Tα=β ≈ 0.095), Phase 2.2
(t = Tα=β + τ1, with τ1 = 0.356, see Appendix B.3), start of Phases 2.3 (t = Tα ≈ 33.1) and the end
of 2.3 (t = Tβ ≈ 1291) in cylindrical geometry. In the left-hand panel, the solid lines are W1 and the
dashed lines W2. The vertical dotted lines indicate from right to left, r = S, r = β (top 3 plots) and
r = β (top 2 plots). The parameters are ε1 = 0.6, ε2 = 0.4, κ ≈ 0.04, S0 = 1 and the rest listed in Table 4.
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3.2. Effects of Geometry

Figure 4 shows α, β and S over time for a Case 1 (κ → ∞) example, using fixed solid fractions,
ε1 = 0.6 and ε2 = 0.4 and an initial radius of S0 = 1 (representing 1 cm). The results are displayed left
to right for Cartesian, cylindrical and spherical geometries. The dashed lines separate the two-phases,
Phase 1.1 and Phase 1.2. Here, the geometry is such that the size of the Mg block is greater in the
Cartesian case, thus there is more of it to convert to Mg(OH)2 and ultimately degrade into MgCO3,

as can be seen from the final sizes, where S[d]
∞ , (d = 0, 1, 2 for the Cartesian, cylindrical and spherical

geometry, respectively), S[2]
∞ < S[1]

∞ < S[0]
∞ . Comparing the cylindrical case with that of Figure 2,

we observe that, as expected, the magnesium layer disappears much faster in κ → ∞ case (Tα ≈ 1) than
for κ ≈ 0.04 (Tα ≈ 33); but we note that it does not significantly affect the overall degradation time of
Mg(OH)2. In reality, the limit κ → ∞ is unlikely to be realistic for pure or mostly pure magnesium,
and represents a metal of low purity. However, as degradation of Mg(OH)2 is independent of κ, there is
very little difference between the t = Tβ values.
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Figure 4. Plots of the dimensionsionless variables α, β and S against t, from left to right,
Cartesian, cylindrical and spherical geometry using ε1 = 0.6, ε2 = 0.4, κ → ∞, the parameters
in Table 4 and S0 = 1. The dashed lines show t = Tα (left) and Tβ (right).

3.3. Effect of Magnesium Block Size

The scaling presented in Section 2.3 is such that the initial magnesium block size of S0 = 1, used in
the simulations up to now, represents 1 cm. Figure 5 plots the relationship between the initial Mg
radius and the key degradation timescales Tα and Tβ for each of the three principle geometries in a
finite κ case. As expected, they show that these timescales increase with the initial radius of the Mg
block, S0. The plots suggests a power law relationship of Tβ ∝ S2

0. This can be justified due to the
concentration of CO2 being relatively small, so that 1 � γ2, and hence the decay of the Mg(OH)2
is slow. Here, β̇ � 1 and hence v f2 � 1, and then Equation (25) would be expected to tend to the
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quasi-steady profile, with ∂rrd∂rC2 ∼ 0, hence ∂rC2(β, t) ∼ A/βd for some constant A > 0. Writing
r = S0r and β = S0β, then, from Equation (30), we obtain

d β

d t

d+1

∼ − (d + 1)(1− ε2)A
S2

0
,

thus β
d+1 ∼ βd+1

0 − t (d + 1)(1− ε2)A/S2
0; hence, we can crudely estimate

Tβ ∼ S2
0

B
(1− ε2)

, (36)

where constant B = βd+1
0 /A(d + 1) > 0, thus Tβ ∝ S2

0 as shown in Figure 5.
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Figure 5. Plots of the dimensionsionless Tα and Tβ against the initial magnesium block size, S0, for each
of the principle geometries. The parameters used are ε1 = 0.6, ε2 = 0.4, κ ≈ 0.3 (k = 0.5 cm4/g day)
and parameters in Table 4.

