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Abstract: Micromagnetic simulations of magnetization reversal were performed for magnetic
nanotubes of a finite length, L, equal to 1 and 2 um, 50 and 100 nm radjii, R, and uniaxial anisotropy
with “easy axis” parallel to the tube length. L.e., we considered relatively short nanotubes with the
aspect ratio L/R in the range 10—40. The non-uniform curling magnetization states on both ends of
the nanotubes can be treated as vortex domain walls (DW). The domain wall length, L., depends on
the tube geometric parameters and the anisotropy constant K;;, and determines the magnetization
reversal mode, as well as the switching field value. For nanotubes with relative small values of L.
(L¢c/L < 0.2) the magnetization reversal process is characterized by flipping of the magnetization
in the middle uniform state. Whereas, for relative large values of L., in the reverse magnetic field,
coupling of two vortex domain walls with opposite magnetization rotation directions results in
the formation of a specific narrow Néel type DW in the middle of the nanotube. The nanotube
magnetization suddenly aligns to the applied field at the switching field, collapsing the central DW.

Keywords: magnetization reversal; nanotubes; magnetization hysteresis; domain walls;
micromagnetic modeling

1. Introduction

One of the central problems in the area of nanomagnetism is proper description of the
magnetization reversal, the reversal modes and corresponding reversal (switching) fields [1].
Magnetization reversal strongly depends on the sample shape and size, as well as on the magnetic
material parameters. Experimentally, the magnetization reversal and switching fields are detected via
measurements of magnetic hysteresis loops. Very often, the magnetization reversal mode description
can be reduced to the motion of magnetic solitons (domain walls) and one (two) domain wall
approximation is sufficient for satisfactory description of the reversal. On the other hand, recently,
spintronic devices based on domain wall motion such as race-track memory [2] and magnetic logic
gates [3] have been proposed (see the review in Ref. [4]).

The simplest magnetic systems to study the domain wall motion are thin magnetic stripes, or wires
with rectangular cross sections. The magnetization reversal in the stripes can be reduced to motion of
vortex or transverse domain walls [5,6], so called “head-to-head” and “tail-to-tail” walls. Other typical
systems important for applications are magnetic wires with a circular cross section [1,4]. However,
the magnetization reversal in such wires is more complicated due to the presence of vortex cores
(Bloch lines) and singular Bloch points near the wire center, resulting in an increase in the switching
fields. To avoid the vortex cores, designs using hollow circular wires or tubes have been suggested,
see Ref. [4,7] for the recent review.

Magnetic tubes with nanoscale radii and thickness (nanotubes) are promising candidates for the
development of nanoscale devices, and have been intensively investigated using experimental and
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theoretical methods over the last decade [8-33]. Furthermore, with the rapid development of measuring
tools, such as the optimally coupled nanometer-scale SQUID combined with torque magnetometry [9]
and dynamic cantilever magnetometry [10], the inhomogeneous magnetization configurations and
switching modes can nowadays be probed in an individual nanotube. The internal field distribution is
inhomogeneous, mainly due to the long-range magnetostatic interaction, and this essentially influences
the reversal modes excited in various shapes of confined nanostructures, such as flat magnetic particles
of different shapes (dots), nanowires, nanotubes, nanorings, etc. [1].

The magnetization hysteresis loops recently observed and simulated in Ni nanotubes by
Buchter et al. [9] exhibited the same oblique parallelogram shapes as those simulated in short
nanotubes with an uniaxial anisotropy with an “easy axis” directed along the tube length [23].
The authors of Refs. [9,10] pointed out that the magnetization reversal was not initiated from both
ends of nanotube, as predicted in Refs. [19,20] for long nanotubes. According to the observations
in [9,10], the magnetization reversal process is presumably composed of reversible and irreversible
contributions. The reversible part corresponds to a Néel-type domain wall nucleation between two
tubular-like vortex domains with opposite circulation directions as the increasing magnetic field
approaches the switching field value and the magnetization gradually decreases, forming a special
magnetization configuration. The irreversible reversal takes place by collapse of the Néel-type wall in
the middle of the nanotube at the switching field.

In this work, we simulate the magnetization reversal by describing the intermediate magnetization
states of nanotubes as the distorted vortex domain walls on both tube ends with the localization length
L.. The magnetization reversal process is presented as the displacement of these walls, followed by the
formation and collapse of a Néel-type domain wall in the middle of the nanotube. Since the length L.
depends on both material and geometric parameters of nanotube, the magnetization reversal reveals
various modes.