3.4. Effect of Porosity of the Mg(OH)2 and MgCO3 Layers

In Figure 6, the effect of ε1 (left) and ε2 (right) on the time scales Tα and Tβ is shown for κ = 0.3, 6
and κ → ∞. The left side of Figure 6 shows that Tα increases with the solid fraction, rising sharply as
ε1 → 1. This is to be expected because as ε1 increases there is less space for water to flow through the
Mg(OH)2 layer, hence decreasing the rate at which water reaches the Mg interface. However, the solid
fraction does not have an impact on the degradation time for Mg(OH)2 as the transport of CO2 in the
MgCO3 layer governs this process. The figure emphasises the importance of the hydroxide layer at
slowing the degradation of the metal core by impeding the passage of water. The nonlinear relationship
as predicted by the current model is in accordance with experimental data [34], whilst decreasing in
porosity having the effect of enhancing longevity is consistent with Sun et al. [35].

The right side of Figure 6 shows the effects of changing ε2 whilst keeping ε1 fixed at 0.6. The
solid fraction of MgCO3 does not appear to have an effect on Tα, but does affect Tβ. Here, for t < Tα,
the thickness of the MgCO3 layer, S− β, is fairly small and appears not to be sufficient to impede
significantly the passage of water across it, thus Tα remains approximately constant. Although,
Tα varies between the κ values, it is small compared to Tβ, and the conversion of Mg(OH)2 to MgCO3
being independent of κ means the plots are superimposed. As ε2 increases, it is CO2 that is impeded
by the smaller void fraction, leading to the sharp rise in time Tβ as ε2 → 1. Using the argument in
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Section 3.3 in formulating Equation (36) for large γ2, we then expect Tβ ∝ 1/(1− ε2); this relationship
matches the numerics very well, suggesting that Tβ → ∞ as ε2 → 1−.
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Figure 6. Plots of the dimensionsionless Tα and Tβ against ε1 (left) and ε2 (right) for κ = 0.03, 6 and
κ → ∞, with the remaining parameters listed in Table 4 and S0 = 1.

3.5. Effect of Rate of Reaction at Magnesium Interface

Figure 7 displays contours of Tα for a range of values for κ and ε1 whilst keeping ε2 constant
at 0.4 (top plots), and a range of values for κ and ε2 whilst keeping ε1 constant at 0.6 (bottom plot).
The variation in the parameter κ reflects the different degradation rates across various magnesium
alloys. As can be observed from the top plot of Figure 7, the longevity of Mg increases as κ and the
void fraction 1− ε1 decreases. In agreement with Figure 6, the lower plot shows that changes in ε2 do
not have a significant impact on the degradation time of Mg, but a smaller κ lengthens the degradation
time of Mg.

Figure 8 displays the effects on Tα as κ changes in all three geometries (ε1 = 0.6 and ε2 = 0.4).
As expected, the time for the total degradation of pure magnesium increases as the reaction rate
diminishes, whilst the curves tend to the Case 1 solutions as κ → ∞. For the reasons outlined in
Section 3.2, Mg takes the longest time to degrade in Cartesian, then cylindrical and then spherical
geometry, though the differences are less noticeable on a logged axis as κ → 0.

Figure 7. Cont.
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Figure 7. Contour map of the dimensionsionless Tα for κ against ε1 with ε2 = 0.4 (top) and κ against
ε2 with ε1 = 0.6 (bottom) in spherical geometry. The remaining parameters are listed in Table 4 and
S0 = 1.
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Figure 8. Plots of the dimensionsionless Tα against κ for the three principle geometries, with ε1 = 0.6
ε2 = 0.4, S0 = 1 and the parameters listed in Table 4.

3.6. Role of Advection

The porous media assumption of the corrosion by-products is a novel feature of the current work
in metal corrosion studies. The formation of Mg(OH)2 and MgCO3 crystal structures allows transport
of water and carbon dioxide through its pores. The separate treatment of the resulting fluid and solid
phase velocities is in contrast to [16], in which they assumed that the transport of the diffusive species
is supplemented by that of the solid phase motion; this presumably reflects these molecules being
somehow connected to and dragged along by the crystal structure. Figure 9 compares the evolution of
α, β and S from three choices of advective flux velocities, Vi, of water and CO2, namely

Case (i). The current model based on porous media assumption (Vi = v fi
, solid lines).

Case (ii). Zero advective transport (Vi = 0, dotted lines), i.e., v fi
set to zero in Equations (23)–(25)

and in the boundary conditions.
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Case (iii). Advective transport equal to the solid phase velocity, as in [16] (Vi = vsi , dashed lines),
i.e., v fi

swapped with vsi in Equations (23)–(25) and in the boundary conditions.

The plots show that there is little difference qualitatively with the results between the cases,
and the only visible difference being in the stages up to about t = Tα. Mg is predicted to degrade
slightly faster using the current model’s assumptions (Vi = v fi

) than the zero advection case (Vi = 0)
and, in turn, is predicted to be faster than that using Vi = vsi as the advection flux. This is due to the
signs of the advective fluxes being v fi

< 0 < vsi , as the reactions generates local solid volume increases,
since wα, wβ > 1. Thus, negative advective flux in case (i) implies that there is a background inward
drift of the reactants towards the reaction sites and hence the overall corrosion rates will be predicted
to be faster than of case (ii), with zero drift, and case (iii), where the reactants are drawn away by the
drift. For t > Tα, the differences are maintained, but, from the figure, the choice of advective flux
appears to have little effect on β over a longer period of time.
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Figure 9. Plots of the evolution of the dimensionsionless variables α, β and S resulting from three
choices of fluid phase advection velocity, Vi, namely Vi = v fi

(as proposed in the current model,
solid lines), Vi = 0 (dotted) and Vi = vsi (as used in [16], dashed). The left plot shows the full evolution
of the interfaces and the right plot shows the results around t = Tα. The results are using cylindrical
geometry, with ε1 = 0.6, ε2 = 0.4 and parameters in Table 4 and S0 = 1.

4. Discussion

In this paper, a partial-differential equation system, with moving boundaries and interfaces,
was used to describe the degradation of a magnesium block in aqueous media. This is a first step
of modelling degradation of Mg or Mg alloy based orthopaedic implants in biologically relevant
environments. The model considers the diffusion and advection of reactants through porous media in
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the crystal structures generated by reactions with magnesium and its products. Novel features in terms
of metal corrosion modelling is the consideration of porous media flow in the crystal structures and
the explicit consideration of MgCO3. The model was analysed numerically, but small time asymptotic
solutions were needed to deal with singularities at initial and certain time points. In principle,
the modelling approach is generic and can be used or adapted to model the corrosive process of any
metals or alloys.

The porous media assumption leads to the explicit consideration of the solid phase flow,
through manufacturing of crystals at the reaction interfaces, and a fluid phase flow to avoid a vacuum.
In 1D, using the classical Cartesian, cylindrical or spherical geometries, a closed system of equations
can be derived using mass conservation alone. The flow velocities are analytically solvable, and the
advective flow of the reactants in the fluid phase does not complicate the model significantly, from one
that assumes diffusion as the only means of reactant transport. The investigation in Section 3.6
compared results using three different advection assumptions, whereby Vi = v fi

(current model)
and Vi = vsi (used in [16]), representing extreme cases of physically relevant advective velocity Vi.
The results showed that the choice of advection term can notably affect the predicted time of pure
magnesium degradation, though, in the long term, there is little difference in the predicted results.
The results of Section 3.2 show that geometry has a significant effect on timescales for degradation and
this can impact the shapes of materials used in an implant. For more accurate predictions of corrosion
of complex shapes, the problem needs to be studied in two or three dimensions, as has been considered
using different modelling approaches in, for example, [22,35]. Extending the current modelling
approach to consider 2D or 3D, non-simple geometries poses non-trivial modelling challenges. The
increase in number of variables will require constitutive assumptions on the mechanical properties of
the Mg(OH)2 and MgCO3 layers to close the system [36].

The model consists of three parameters k, ε1 and ε2 that are not readily available from the literature.
The results of Sections 3.4 and 3.5 show that these can be tuned to predict a wide range of results in
terms of timescales for the vanishing of pure magnesium, t = Tα, and Mg(OH)2 layer, t = Tβ. However,
there is scope for these parameters to be estimated based on appropriate in vitro data. For example,
data from time-course measurements of the proportion of constituents of small, spherical magnesium
or magnesium alloy beads, immersed in appropriate media. The use of small beads, say around
0.1–1 mm radius (see Section 3.3), should ensure the experiment to be completed in a practicable and
cheap time frame, whilst them being spherical enables direct application of the model to calibrate
k, ε1 and ε2 with the data. The interpretation of k can be extended to the corrosion rate of different
quality of magnesium metal and its alloy. In particular, the presence of impurity and the grain size
of micro-structures, depending on the preparation methods used, can have dramatic effects on the
corrosion rate together with environmental factors [37–40]. A further experiment involves the use of
computed tomography (CT) images, which enables spatial details of the macroscale crystal structure
that can be used to obtain direct measurement of ε1 and ε2. The model, with these tuned or determined
parameters, provides a starting point to predict the corrosion properties of much larger magnesium
pellets and in any 2D or 3D extension outlined above.