2. Methods

A cylindrical magnetic nanotube with outer radius R, inner radius R; and length L is set on the
cylindrical coordinates system (p, ¢, z) with the origin in the middle of tube and the z axis directed
along the tube length, see Figure 1. The nanotube is assumed to have magnetic uniaxial anisotropy,
with an easy axis parallel to the z axis. An external magnetic field (H) is applied along the z axis
opposite to the average magnetization of the central nanotube domain.

One of the fascinating properties of the tubular geometry is its rotational symmetry; the fact
that the magnetization configuration is identical in the tube cross-section with an arbitrary azimuth
angle. This means that the magnetization configuration inside of a nanotube with a thickness
AR =R — R; can be revealed by performing 2D numerical simulations in the rectangular area of
the cross-section of AR x L. In the simulations, the material parameters adopted were: the exchange
stiffness constant, A = 1011 J/m, the saturation magnetization, M = 10 A/m, and the relatively
small uniaxial anisotropy constant, K,, was equal to Ky = 5 x 103 J/m3 or 2K, = 10* J/m? for
studying of the anisotropy effect. The choice of the material parameters determines the material
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intrinsic scales: the exchange length, Ry = (47'L'A / yOMg =10 nm and nominal domain wall width

0= (A/Ku)l/2 ~ 40 nm.
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Figure 1. Circular magnetic nanotube with outer radius R, inner radius R;, length L, and the cylindrical
coordinate (p, ¢, z) system used. The simulations are performed in the nanotube cross-section of
AR x L. The magnetization configuration of the domain wall located in the middle is illustrated in the
right panel.

The computations are implemented by the software Delphi 7 [34]. The tube cross-section AR x L
is meshed with the cell size, as b, = b, = 2.5 nm, which is smaller than the exchange length Ry.
The magnetization at each cell is described by the unit vector « = M /M. Its distribution in the nanotube
wall section AR x L can be represented by the 2D diagrams of vectors and colors, as shown in Figure 1,
as well as by the components of the magnetization unit vector, a, = sin6(z) and, a; = cos6(z),
where 0 is the angle between the magnetization direction and the tube easy axis z.

According to the theoretical studies [18,20], the exchange energy is associated with the nanotube
curvature factor, AR/R or f = R;/R. In order to elucidate the effect of exchange interaction on the
magnetization configurations, the simulations are carried out in nanotubes of 50 nm and 100 nm radii
with varying tube thickness AR.

3. Results of Simulations

3.1. Zero External Fields

The simulated magnetization configurations of the thin nanotubes, AR = 17.5 nm, with 50 and
100 nm radii, and the nanotubes of R = 100 nm with varying tube thickness are presented respectively
in the upper and lower panels of Figure 2.

The magnetization configurations characterized by the non-uniform states with decreasing of the
«, value towards both ends of the nanotube (twisted “bamboo” states [11]) are referred to as partial
Néel-type domain walls (DWs) [18] or vortex end-domains [19,20]. For the relatively thin and short
nanotubes, axially symmetric DW is formed at the middle to separate two vortex-like domains with the
magnetization configurations having opposite chiralities. Within the DW width, the magnetizations
rotate from one circular sense to another, resulting in a special DW configuration composed of a core
and two tube end-domains. The core with length Cj is characterized by magnetizations aligning to
the positive z axis and the magnetic charges with the maximum density concentrated on its surfaces,
while magnetic charges of a definite sign are distributed respectively within two end-domains as
a consequence of the magnetization rotation. The width of these axially symmetric Néel-type DWs is
strongly dependent on the nanotube sizes [31]. The formation of the chiral DWs with magnetization
circulation in opposite directions minimizes the total energy of the nanotubes in the following way:
to minimize the magnetostatic energy, the magnetic moments located on the nanotube end faces
z = +L/2 experience a torque exerted by the demagnetizing field to rotate an angle, 6,,; = +6(FL/2),
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tilting away from the tube easy axis, which is held by the exchange and anisotropy interaction to avoid
increases of these two energy values. The balance between these energy terms is reflected in the value
of the angle 6,,,; < 90°, as illustrated by the magnified sketch in the right panel of Figure 2.
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Figure 2. Simulated magnetization configurations of nanotubes for H; = 0. (A) the fixed tube thickness
AR =17.5 nm. The nanotube radius R = 50 nm and tube length 1 um (dashed lines) and 2 um (solid
lines): magnetic anisotropy constant K, values Ky =5 x 10% J/m?3 (pink lines) and 2K (green lines).
The nanotube radius R = 100 nm and length 2 um: Kj (blue lines), 2Ky (cyan lines); (B) nanotube
with a length of 2 um and a radius of 100 nm, and the anisotropy constant Ky with tube thicknesses
AR =17.5,27.5,37.5 and 47.5 nm, represented by the blue, red, green and violet curves, respectively.

Due to the dependence of these energy terms on the nanotube material and geometric parameters,
the deviating angle 0,,; exhibits a dependence on the anisotropy constant K, as well as on the
nanotube sizes. For example, for nanotubes of the same material and length, the manetostatic energy
is considered to be proportional to the area of the nanotube end face, which is proportional to the tube
radius R and thickness AR, so that by increasing the radius from 50 to 100 nm, the angle 6,,,; increases
from 79° to 82° for the anisotropy constant value Ky, and from 77° to 79° for 2Ky, as shown in the
upper right panel in Figure 2. Whereas for nanotubes of 100 nm radius, as the thickness increases from
17.5 to 27.5, 37.5 and 47.5 nm, the angle 6,,,; increases from 82° to 82.5°, 83° and 83.5°, respectively,
as displayed in the bottom right panel of Figure 2. On the other hand, the anisotropy field prevents the
magnetization rotation. This is demonstrated by the fact that the angle 0,,; decreases as the anisotropy
constant value increases from K to 2Ky for the same nanotube sizes.

Another factor preventing magnetization rotation is the exchange interaction, which is considered
to be proportional to the tube curvature factor, AR/R. As can be seen in the upper panel of Figure 2,
for the same nanotube thickness AR = 17.5 nm, the angle 0,,,; is smaller for R = 50 nm than that for
R =100 nm. For the latter, the superposition of the larger stray field and the smaller exchange effect
makes the difference between these two values of 6,,,; quite small. However, for the same radius of
nanotubes, the magnetostatic and the exchange energies are both proportional to AR. The fact that
the value of the angle 6,,,; increases with increasing AR is exhibited in the lower panel of Figure 2
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for nanotubes of R = 100 nm. This means that the magnetostatic energy, as a long-range interaction,
has an advantage over the short-range exchange interaction in the energy competition. When the
nanotube thickness AR increases to 47.5 nm, non-uniform states extend to the middle of the tube.
The purple curves show that the magnetization rotates from +12° to —12° in the central region around
150 nm. It means the nucleation of the domain wall in the center of the nanotube.

The domain wall length L., designated as the distance through which the magnetization
progressively rotates from the angle 6,,; to align with the easy axis, also results from the
energy competition and balance in the lowest energy state. To minimize the magnetostatic and
exchange energies, the magnetization rotation is realized by making the angles between adjacent
magnetic moments as small as possible, which should be restrained by the anisotropy interaction,
avoiding extension of the rotational region and increasing the anisotropy energy. As shown in Figure 2,
the length L. of DW is always much larger than 4, is proportional to the tilting angle 6,,; of the
magnetization at the edge of the nanotube, and demonstrates dependencies similar to those of the
angle 6,,; on the values of the material parameter K;, and the geometric parameters of nanotube,
including the radius R, length L and the thickness AR, as discussed in detail above.

On the other hand, the Néel-type domain wall with the magnetization rotations from the angle
O.na to alignment with the easy axis gives rise to the magnetic volume charges within the DW length
L.. This can be calculated following the formula p,, = -V -M = —M; (tXp /p+da;/ dz). We found
that the p-magnetization component is negligibly small for all simulated nanotube sizes. Nevertheless,
this component is important for DW dynamics, resulting in a chirality-dependent DW velocity in long
nanotubes [24,25,30]. Figure 3 demonstrates the calculated values of p;; (LA/ nm?), distributed in thin
nanotubes with a 50 nm radius and lengths of 1 pym and 2 pm, as well as in nanotubes with a 100 nm
radius and 2 um length. Obviously, the negative and the positive magnetic charges appearing on the
length L, correspond to the magnetization rotation from 6,,,; to 0° near the tube bottom face, and from
0° to —0,y,4 near the top face of the tube, respectively.
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Figure 3. Simulated magnetic charge distribution in nanotubes with the lengths of 1 and 2 um: for the
nanotube radius R = 50 nm, the anisotropy constant values, Ky (pink lines) and 2K, (green lines); for the
nanotube radius R = 100 nm, the anisotropy constant values, K (blue lines) and 2K (cyan lines). The L,
symbols mark the sizes of the vortex-like end domains.