The current model describes the corrosion of a smooth Mg block in an aqueous media.
The constituents of the media that an orthopaedic implant will be exposed to is more complex
and may have significant effects on the corrosion behaviour. For example, lower pH corrodes the
Mg(OH)2 and MgCO3, so that the pure Mg is more exposed to the environment and accelerating its
corrosion [11,41]. Furthermore, the tougher outer layer of MgCO3 will itself be corroded and the
resulting magnesium ions will eventually disperse and be excreted by the host; the modelling of
this corrosion process leads to a modified boundary condition on r = S. Chloride ions in plasma
will also react with Mg(OH)2 to form MgCl2 [9]; here, the model can be extended to consider two
reactive species for Mg(OH)2, and assume, for simplicity, that the outer layer consists of an isotropic
mixture of MgCO3 and MgCl2. In practice, the magnesium block will be pitted and have holes that will
presumably affect its corrosive properties as well [42]; this is currently being explored by the authors.
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There is thus plenty of scope to improve the current model, in order to describe more realistically the
corrosion properties of magnesium based orthopaedic implants in vivo. Nevertheless, the current
model provides a promising initial step into a theoretical understanding of magnesium corrosion,
hopefully providing useful insights to help make informed decisions on the experimental direction
and design of magnesium based implant materials.

5. Conclusions

To conclude, we summarise the key points from the preceding sections.

• Mathematically modelled Mg (or Mg alloy) corrosion in aqueous environments (e.g., cell culture
medium) and the corrosion products Mg(OH)2 and MgCO3, forming up to three discrete regions
of for Mg, Mg(OH)2 and MgCO3, the boundaries of which move in time.

• The corrosion products are treated as porous media, whereby fluid (water, CO2) and solid (Mg and
its compounds) phases move separately. The reactants are transported via diffusion and advection.

• The model is an advection–diffusion system with multiple moving boundaries, marking the
coordinate of the interfaces between the solid phase species.

• Many of the parameters are obtainable from literature, leaving three free parameters: the reaction
rate between Mg (or Mg alloy) and water (k), and the solid volume fractions of Mg(OH)2 (ε1) and
MgCO3 (ε2) layers.

• There are two key timescales for Mg corrosion process, namely that of complete corrosion of
the original Mg block (Tα) and Mg(OH)2 (Tβ), so that at Tβ all that remains is a MgCO3 block.
Numerical solutions demonstrated that, over a wide range of parameters,

– Tα � Tβ, the original Mg block is short-lived relative to the complete corrosion process.
– k and ε1 affect Tα, whilst having a little effect on Tβ. The latter is affected most by ε2.

To substantially prolong Mg presence, Mg alloys must have the effect of reducing the reaction
rate k.

– geometry has an impact on the corrosion timescales.
– complete corrosion is described well by the law Tβ ∝ S2

0/(1− ε2), where S0 is the original
radius (or size) of the Mg block.

• Relatively simple in vitro experimentation and CT scans can be used to inform the free parameters,
thereby enabling the model to predict the outcome in situations more challenging to undertake
experimentally.
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Appendix A. Change of Variables

For numerical convenience, the two zones—the hydroxide layer, r ∈ (α, β) (zone 1), and
the carbonate layer, r ∈ (β, S) (zone 2)—are each mapped to an interval of unit size using the
transformation (r, t)→ (ρ, τ), namely

r = α + (β− α)(ρ− 1), r ∈ [α, β] −→ ρ ∈ [1, 2],

r = β + (S− β)(ρ− 1), r ∈ [β, S] −→ ρ ∈ [1, 2],

t = τ.