3.2. Magnetization Reversal Process

In the magnetic fields H, applied along the tube axis, the magnetic moments experience a torque,
I'=M x H= M;H,a,(z)p, to set magnetization precession around the field direction, leading to
domain growth from both tube ends towards to the tube middle. The torque is not only dependent on
the strength of the applied magnetic field, but also on the magnetization component «,(z), which leads
the amplitude of the torque to have the same dependence on the coordinate z as a4 (z). End-domain



Materials 2018, 11,101 6 of 11

growth is mainly influenced by the anisotropy field, 2K,,/M;, determined by the anisotropy constant
value. For nanotubes of 50 nm radius and 1 pm length, Figure 4 compares the magnetic charge
distribution for different bias fields in the nanotubes with the different anisotropy constant values,
Ko and 2Kj, plotted with the magenta and olive color, respectively.
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Figure 4. Magnetic charge distribution applying the reversed magnetic field H, for nanotubes with

thickness AR = 17.5 nm, radius R = 50 nm and 1 pm length using the magnetic anisotropy constants Ky
and 2K plotted with the magenta and olive colours, respectively.

For nanotubes with larger values of anisotropy (2K), the magnetic charge distribution (olive
color) reveals a shorter relative localization length. They are only localized in about one quarter of
the nanotube length at the applied magnetic fields of —12.08 kA /m. By increasing the magnetic field
strength by 0.08 kA /m, the magnetization reversal occurs, resulting in most of the magnetic moments
being aligned with the reverse field direction. However, there is still a small amount of charge localized
at both ends of the tube, due to the effect of the edge demagnetizing field. For the nanotube with
the smaller value Ky, the magnetic charge localization length is relative larger. At the magnetic field
strength of —6.4 kA /m, the charges (magenta color) already exist around the tube center. In the field
of —8.40 kA /m, the central domain contraction results in the sharp maximum of the charge density
at the middle of nanotube. This is manifested by increasing the charge density by approximately
20 times. Only a small increase in the magnetic field strength of 0.08 kA /m is needed to reach the
switching field value, —8.48 kA /m. The magnetization suddenly reverses and aligns in the central
tube area to be parallel with the reversed field direction. We note that the magnetization charge density
dom/dz = —Ms(d?a,/dz?) is proportional to the z-component of the exchange field and, therefore,
reflects the exchange energy density.

The magnetization reversal mode is also reflected in the hysteresis loops, as presented in
Figure 5. The growth of the vortex end-domains leads to a reduction in the average value of the
axial magnetization component, «,. For the magenta curve for the nanotube with L = 1 um at the
field value of —8.40 kA /m, the nucleation of the central DW is manifested by decreasing the values
of M, /M; to its lowest value. A similar magnetization reversal mode is observed in the 2 um-long
nanotube with 100 nm radius and the smaller anisotropy constant value of Kj plotted in Figure 5
(blue color). Another reversal mode displayed by the olive star hysteresis loop is the same as that
plotted with small olive squares, and magenta and cyan colors. It is also shown in Figure 5 that the
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switching field value, Hs, can be controlled not only by the anisotropy value K;,, but also by changing
the nanotube geometry.

The magnetization process exemplified by Figures 4 and 5 starts from both ends of the nanotube
by the growth of the vortex domains. However, if the uniform state, with magnetization parallel to the
easy axis, occupies only a small middle part of the nanotube, the magnetization reversal mode exhibits
another feature. See, for example, the magnetization reversal stages for the nanotube with length 2 pum,
radius 100 nm and thickness 37.5 nm, as presented in Figure 6.
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Figure 5. Simulated magnetization hysteresis loops of thin nanotubes with AR = 17.5 nm.
Nanotube length L = 1 um, radius R = 50 nm: magnetic anisotropy K, values Ky = 5 x 10% J/m3
(pink stars) and 2Ky (green stars). Nanotube length L = 2 um: R = 50 nm, Ky (pink rectangles),
2K (green rectangles); R = 100 nm, K (blue rectangles), 2K (cyan rectangles).
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Figure 6. The magnetization component profiles and magnetic charge distributions within a nanotube
with the applied magnetic fields of 0, —1.6, —3.2, —4.40 and —4.48 kA /m represented by the green,
orange, brown, navy, blue and gray color curves, respectively: (A) the magnetization components,
ay(z), az(z), profiles; (B) magnetic charge distributions; (C) derivative of the magnetic charges. Inset
(1): Cy marks the core width of the central domain wall in the middle of nanotube. Inset (2): simulated
magnetization hysteresis loop showing the average magnetization for the selected values of the
magnetic fields used in panels (A,B). The nanotube geometrical parameters are: radius R = 100 nm,
thickness 37.5 nm and length L =2 pm.