Substitution into Equations (23)–(24) yields
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∂ W1

∂ τ
+

1
β− α

(
G1(ρ, τ) + v f1

) ∂ W1

∂ ρ
− DW

(β− α)2

[ d(β− α)

α + (β− α)(ρ− 1)
∂ W1

∂ ρ
+

∂2 W1

∂ ρ2

]
= 0, (A1)

∂ W2

∂ τ
+

1
S− β

(
G2(ρ, τ) + v f2

)∂ W2

∂ ρ
− DW

(S− β)2

[ d(S− β)

β + (S− β)(ρ− 1)
∂ W2

∂ ρ
+

∂2 W2

∂ ρ2

]
= 0, (A2)

∂ C2

∂ τ
+

1
S− β

(
G2(ρ, τ) + v f2

) ∂ C2

∂ ρ
− 1

(S− β)2

[ d(S− β)

β + (S− β)(ρ− 1)
∂ C2

∂ ρ
+

∂2 C2

∂ ρ2

]
= 0, (A3)

where
G1(ρ, τ) = (α̇− β̇) (ρ− 1)− α̇, G2(ρ, τ) = (β̇− Ṡ) (ρ− 1)− β̇,

using the “dot notation” to denote the derivative with respect to τ. For Phases 1.1 and 2.2, the fluid
phase velocities are

v f1 =
α̇ αd[

α + (β− α)(ρ− 1)
]d , v f2 =

(1− ε1) α̇ αd − (ε2 − ε1) β̇ βd

(1− ε2)
[
β + (S− β)(ρ− 1)

]d ,

for Phase 2.1,

v f1 =
β̇ βd[

α + (β− α)(ρ− 1)
]d , v f2 =

β̇ βd[
β + (S− β)(ρ− 1)

]d ,

and for Phases 1.2 and 2.3,

v f1 = 0, v f2 =
(ε1 − ε2) β̇ βd

(1− ε2)
[
β + (S− β)(ρ− 1)

]d .

The initial conditions are

τ = 0 : α = β = S = S0.

For all phases, we have

W2(1, τ) = 1, C2(2, τ) = 1. (A4)

For Case 1, κ → ∞, the conditions for 0 < τ < Tα are

W1(1, τ) = 0, (A5)

W1(2, τ) = W2(1, τ), (A6)

C2(1, τ) = 0, (A7)

and

−(1− ε1)
DW

β− α
∂ρW1(1, τ) = 2 γ0 α̇,

DW

(
1− ε2

S− β
∂ρW2(1, τ)− 1− ε1

β− α
∂ρW1(2, τ)

)
= γ1

(
β̇ +

(ωα − 1) αdα̇

βd

)
,

− (1− ε2)

S− β
∂ρC2(1, τ) = γ2

(
β̇ +

(ωα − 1) αdα̇

βd

)
,

(A8)

and, for τ > Tα, we impose Equations (A6) and (A7) and
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∂ρW1(1, τ) = 0, DW

(
(1− ε2)

S− β
∂ρW2(1, τ)− (1− ε1)

β− α
∂ρW1(2, τ)

)
= γ1 β̇,

− (1− ε2)

S− β
∂ρC2(1, τ) = γ2 β̇.

(A9)

For Case 2, κ < ∞; then, for 0 < τ < Tα=β, we impose

γ0 β̇ = −κ W2(1, τ)2, −DW
(1− ε2)

S− β
∂ρW2(1, τ) = γ1 ωα β̇,

− (1− ε2)

S− β
∂ρC2(1, τ) = γ2 ωα β̇,

(A10)

noting α = β here; for Tα=β < τ < Tα, conditions Equations (A6)–(A8) are imposed along with

α̇ = −
κ W2

2
γ0

, (A11)

and, for τ > Tα, Equations (A6), (A7) and (A9) are imposed.
The spatial mapping is valid for 0 ≤ α < β < S and gives rise to a singularity at τ = 0

(where α = β = S) and for Case 2 at τ = Tα=β (where α = β). We evade this problem using the small
time asymptotic expansion presented in Appendix B.

Appendix B. Small Time Asymptotics

To handle the singularities at τ = 0 and τ = Tα=β for Case 2 in the numerical solution, we obtain
small time asymptotic solutions of the variables, and use these to provide approximate initial conditions
at a small time increment after the singular time points. The relevant phases for this analysis are Phase
1.1, 2.1 and 2.2 and these are discussed separately.

Appendix B.1. Phase 1.1

Phase 1.1 considers Case 1 when τ < Tα. From Equation (A8), we have

α̇ = −(1− ε1)
DW

2γ0(β− α)

∂ W1

∂ ρ
, (A12)

where β− α� 1 for τ � 1, and then

α̇ = O
( 1

β− α

)
,

assuming
∂ W1

∂ ρ
= O(1). We start by seeking expansions of the form

α ∼ S0 + a1τσ, β ∼ S0 + b1τσ,

where a1, b1 = O(1) and σ is to be determined. We have β− α = τσ(b1− a1) and α̇ = στσ−1a1, so, from
Equation (A12), it follows that

τ2σ−1 = 1⇒ σ =
1
2

.

Consequently, the following small time approximations are applied:

α(τ) ∼ S0 + a1 τ1/2, β(τ) ∼ S0 + b1 τ1/2, S(τ) ∼ S0 + s1 τ1/2. (A13)

As τ → 0, we expect a1 < 0, as some Mg will be used up and s1 > b1 > 0 as volume is gained
from Mg corrosion. Substituting these into the model Equations (A1)–(A3), we obtain at leading order
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1
2

(
(a1 − b1)(ρ− 1)− a1 + a1 Sd

0
b1 − a1

)
∂ W1

∂ ρ
− DW

(b1 − a1)2
∂2 W1

∂ ρ2 ∼ 0, (A14)

1
2

(
(b1 − s1)(ρ− 1)− b1

s1 − b1
+

(1− ε1)a1 Sd
0 − (ε2 − ε1)b1 Sd

0
(1− ε2)(s1 − b1)

)
∂ W2

∂ ρ
− DW

(s1 − b1)2
∂2 W2

∂ ρ2 ∼ 0, (A15)

1
2

(
(b1 − s1)(ρ− 1)− b1

s1 − b1
+

(1− ε1)a1 Sd
0 − (ε2 − ε1)b1 Sd

0
(1− ε2)(s1 − b1)

)
∂ C2

∂ ρ
− 1

(s1 − b1)2
∂2 C2

∂ ρ2 ∼ 0. (A16)

As τ → 0, with interface conditions

a1γ0(b1 − a1) + (1− ε1)DW ∂ρW1(1, τ) ∼ 0, (A17)

2DW

(
1− ε1

b1 − a1
∂ρW1(2, τ)− 1− ε2

s1 − b1
∂ρW2(1, τ)

)
+ γ1 (b1 + a1(ωα − 1)) ∼ 0, (A18)

b1 +
2 (1− ε2)

γ2 (s1 − b1)
∂ρC2(1, τ) + a1(ωα − 1) ∼ 0, (A19)

and from the analytical solution for S,

s1 ∼ −[(ωβ − 1)b1 Sd
0 + ωβ(ωα − 1)a1 Sd

0 ]. (A20)

By applying the boundary conditions in Equation (A8) and using W1(2) = W2(1),
Equations (A14)–(A16) have the analytical solution

W1(ρ, t) =
W (λ1 − λ2)

λ1 − λ3
,

W2(ρ, t) =
(λ4 − λ5)W + λ5 − λ6

−λ6 + λ4
,

C2(ρ, t) =
λ7 − λ8

−λ9 + λ7
,

(A21)

where W = W1(2) = W2(1) and

λ1 = erf(
a1 (Sd

0 − 1)
λ0

), λ2 = erf
( Sd

0 a1 + (ρ− 2) a1 − b1 (ρ− 1)
λ0

)
, λ3 = erf(

Sd
0 a1 − b1

λ0
),

λ4 = erf
( ((b1 ε2 + (−b1 + a1) ε1 − a1) Sd

0 − s1 (−1 + ε2)) (b1 − s1)

λ00

)
,

λ5 = erf
( (b1 − s1) (((ε2 − ε1) b1 + a1 (−1 + ε1)) Sd

0 + (−1 + ε2) ((ρ− 2) b1 − s1 (ρ− 1)))
λ00

)
,

λ6 = erf(
(((ε2 − ε1) b1 + a1 (−1 + ε1)) Sd

0 − b1 (−1 + ε2) (b1 − s1)

λ00

)
,

λ7 = erf
( (b1 ε2 + (−b1 + a1)ε1 − a1) Sd

0 − b1 (−1 + ε2)

2(−1 + ε2)

)
,

λ8 = erf
( (b1 ε2 + (−b1 + a1) ε1 − a1) Sd

0 + (−1 + ε2) ((ρ− 2) b1 − s1 (ρ− 1))
2(−1 + ε2)

)
,

λ9 = erf
( (b1 ε2 + (−b1 + a1) ε1 − a1) Sd

0 − s1 (−1 + ε2)

2(−1 + ε2)

)
,

λ0 = 2

√
1

DW
DW , λ00 = 2

√
(b1 − s1)

2

DW
DW (−1 + ε2).