At the zero field, the green magnetization distribution curves, a4 (z) and a;(z), demonstrate the
uniform state appearing in the middle of the nanotube within the range of =125 nm (Figure 6A).
By applying a small reversed field of —1.6 kA/m as shown by the orange curves in the middle,
the uniform magnetization state is replaced by the rotation of the magnetization from 6 ~ 22°
(y = sinf = 0.375) to 6 ~ —22°. This leads to the appearance of magnetic charges within the domain
wall located at the center of the nanotube. The structure of the central DW, based on magnetic charges
distribution curves, p,,(z), can be assumed to consist of a core with the maximum of the negative and
the positive magnetic charges concentrated on its surfaces, and two regions distributed with different
signs of magnetic charges, as sketched in the right panel of Figure 1.
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When the reverse magnetic field is increased to —3.2 kA /m, the end-domain growth towards
to the middle of the nanotube undergone by the two domains magnetized in the opposite circular
directions compresses the central domain wall and causes the magnetization rotation from 46° to —46°
at the middle region of 125 nm, giving rise to the giant value +-8.94 A /nm? of the magnetic charges
on the core surfaces. The core length Cy, which can be measured as the distance between two points,
where dp;,(z)/dz = 0, is 40 nm, as shown in Figure 6C by the brown curve in the magnified sketch of
the magnetic charge density dp;,(z) /dz on the scale of £50 nm.

As the reversed field increases to —4.4 kA/m, the navy blue curves demonstrate that the
magnetization rotation from 63° to —63° is suppressed at the central narrow region of 100 nm,
providing information about the dramatic increases in the magnetic charges (and the exchange energy
density) within the DW, and shrinking of the core length to 25 nm.

By further increasing the reverse field to 4.48 kA /m, the magnetization reversal takes place
by collapsing the central narrow DW. The gray curves demonstrate the central nanotube domain,
where the magnetizations align to the reverse field direction, which becomes longer and has a length
about of 750 nm. In the reversed state, the nanotube edge effect can still be observed by rotating the
magnetizations progressively from 0° to 80.5° towards the two ends of the nanotube. In the field above
the reversal field, the magnetic charge sign at both ends of the nanotube is completely opposite to the
zero-field state plotted with the green curve. The uniformly magnetized central domain is longer than
the one in the zero fields. Therefore, the magnitude of the average axial magnetization component,
M, /M, is equal to 0.827, as indicated by the hysteresis curve, which is larger than 0.739 in the initial
magnetization state at H, = 0.

Therefore, the magnetization reversal process of the nanotube with such a magnetization structure
can be characterized by the central DW forming, the DW shrinking, and then collapsing at the switching
fields. The magnetization reversible reversal process still starts from both tube ends due to growth
of the vortex domain walls decreasing the average axial magnetization component. The irreversible
magnetization reversal is manifested itself by aligning of the magnetic moments in the central domain
parallel to the reversed field direction and disappearing of the central domain wall between oppositely
circulating magnetic domains. The reversal mode is specific for the nanotube topology and does not
exist in “unrolled” nanotubes (magnetic stripes), where the magnetization reversal is mediated by
magnetic vortices and antivortices nucleated at the stripe lateral edges. Such mode of the magnetization
reversal of short nanotubes with the opposite chiralities of the vortex end-domains was experimentally
confirmed for anisotropic Ni [9], exchange-biased permalloy [10] and CoFeB nanotubes [32].

4. Summary

Based on the simulation results, we can draw the following conclusions: (1) Neél-type vortex
domain walls of opposite chirality are formed in finite magnetic nanotubes to minimize the total
magnetic energy following the principle of magnetic charge avoidance; (2) the domain wall length
L. is determined by the angle that the magnetization deviates from the easy axis at both ends of the
nanotube; (3) L. plays an essential role in the magnetic properties of nanotubes, and it can be tailored
by adjusting the tube geometry and the anisotropy constant K;,; (4) for a finite length of nanotubes the
reversible part of the magnetization reversal is initiated at both ends of the nanotubes, with the vortex
domain wall growth decreasing the axial component of magnetization. For nanotubes with a relatively
shorter length of the vortex wall located at both tube ends (L.), the irreversible magnetization reversal
occurs by overcoming the energy barrier contributed mainly by the anisotropy energy. Whereas,
for nanotubes with relatively large value of L., the irreversible part of the magnetization reversal is
realized by collapsing the central Néel domain wall.
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