Equations (A17)–(A19) form a nonlinear system of algebraic equations for the unknowns
W, a1 and b1 ,which can routinely be solved numerically. Equations (A20) and (A21) are used to
formulate the initial conditions at Phase 1.1.
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Appendix B.2. Phase 2.1

With α = β and S − β � 1 for small time, we have from Equation (A2) ∂ρ ρW2 ∼ 0 and
∂ρ ρC2 ∼ 0 in the leading order. Furthermore, as W2(2, τ) = 1, we anticipate β̇ = O(1) from the
first in Equation (A10), and the second and third terms of Equation (A10) imply ∂ρW2(1, τ) ∼ 0 and
∂ρC2(1, τ) ∼ 0, hence W2 ∼ 1 and C2 ∼ 1 at leading order. We write

β ∼ S0 + b[1]1 τ + b[1]2 τ2,

S ∼ S0 + s[1]1 τ + s[1]2 τ2,

W2 ∼ 1 + W [1]
21
(ρ)τ + W [1]

22
(ρ)τ2,

C2 ∼ 1 + C[1]
21
(ρ)τ + C[1]

22
(ρ)τ2.

On substitution into Equations (A10) and (34), we obtain

b[1]1 = − κ

γ0
, b[1]2 = − κ

γ0
W21 , s[1]1 = (1− wαwβ) b1, s[1]2 = (1− wαwβ)

 b[1]
2

1 wαwβ d
2

+ b[1]2

 ,

where W [1]
2 is defined below. For Equations (A2) and (A3), we have ∂ρ ρW21 = 0 and ∂ρ ρC21 = 0,

and, using Equation (A10), we obtain W [1]
21

and C[1]
21

on integration yielding

W2 = 1 +
γ1wαb1(s1 − b1)(2− ρ)

DW(1− ε2)
τ,

C2 = 1 +
γ2wαb1(s1 − b1)(2− ρ)

(1− ε2)
τ,

(A22)

as τ → 0. From Equations (A2) and (A3), the next order equations are

∂ρ ρW22 =
2∂ρ ρW21(s2−b2)

(s1 − b1)
+
(s1−b1)

DW

[
(b1−s1)(ρ−1)−b1+

(1−ε1)a1−(ε2−ε1)b1

(1− ε2)
− dDW

S0

]
∂ρW21 ,

∂ρ ρC22 =
2∂ρ ρC21(s2−b2)

(s1 − b1)
+(s1−b1)

[
(b1−s1)(ρ−1)−b1+

(1−ε1)a1−(ε2−ε1)b1

(1−ε2)
− d

S0

]
∂ρC21 ,

hence the advection terms come into play in the τ2 terms. We use the expansions for β, S and
Equation (A22) for the initial conditions in Phase 2.1.

Appendix B.3. Phase 2.2

This phase occurs after Phase 2.1 when α and β begin to separate at τ = Tα=β. The values
of α = β, S, W2 and C2 at τ = Tα=β are known from the numerical solution of Phase 2.1.
For 0 < τ − Tα=β � 1 and 0 < β− α� 1, we write

W1 ∼W2(1, τ) + (β− α)A (2− ρ)

and α = α0(τ) + O(τ − Tα=β), then the first in Equation (A10) implies that

α̇0 = −
κ W2

2 (1, τ)

γ0
, (A23)

in leading order, implying from the first in Equation (A8) that

− (1− ε1)
DW

β− α
∂ρW1(1, τ) ∼ 2 κ W2

2 (1, τ),
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resulting with A = 2κW2
2 (1, τ)/(1− ε1) and hence

W1 ∼W2(1, τ) + (β− α)
2κW2

2 (1, τ)

(1− ε1)
(2− ρ). (A24)

For the initial part of Phase 2.2, Equations (A2) and (A3) are solved numerically until β− α reaches
a given small tolerance, typically β− α = 10−3, at τ = Tα=β + τ1, for example. Following this, the
system for Phase 2.2 is solved in the usual fashion starting from time Tα=β + τ1 using the updated
solutions for W2, C2, α and β, and by using Equation (A24) for W1.
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